Heuristic Genetic Algorithms

Embed Size (px)

Citation preview

  • 8/3/2019 Heuristic Genetic Algorithms

    1/14

    P E R G A M O N

    An International Journal

    computers &mathemat icsw i t h a p p l i c a t i o n s

    Computers and Mathematics with Applications 44 (2002) 263-276www.elsevier.com/locate/camwa

    H e u r i s t i c G e n e t i c A l g o r i t h m sfo r G e n e r a l C a p a c i t a t e d

    L o t - S i z i n g P r o b l e m s

    J INXING XIE* AND J IEFANG DONGDepartment of Mathematical Sciences

    Tsinghua University, Beijing 100084, P.R. China

    j x i e ~ m a t h . t s i n g h u a , e d u .c n

    (Received January 2001; accepted February 2001)

    A b s t r a c t - - T h e lot-sizing problems address the i s s u e of determining the production lot-sizes ofvarious items appearing in consecutive production stages over a given finite planning horizon. Ingeneral capacita ted lot-sizing problems, the product structure can be a general acyclic network, thecapacity constraints can be very sophisticated, and all the known parameters can be time-varying.This paper proposes heuristic genetic algorithms for these problems by designing a domain-specificencoding scheme for the lot-sizes and by providing a heuristic shifting procedure as the decodingschedule. The main contribution of these genetic algorithms is the presentation technique that encodesonly the binary variables for the setup patterns but derives other decision variables by making useof the problem-specific knowledge. Some results from the computational experiments are also given.@ 2002 Elsevier Science Ltd. All rights reserved.

    Keywords--Production planning, Inventory control, Capacitated lot-sizing, Genetic algorithm(GA), Heuristics.

    1 . I N T R O D U C T I O N

    The widespread and popula r use of material requirements planning (MRP) systems in industryh~ resulted in increased interest in the topic of decision making in capacita ted multistage man-ufact uring systems. However, the lot-sizing procedu res used by curren tly awfilable MR P systemsare quite l imited in their abil i ty to coordinate p roduction plans of various stages of the manu-facturing processes and various capacity constraints. As firms have incorporated MRP conceptsinto their production planning and distribution systems, the capacitated multistage lot-sizingdecision problem has become a problem of prime importance.

    The lot-sizing problem addresses tile issue of determining the production lot-sizes of variousitems appearing in consecutive productio n stages over a given finite planning horizon. Theobjectiv e of the problem is to reduce the total m anufacturing cost ( including setup cost, inventoryholding cost, overtiming cost, etc.) while trying to satisfy the customers ' requirements with thelimited capacity. This kind of probl em can be classified into different categorie s according to

    * Author to whom all correspondence should be addressed.This research has been supported by the National Natural Science Foundation of China (Project No. 69904007).

    0898-1221/02/$ - see front matter (~) 2002 Elsevier Science Ltd. All rights reserved. Typeset by ~42~I$-TEXPII: S0898-1221(02)00146-3

  • 8/3/2019 Heuristic Genetic Algorithms

    2/14

    264 J. XIE AND J. DONG

    t h e p r o d u c t s t r u c t u r e s ( e .g . , s i n g le le v e l s y s t e m , s e r ia l , a s s em b l y, a n d g e n e r a l s y s t e m s ) a n d t h ec a p a c i t y s t r u c t u r e s ( e .g . , u n c a p a c i t a t e d , c a p a c i t a t e d s in g l e r e s o u rc e , a n d c a p a c i t a t e d m u l t i p l er e s o u r c e s ) . M a n y r e s e a r c h e r s h a v e s tu d i e d t h e l o t - si z in g p r o b l e m s a n d d e s i g n e d a l o t o f o p t i m a lor heur i s t i c lo t - s i z ing p roce dure s (e .g . , r e fe rences [1 9 ] a re some exce l l en t r ev iewing pa pe rs onl o t - s i z i n g p r o b l e m s ) .

    Ta b l e 1 g i v e s a b r i e f r e v i e w o f s o m e i m p o r t a n t o r r e v i e w i n g l i te r a t u r e s f o r t h e d i f fe r e n t c a t e g o r i e so f t h e c a p a c i t a t e d l o t - s i z in g p r o b l e m s . B e c a u s e t h e p r o b l e m s a r e N P - h a r d a n d e v e n t h e f e a s ib i l i typ r o b l e m s w i t h s e t u p t i m e s a r e a l so N P - h a r d [ 3] , m o s t o f t h e l o t - s i zi n g p r o c e d u r e s a n d a l g o r i t h m su s e h e u r i s t i c t e c h n i q u e s t o s o l v e t h e p r o b l e m s . H o w e v e r, t h e h e u r i s t i c l o t - si z i n g t e c h n i q u e s f o rc a p a c i t a t e d p r o d u c t i o n s y s t e m s u s u a l ly c o n c e n t r a t e o n o p t i m i z i n g th e p r o d u c t i o n o p e r a t i o n ss t a g e b y s t a g e, a n d / o r o n l y c o n si d er s o m e si m p l e p r o d u c t s t r u c t u r e s a n d / o r s i m p l e c a p a c i t yc o n s t r a i n t s . F o r e x a m p l e , th e c a p a c i t a t e d l o t - s iz i n g p r o b l e m s fo r g e n e r a l p r o d u c t s t r u c t u r e s a n dm u l t i p l e r e s o u r c e s a r e s e l d o m c o n s i d e r e d . T h i s i s o b v i o u s l y a n o b s t a c l e t o t h e a p p l i c a t i o n o f t h e s el o t - s i z i n g t e c h n i q u e s i n r e a l p r o d u c t i o i i p l a n n i n g a n d s c h e d u l i n g e n v i r o n m e n t s .

    Table 1. Different capacitated lot-sizing problems and so m e important/reviewingliterature.

    Product Structure Uncapacitated Sin gl eResource Mul t ip leResources

    Sing le Le vel [2,10,11] [12-16]

    Seria l [2,17] [17]

    As sem bly [2,18-20] [3,21 23]

    GenerM [2,24,25] [6,261 [27,28]

    I n t h e l a s t d e c a d e , t h e g e n e t i c a l g o r i t h m ( G A ) , w h i c h i s a s e a rc h t e c h n i q u e b a s e d o n t h e m e -c h a n i c s o f n a t u r a l s e l e c ti o n a n d n a t u r a l g e n e t i cs , i s r e c o g n iz e d a s a p o w e r f u l a n d w i d e l y a p p l i c a b l eo p t i m i z a t i o n m e t h o d , e s p e c i a l l y f o r g l o b a l o p t i m i z a t i o n p r o b l e m s a n d N P - h a r d p r o b l e m s [ 29 -3 1].R e c e n t l y, a l o t o f r e s e a r c h e r s s t u d i e d t h e a p p l i c a t i o n s o f G A f o r s o l v i n g t h e l o t -s i z i n g p r o b l e m sw i t h u n l i m i t e d c a p a c i t y [ 32 -3 4] a n d w i t h c a p a c i t y c o n s t r a i n t s [3 5-4 2} . N u m e r i c a l r e s u lt s o b -t a i n e d u s i n g t h e s e m e t h o d s s h o w t h a t G A ( p r o b a b l y c o m b i n e d w i t h o t h e r m e t a - h e u ri s t ic s ) i s a ne f f ec t i v e a p p r o a c h t o d e a l w i t h t h e l o t -s i z in g p r o b l e m s .

    B e f o r e u s i n g G A t o s o l v e a n o p t i m i z a t i o n p r o b l e m , t h e r e a r e t w o i m p o r t a n t p o i n t s w h i c hm u s t b e a d d r e s s e d c l e ar l y : t h e f i r st is t h e e n c o d i n g ( r e p r e s e n t a t i o n ) s c h e m e f o r t h e d e c i s io nv a r i a b l e s o f t h e o p t i m i z a t i o n p r o b l e m , a n d t h e s e c o n d i s t h e e v a l u a t i o n s c h e m e f o r t h e s p e c i f ici n d i v i d u a l ( c h r o m o s o m e ) o f t h e p r o b l e m . T h e s e t w o s c h em e s a r e i n te r r e la t e d a n d t h e i r i m p r o p e rc o m b i n a t i o n c a n m a k e G A u n a b l e t o d e a l w i t h t h e o p t i m i z a t i o n p r o b l e m s e f fi c ie n tl y, e s p e c i a l l y

    f o r t h e o p t i m i z a t i o n p r o b l e m s w i t h n o n t r i v i a l c o n s t r a i n t s a s i n t h e g e n e r a l c a p a c i t a t e d l o t - s i z i n gp r o b l e m s . F o r t h e c a p a c i t a t e d l o t - s iz i n g p r o b l e m s , c o n s t r a i n t s t h a t c a n n o t b e v i o l a t e d c a n b ei m p l e m e n t e d b y t h e p e n a l t y m e t h o d a n d t h e d ec o d e r m e t h o d . T h e p e n a l t y m e t h o d i m p o s e sp e n a l t i e s o n i n d i v i d u a l s t h a t v i o l a t e th e c o n s t r a i n t s , w h i l e t h e d e c o d e r m e t h o d c r e a t e s d e c o d e r so f t h e r e p r e s e n t a t i o n t h a t a v o i d c r e a t i n g i n d i v i d u a l s v i o l a t in g t h e c o n s t r a i n t s [ 3 1 ] . S i n c e e a c ho p t i m i z a t i o n p r o b l e m h a s i t s o w n f e a t u r e s , i t i s a l s o r e c o g n i z e d t h a t b e t t e r p e r f o r m a n c e c a nb e o b t a i n e d w h e n t h e p r o b l e m - s p e c i f i c k n o w l e d g e is in c o r p o r a t e d i n t o t h e s i m p l e G A [ 3 1 ]. I nf a c t , t h e r e a r e s o m e f u n d a m e n t a l l i m i t a t i o n s t o g e n e t i c a l g o r i t h m s a c c o r d i n g t o t h e s o - c a l l e dN o - F r e e - L u n c h t h e o r e m [ 43 - 45 ] . O n e o f t h e m o s t s i g n if i ca n t i m p l i c a t i o n s o f t h e N o - F r e e - L u n c ht h e o r e m i s t h a t a l g o r i t h m s s h o u ld b e m a t c h e d t o t h e s e a rc h p r o b l e m a t h a n d . " I f n o d o m a i n -s p e c i f i c k n o w l e d g e i s u s e d i n s e l e c t i n g a n a p p r o p r i a t e r e p r e s e n t a t i o n , t h e a l g o r i t h m w i l l h a v e

    n o o p p o r t m f i t y t o e x c e e d t h e p e r f o r m a n c e o f a n e n u m e r a t i v e s ea r ch " [ 4 3] . G e n e r a l l y s p e a k in g ,a b e t t e r s o l u t i o n c a n b e g a in e d w i t h d e e p e r d o m a i n -k n o w l e d g e b e i n g i n c o r p o r a t e d . H o w e v e r ,t h e d o m a i n - k n o w l e d g e o f a s p e c i f i c o p t i m i z a t i o n p r o b l e m i s u s u a l l y t o o v a s t t o b e c o n s i d e r e d

  • 8/3/2019 Heuristic Genetic Algorithms

    3/14

    Heuristic Genetic Algorithms 265

    c o m p l e t e l y w i t h a s in g l e a l g o r it h m . E v e n w o r s e ; t h e r e m a y b e s o m e d o m a i n - k n o w l e d g e w h i c h i sd i f f ic u l t t o b e c o n s i d e r e d e x p l i c i t l y w h e n d e s i g n i n g a n e v o l u t i o n a r y a l g o r i t h m . T h e s e d i f f ic u l ti e sr e v e a l t h a t w h e n d e s i g n i n g a s p e c if i c e v o l u t i o n a r y a l g o r i t h m f o r a s p e c if i c p r o b l e m d o m a i n , ac r i t ic a l i s s u e is h o w t o e x p l o i t t h e d o m a i n - s p e c i f i c k n o w l e d g e a n d h o w t o i n c o r p o r a t e i t in t o t h ec o m m o n l o g ic a n d t h e g e n e r a l s t r u c t u r e o f t h e e v o l u t i o n a r y a l g o r i t h m s .

    A c c o r d i n g t o t h i s p h i l o s o p h y, a h e u r i s t i c g e n e t i c a l g o r i t h m f o r t h e g e n e r a l c a p a c i t a t e d l o t -s i z i n g p r o b l e m s i s p r e s e n t e d i n t h i s p a p e r. T h e g e n e r a l c a p a c i t a t e d l o t - s iz i n g p r o b l e m s c a n b ec h a r a c t e r i z e d b y t h e f o l l ow i n g :

    ( 1 ) e a c h s t a g e i n t h e p r o d u c t n e t w o r k m a y h a v e s e v e r a l p r e d e c e s s o r s a n d s e v e r a l s u c c e s s o r s ;( 2) t h e c a p a c i t y c o n s t r a i n t s m a y i n c l ud e t h e c a p a c i t y l im i t a t io n s o f n m l t i p l e r e s o u rc e s ;( 3 ) t h e c a p a c i t y o f e a c h r e s o u r c e c a n b e a d j u s t e d b y o v e r t i m i n g ;( 4 ) b e s i d e s r e s u l t i n g i n s e t u p c o s t , t h e s e t u p o f e a c h p r o c e s s c a n a l s o o c c u p y c a p a c i t y ( i. e. ,

    s e t u p t i m e s a r e i n c lu d e d b u t t h e s e t u p t i m e s a r e a s s u m e d t o b e s e q u e n c e - i n d e p e n d e n t i nt h i s s t u d y ) ;

    ( 5) i n d e p e n d e n t d e m a n d s c a n b e g i v e n t o al l t h e i t em s i n th e p r o d u c t n e t w o r k ; a n d / o r

    ( 6) a ll t h e p a r a m e t e r s i n t h e p r o b l e m c a n b e ti m e - v a r y i n g .T h i s k i n d o f c a p a c i t a t e d l o t- s iz i n g p r o b l e m i s m o r e g e n e r a l t h a n t h o s e c u r r e n t l y c o n s i d e r e d b ym o s t o f t h e r e s e a r c h e rs a n d a r e m o r e a p p l ic a b l e t o re a l p r o d u c t i o n e n v i r o n m e n t s . T h e h e u r i s t i cg e n e t ic a l g o r i t h m p r o p o s e d i n t h is p a p e r a t t e m p t s t o i n c o r p o r a t e t h e p r o b l e m - s p e c if i c k n o w l e d g ei n t o t h e c o n v e n t i o n a l g e n e t ic a l g o r i t h m s a n d h e u r i st i c al l y o p t i m i z e s t h e p r o b l e m u n d e r a ll t h ec o n s t r a i n t s s i m u l t a n e o u s l y. I n o r d e r t o d o t h a t , a n e n c o d i n g ( r e p r e s e n t a t i o n ) s c h e m e fo r l o t -s i z e sa n d a s h i ft in g p r o c e d u r e w i t h p e n a l t y c o n s i d e r a t i o n s a r e d e s i g n ed b y m a k i n g u s e o f t h e c r it i ca lp r o p e r t i e s o f t h e o p t i m a l s o l u ti o n s t o t h e p r o b le m . T h i s k i n d o f m e t h o d f o r d e a l in g w i t h t h es o p h i s t i c a t e d c o n s t r a i n t s c a n b e c o n s i d e r e d a s a fu s i on o f t h e p e n a l t y m e t h o d a n d t h e d e c o d e rm e t h o d .

    T h e r e m a i n d e r o f t h i s p a p e r is o r g a n i z e d a s f ol lo w s . A m a t h e m a t i c a l f o r m u l a t i o n o f t h e g e n e r a lc a p a c i t a t e d l o t - s iz i n g p r o b l e m s c o n s i d e r e d i n t h i s p a p e r i s p r o v i d e d i n t h e n e x t s e c t i o n . T h e n , i nS e c t i o n 3 , w e p r e s e n t t h e h e u r i s ti c g e n e t ic a l g o r i t h m s f o r t h e p r o b l e m s w i t h a n d w i t h o u t o v e r t i m -i n g c o n s i d e r a t i o n s , r e s p e c t i v e l y. S e c t i o n 4 g i v e s s o m e r e s u l t s o f t h e c o m p u t a t i o n a l e x p e r i m e n t s .S o m e g e n e r a l c o n c l u s i o n s a n d f u r t h e r r e s e ar c h d i r e c ti o n s a r e s u m m a r i z e d i n S e c ti o n 5 .

    2 . M A T H E M A T I C A L F O R M U L A T I O N

    C o n s i d e r t h e f o ll o w i ng g e n e r a l c a p a c i t a te d l o t- s iz i n g p r o b l e m ( G C L S P ) . G i v e n t h e e x t e r n a ld e m a n d f o r N i t em s o v e r a t i m e h o r i z o n o f T p e r io d s , f i n d a s o l u t io n w h i c h m i n i m i z e s t o t a ls e t u p , p r o d u c t i o n , h o l d i n g , a n d o v e r t i m i n g c o s ts , s a ti s f y i n g t h e f o l l o w i n g c o n d i t i o n s .

    T h e p r o d u c t s t r u c t u r e c a n b e o r g a n iz e d a s a n a c y cl ic d i r e c te d n e t w o r k , w h e r e e v e r y n o d ei n t h e n e t w o r k i s a n i t e m a n d t h e a r c i l l u s tr a t e s t h e a s s e m b l y o r d i s t r i b u t i o n r e l a t i o nb e t w e e n i te m s , a n d t h e w e i g h t o f a n a r c is t h e q u a n t i t y r e l a ti o n b e t w e e n t h e t w o t e r m i n a ln o d e s o f t h e a r c . I n g e n e ra l p r o d u c t i o n s y s t e m s , e a c h n o d e c a n h a v e m o r e t h a n o n ei m m e d i a t e p r e d e c e s s o r a n d m o r e t h a n o n e im m e d i a t e s u c c es s o r. ( B y t o p o l o g i c a l o r d e r i n gf o r t h e d i r e c t e d g r a p h , w e c a n a s s u m e t h a t a ll t h e n o d e s a r e la b e l e d a s s a t i s f y i n g t h ec o n d i t i o n t h a t t h e l a b e l o f a p r e d e c e s s o r i s g r e a t e r t h a n t h a t o f e a c h o f i ts s u c c e s s o r s . )

    T h e r e a r e m u l t ip l e r e s o u r ce s w i t h l i m i te d c a p a c i ti e s t h a t m u s t b e r e s p e c te d . W h e n n e c -e s s a r y, t h e c a p a c i t y o f a r e s o u r c e c ar l b e i n c r e a s e d b y o v e r t i m e , w h i c h i s al s o l im i t e d w i t ha m a x i m u m v a l u e .

    T h e b a c k l o g g i n g o f e a c h i t e m i s n o t a l l o w e d . T h e l e a d t im e s a r e a s s u m e d t o b e c o n s t a n t a n d , w i t h o u t l os s o f g e n e r al it y, a r e a s s u m e d

    t o b e z e r o .

    M a t h e m a t i c a l l y, t h i s p r o b l e m c a n b e s t a t e d a s f o ll o w s .

  • 8/3/2019 Heuristic Genetic Algorithms

    4/14

    266 . J. XIE AND J . DONC

    P R O B L E M G C L S P .

    N T K T

    min COS T(Y, X, I, O) = E E {sit I i t + cit X it + hi , I i t } + E E oa:,o~,t ,i = l t = l k = l t = l

    ( 1 )

    s . t .

    Y4.t = { O~1,

    [ ' i t, Xi t >_ O,

    ~ t c { 0 , 1 } ,

    0 < O~ .t _< Uk t,

    w h e r e t h e g i v en p a r a m e t e r s a r e

    t h e n u m b e r o f i t e m s ,

    I i , t - 1 4 - X i t - I i t = d ,: t - k E r i j X j t ,jEs (~)

    N

    E ( a k i t X i t 4 - A t~ .,t }~ t) O ,

    i = 1 , . . . , N , t = 1 , . . . ,T ,

    k = 1 , . . . , / ~ ' ,

    i = 1 , . . , N ,

    i = 1 , . . . , N ,

    i = l , . . . , N ,

    k = 1 , . . . , K ,

    t = 1 , . . , T,

    t = 1 , . . . , T ,

    t = l , . . . , T ,

    t = 1 , . . . , T ,

    t = l . . . . , T .

    ( 2 )

    ( 3 )

    ( 4 )

    ( 5 )

    ( 6 )

    ( 7 )

    N

    f t h e n u m b e r o f t i m e p e r i o d s i n t h e p l a n n i n g h o r i zo n ,

    I ( t h e n u m b e r o f r e s o u rc e s ,

    d i t t h e e x t e r n a l d e m a n d f o r i t e m i in p e r i o d t ,

    S ( i ) t h e s e t o f i m m e d i a t e s u c c e ss o r s o f i t e mi ( S ( i ) = (0 i f i i s an en d i t em ) ,

    r i.j t h e n u m b e r o f u n i t s o f i t e m i r e q u i r e d t o p r o d u c e o n e u n i t o f i t e m j,

    s i t t h e s e t u p c o s t f o r i t e m i i n p e r i o d t ,

    c it t h e p r o d u c t i o n c o s t f o r u n i t i t e m i i n p e r i o d t ,

    h i t t h e h o l d i n g c o s t f o r u n i t e n d - o f - p e r i o d i n v e n t o r y o f i t e m i i n p e r i o d t ,

    o~,t t h e o v e r t i m e c o s t f o r u n i t r e s o u r c e k i n p e r i o d t ,

    C k t t h e a v a i l a b l e n o r m a l c a p a c i t y o f r e s o u r ce k i n p e r i o d t ,

    U~.t t h e a v a i l a b l e m a x i m u m o v e r t i m e o f r e s o u r ce k i n p e r i o d t ,

    a k i t t h e c a p a c i t y n e e d e d o n r e s o u r c e k t o p r o d u c e o n e u n i t o f i t e m i i n p e r i o d t ,

    At . i t t h e f i x e d lo s s o f r e s o u r c e k i n c m Te d t b r p r o d u c t i o n p r e p a r a t i o n o f i t e m i in p e r i o d t ,

    a n d t h e d e c i si o n v a r i a b le s a r e

    X i t t h e a m o u n t o f i t e m i p r o d u c e d i n p e r i o d t ( l ot - si z e ),

    ~ t a b i n a r y v a r i a b l e i n d i c a t i n g w h e r e p r o d u c t i o n is M l o w ed f o r i t e m i i n p e r i o d t ,

    I i t t h e i n v e n t o r y o f it e m i a t t h e e n d o f p e r i o d t ,

    O k t t h e o v e r t i m e o f re s o u r c e k i n p e r i o d t .

    T h e o b j e c t i v e f u n c t i o n ( 1 ) m e a n s t o m i n i m i z e t h e t o t a l co s t w h i c h i n c l u d e s s e t u p , p r o d u c t i o n ,h o l d i n g , a n d o v e r t i m i n g c o st s . T h e c o n s t r a i n t ( 2) is t h e c o n s e r v a t i o n e q u a t i o n f o r m a t e r i a l s,a n d t h e c o n s t r a i n t ( 3 ) e n f b r c e s t h e c a p a c i t y fe a s i b il i t y. T h e c o n s t r a i n t s ( 4 ) a n d ( 6 ) i m p l y t h a tt h e s e t u p c o r r e s p o n d i n g t o a n i t e m m u s t b e p a i d b e f o re p r o d u c i n g t h e i te m . T h e n o n n e g a t i v er e s t r i c t i o n s f o r i n v e n t o r y a n d p r o d u c t i o n q u a n t i t i e s i n c o n s t r a i n t ( 5 ) a s s u re n o b a c k l o g g i n g o c c u r s,~ md t h e l a s t i n e q u a l i t y ( 7 ) s t a t e s t h e l o w e r a n d u p p e r b o u n d s a v a i l a b l e f o r o v e r t i m i n g f o r e a c hr e s o u r c e a t d i f f e r e n t t i m e p e r i o d s . M o s~ o f t h e c o n c e p t s m e n t i o n e d a b o v e c a n b e f o u n d i n m a n y

    o t h e r p a p e r s on c a p a c i t a t e d l o t- s i z in g p r o b l e m s . F o r e x a m p l e , th e m a t h e m a t i c a l f o r m u l a t i o ng i v e n i n [3] i s v e r y s i m i l a r t o o u r m o d e l G C L S P e x c e p t t h a t t h d o v e r t i m e s o f r e s o u r ce s a r e n o ti n c l u d e d i n i t .

  • 8/3/2019 Heuristic Genetic Algorithms

    5/14

    H e u r i s t i c G e n e t i c A l g o r i t h m s 2 6 7

    3 . H E U R I S T I C G E N E T I C A L G O R I T H M

    3 .1 . T h e E n c o d i n g S c h e m e

    A g e n e t i c a l g o r i t h m o f a n o p t i m i z a t i o n p r o b l e m i s a n i t er a t iv e p r o c e d u r e a t t e m p t i n g t o h e u r is -t i c a ll y s e a r c h t h e o p t i m a l s o l u t i o n o f t h e p r o b l e m . T h r e e b a s ic g e n e ti c o p e r a t o r s i n c l u d e d i n t h ep r o c e d u r e a r e k n o w n a s r e p r o d u c t i o n , m u t a t i o n , a n d c r o s s o v er [2 9 -3 1 ]. A l l t h e s e o p e r a t o r s o p -e r a t e o n t h e c h r o m o s o m e s ( r e p r e s e n t a t i o n s o f t h e d e c i s io n v a ri a b le s ) , W h i l e d e s i g n i n g a g e n e ti ca l g o r i t h m t o s o lv e a p r o b l e m , w e m u s t f ir s t g i v e a n e n c o d i n g ( r e p r e s e n t a t i o n ) s c h e m e f o r t h ed e c i s i o n s p a c e ( s p a c e o f t h e d e c i s io n v a r i a b l es ) o f t h e p r o b l e m ,

    T h e d e c i s i o n v a r i a b l e s i n G C L S P a r eX i t , ~ t , I ~ t ,a n d O k t , a m o n g w h i c h Y / t i s a 0 - 1 i n t e g e rv a r i a b le a n d t h e o t h e r s a r e p o s i t iv e v a ri a b le s o f r e al n u m b e r s . I n o r d e r t o d e s ig n a c o m p u t a t i o n a l l ye f fi c ie n t g e n e t i c a l g o r i t h m , i n t h i s s t u d y w e o n l y e n c o d e t h e s e t u p p a t t e r n s ( v a r ia b l e s. K i t) a sc h r o m o s o m e s . T h e o t h e r r e a l n u m b e r v a r ia b l esX u , I i t , a n d O at w i l l b e v i r t u a l l y c o n s i d e r e d a sb e i n g d e p e n d e n t o n Y /t, a n d t h u s , t h e y w i li b e c o m p u t e d f r o m Y /t a n d t h e k n o w n p a r a m e t e r so f t h e p r o b l em . T h e m o s t i m p o r t a n t t h i n g w h e n d e s ig n i ng s u ch a n e n c o d e > d e c o d e r s c h e m e t oG C L S P is h o w t o o b t a i n t h e v a l u e s o f t h e s e v a ri a b le s f i 'o m Y~t a n d t h e k n o w n p a r a m e t e r s . I nt h e f o l l o w i n g p a r a g r a p h s , w e w i l l s h o w h o w t h e s e v a r i a b l e s c a n b e h e u r i s t i c a l ly w o r k e d o u t b ym a k i n g u s e o f t h e p r o b l e m - s p e c i f i c k n o w l e d g e o f t h e l o t - s i z i n g p r o b l e m s .

    D e n o t e t h e p o p u l a t i o n s iz e i n a g e n e t ic a l g o r i t h m a s M A X P O P ( a s s u m e t o b e a n e v e n n u m b e r )a n d t h e m a x i m u m i t e r a ti o n s ( i. e. , m a x i m u m g e n e r a t io n s ) a s M A X G E N . T h e j t h i n d i v i d u a l ( i. e. ,d e c i s i o n v a r i a b le ) i n t h e g t h g e n e r a t i o n / i t e r a t i o n i s e n c o d e d a s f o ll o w s :

    yg,J = fy g , J } /~g ,J vg , J v y , J ~g , J ~g , a g ,J Y~2,g 'J " ,Y~T9 'J )~, 11 , 12 ~ ' ' '~* lT~ *21 ~ 22 , ' ' ' , 2 T , ' ' ' , Y ~ v I ~ "" - ,

    j = 1 , 2 , . . . ,M A X P O P, g = 1 , 2 , . . . ,M A X G E N .( s )

    A c c o r d i n g t o A f e n t a k i s a n d G a v i s h [ 2 5] , t h e r e e x i s t s t h e f o l lo w i n g p r o p e r t y ( u s u a l l y n a m e d " z e r o -s w i t c h " p r o p e r t y ) f o r u n c a p a c i t a t e d l o t -s i z i n g p r o b l e m , a s i m p l if i ed v e r s i o n o f G C L S P.

    P R O P O S I T I O N . T h e r e i s a no p t i m a l s o l u ti o n t o u n c a p a c i t a t e d l o t - s iz i n g p r o b l e m ( t h e p r o b l e mG C L S P w i th o u tr e s o u r c e s c o n s t r a i n t s ) i n w h i c hX i t X i , t _ 1 ~ - O.

    M a k i n g u s e o f t h is i m p o r t a n t p r o p e r t y, w e c a n h e u r is t ic a l ly c l a r i fy th e r e l a ti o n s h i p s b e t w e e n t h ed e c i s i o n v a r i a b l e s o f r e a l n u m b e r s , a n d t h e b i n a r y d e c i s i o n v a r ia b l e s}'it a n d t h e k n o w n p a r a m e t e r so f t h e p r o b l e m . G i v e n a p r o d u c t i o n p a t t e r n ( s e t u p s e q u e n c e ) , i .e ., t h e b i n a r y d e c i s io n v a r ia b l e s

    {Yit, i = 1 , . . , N , t = l , . . . , T } ,

    t h e p r o d u c t i o n l o t- s iz e s c a n b e d e t e r m i n e d a c c o r d i n g to t h e " z e ro - s w i tc h " p r o p e r t y a s f o ll ow s .( i) F o r a n y i t e m i a n d a n y p e r i o d r , i fgi~ = 0 , t hen Xi~ = 0 .

    ( i i) F or a ny i tem i and a ny p er io ds r l < r2 _< T, i f E> , = Y/-2 = 1 , an d Y/,~ = 0 for a llr l < r < 7-2, th en

    X%T1 ~- E d iT ~- E " [ ' i jXjw " (9)r = ' q j 6 S ( i )

    T h a t i s t o s a y, w h e n e v e r a s e t u p i s i n t r o d u c e d f o r a n i t em , w e p r o d u c e e n o u g h q u a n t i t y f o r t h i si t e m t o s a t i s f y t h e d e m a n d s o f a n i n t e g er n u m b e r o f p e r io d s , u n t il t h e p e r i o d i m m e d i a t e l y b e f o r et h e n e x t s e t u p f o r t h i s i te m . H o w e v e r, w h e n n o s e t u p i s a c t i v a t e d i n p e r i o d 1 f o r a p r o d u c t

    ( i te m ) , t h i s p r o c e s s i n g m e t h o d m a y l e a d t o b a c k lo g g i n g i n t h e f i rs t fe w p e r i o d s f o r t h i s p r o d u c ta n d i ts s u c c e s si v e p a r e n t p r o d u c t s . I n o r d e r t o a s s u r e t h e fe a s ib i li ty, t h e p e n a l t y m e t h o d i s u s e dt o d e a l w i t h t h e c o n s t r a i n t s t h a t n o b a c k l o g g in g is al lo w e d . T h a t is to s ay, w e c a n c h a n g e t h e

  • 8/3/2019 Heuristic Genetic Algorithms

    6/14

    268 J. XIE AND J. DONG

    o b j e c t i v e f u n c t i o n t o i n c l u d e p e n a l t i e s fo r b a c k l o g g i n g . T h u s , t h e f i t n e s s v a l u e f o r e a c h i n d i v i d u a li s c a l c u l a t e d a c c o r d i n g t o t h e f o l l o w i n g o b j e c t i v e f u n c ti o n :

    N T N T

    (10 )

    w h e r e ; ~ i s t h e p e n a l t y c o e f f ic i e n t ( a l a r g e e n o u g h p o s i t i v e n u m b e r ) .B a s e d o n t h e s e o b s e r v a t i o n s , th e g e n e t i c a l g o r i t h m h a s b e e n u s e d to s o l ve t h e u n c a p a c i t a t e d

    l o t - s iz i n g p r o b l e m s[3>34]. F o r a c a p a c i t a t e d l o t - s iz i n g p r o b l e m , t h e " z e r o -s w i t h " p r o p e r t y n ol o n g e r h o ld s . H o w e v e r , w e c a n a c c e p t t h e s im i l a r m e t h o d o l o g y t o d e t e r m i n e t h e v a l u e s o f t h er e a l v a r ia b l e s a n d c o n c u r r e n t l y i n c l u d e o t h e r p r o c e d u r e s t o a s s u r e t h e c a p a c i t y f e a s ib i li t y. I n t h et o ll o w i n g , w e g e n e r a l i z e th e g e n e t i c a l g o r i t h m f or t h e u n c a p a c i t a t e d l o t - si z i n g p r o b l e m s t o b ec a p a b l e o f s o l v i n g G C L S P w i t h m u l t i p l e r e so u r c e s c o n s t ra i n t s a n d o v e r t i m i n g c o n s i d e r a t io n s .

    3 . 2. H e u r i s t i c G e n e t i c A l g o r i t h m f o r C a p a c i t a t e d L o t - S i z i n g P r o b l e m sw i t h o u t O v e r t i m i n g

    F o r c a p a c i t a t e d l o t - si z i n g p r o b l e m s , t h e o p t i m a l s o l u t io n s m a y n o t s a t i s f y t h e " z e r o -s w i t ch "p r o p e r t y. I n fa c t , t h e d e c i s i o n v a r i a b l e sX i t , Z i t a r e n o t o n l y d e p e n d e n t o n t h e p r o d u c t i o n p a t t e r n( s e t u p s s e q u e n c e) ~ t , b u t a l s o d e p e n d e n t o n t h e a w d l a b l e r e s o u rc e s c a p a c it i e sClot. I n t h i ss i t u a t i o n , w e c a n f i r s t d e t e r m i n eN i t , ~ i t f r o m Yi t w i t h o u t c o n s i d e r i n g th e r e s o u r ce s c o n s t r a i n t sa n d t a k e t h i s l o t - s i z e s p l a n a s a n i n i t i a l p l a n , w h i c h w i l l b e f u r t h e r m o d i f i e d b y c o n s i d e r i n gt h e r e s o u r c e s c o n s t r a i n t s . I n t h i s p a p e r , w e w i l l m o d i f y t h i s i n i t ia l l o t - s i z e p l a n b y " s h i f ti n g "t e c h n i q u e s t h a t h a v e b e e n w i d e l y u s e d i n t h e h e u r i s t i c s f or t h e l o t - s i z i n g p r o b l e m s [ 2 2 ,2 7 ].

    T h e s h i f t i n g p r o c e d u r e c h e c k s t h e c a p a c i t y f e a s i b i l i t y o f t h e i n i t i a l l o t - s i z e s c h e d u l e f l 'o m t h el a s t p e r i o d b a c k w a r d s t o p e r i o d 1. I n e a ch p e r i o d t , a c a p a c i t y t ig h t n e s s i n d e x ,pl,.t, w h i c h i sd e f i n e d t o b e t h e r a t i o o f th e t o t a l c a p a c i t y f o r a re s o u r c e n e e d e d t o p r o d u c e a ll t h e s c h e d u l e d

    i t e m s i n t h i s p e r i o d t o t h e t o t a l a w, i l a b l e c a p a c i t y f o r t h i s r e s o u r c e a t t h i s p e r i o d , i s c a l c u l a t e df o r e a c h r e s o u r c e k ,

    N

    C N a.,, = E ( a ~ . i t xX i t + A k ,i e x ~ ) , k = 1 , 2 , . , I ( , (11 )i = 1

    C N ~ t k = 1 , 2, . , K , ( 12 )P k t - C k t ,

    w h e r e C N I a t i s t h e t o t a l c a p a c i t y f o r a re s o u r c e k n e e d e d t o p r o d u c e a l l t h e s c h e d u l e d i t e m s i np e r i o d t . T h e r e m a i n i n g c a p a c i t y f o r a r es o u r c e k in p e r i o d t c a n b e c a l c u l a t e d a s

    C R k t = C k t - C N k t , k = 1 , 2 , . . . , K . (13)

    I t i s o b v i o u s t h a t t h e r e s o u r ce s c a p a c i t i e s a r e e n o u g h t o p r o d u c e a l l t h e s c h e d u l e d i t e m s i n ap e r i o d t i f t h e c a p a c i t y t i g h t n e s s i n d e x e s a r e a l l l e ss t h a n o r e q u a l t o o n e ( i. e .,Pt.t _< 1 for al l

    k = 1 , 2 , . . . , K ) a t t h i s p e r i o d . I n t h i s c a s e , t h e s h i f t i n g p r o c e d u r e m o v e s t o p e r i o d t - 1 a n db e g i n s t o c h e c k t h e c a p a c i t y f e a s i b i l i t y i n t h i s f o l lo w i n g p e r i o d . I f i n s o m e p e r i o d t t h e t o t a lc a p a c i t y f o r a r e so u r c e n e e d e d t o p r o d u c e a l l t i l e s c h e d u l e d i t e m s i n th i s p e r i o d i s l a r g e r t h a n t h et o t a l a v a i l a b l e c a p a c i t y f o r th i s r e s o u r c e a t t h e p e r i o d ( i. e. ,Pt.t _< 1 f o r s o m e k ) , a n i n f e a s i b i l i t yo c c u r s f o r t h i s r e s o u r c e k , a n d t h u s , o n e o r m o r e o f t h e s c h e d u l e d i t e m ( s ) i n th i s p e r i o d n m s t b es h i f te d t o t i l e p r e v i o u s p e r i o d ( s ) . I f t h e r e a r e t w o o r m o r e s u c h k i n d s o f r e s o u rc e s , t h e p r o c e d u r eb e g i n s w i t h t h e r e s o u r c e w i t h t h e l a r g e st t ig h t n e s s i n d e x . I n o r d e r t o g e t a c a p a c i t y - f e a s i b l e

    p l a n m o r e e f fi ci e nt ly , w e o n l y c o n s i d e r m o v i n g t h e e x c e s s iv e sc h e d u l e d p r o d u c t i o n q u a n t i t y t ot h e p e r i o d j u s t b e f o r e th i s p e r i o d . I n o r d e r t o r e d u c e a s m u c h a s p o s si b l e t h e p o s s i b i l i t y o f a n yi n f e a s i b i l i t y r e s u l t i n g f r o m t h e s h i f t i n g p r o c e d u r e t b r t h e m a t e r i a l s b e t w e e n d i f f e r e n t s t a g e s , t h e

  • 8/3/2019 Heuristic Genetic Algorithms

    7/14

    Heur i s t i c Gene t ic Algor i th ms 269

    i t e m s a r e s h i f t e d a c c o r d i n g t o t h e d e c r e a s i n g o r d e r o f t h e l a b e l s o f t h e s c h e d u l e d i t e m s i n t h i sp e r i o d ( i. e. , fl 'o m i t e m N d o w n t o 1 ). T h i s i s b a s e d o n t h e o b s e r v a t i o n t h a t t h e i t e m w i t h a l a rg e rl a b e l w i l l n o t u s e a n i t e m w i t h a s m a l le r i n d e x a s i t s c o m p o n e n t . T h a t is t o s a y, b e g i n n i n g w i t hi t e m N a n d d o w n t o i t e m 1 , w e m o v e t h e e x c e ss i ve p r o d u c t i o n q u a n t i t y o f o n e o r m o r e s c h e d u l e di t e m s i n t h i s p e r i o d t o i t s p r e v i o u s p e r i o d u n t i l th e c a p a c i t y - u n f e a s i b i l i t y f o r t h i s r e s o u r c e i nt h i s p e r i o d i s e l i m i n a t e d . I f t h e r e i s ( ar e ) o t h e r i n f e a s ib l e r e s o u r c e ( s ) , w e r e p e a t t h i s s h i f t i n gp r o c e d u r e u n t i l a l l t h e i n f e a s i b il i ty i s e l i m i n a t e d . W h e n t h e m o v i n g p r o c e s s e s a r e f in i s h e d , t h em o d i f i e d l o t- s i z e p l a n w i l l b e a f e a s ib l e p l a n w i t h r e s p e c t t o t h e c a p a c i t y c o n s t r a i n t s . H e n c e , t h eo n l y i n f e a s i b i l i ty o f t h i s m o d i f i e d l o t- s i z e p la n m a y b e t h e b a c k l o g g i n g f o r s o m e i t e m s i n s o m ep e r i o d s , a n d t h e s e k i n d s o f i n f e as i b il it i es w i l l b e t a c k l e d w i t h t h e p e n a l t y m e t h o d b y u s i n g t h es i m i l a r p e n a l t y c o s t f u n c t i o n ( 1 0 ) f o r t h e u n e a p a c i t a t e d l o t - si z i n g p r o b l e m .

    I n s u m m a r y , t h e s h i f ti n g p r o c e d u r e g o e s s u c c es s iv e ly f ro m p e r i o d T d o w n t o 1 a n d f r o m t h et i g h t e s t r e s o u r c e t o t h e m o s t f l ex i b le o n e w i t h i n a p e r i o d . W h i l e t h e c a p a c i t y i n f e a s i b il i ty o c c u r si n s o m e p e r i o d , m o v e t h e e x c e s s iv e p r o d u c t i o n o f o n e o r m o r e i t e m s i n t h i s p e r i o d j u s t b e f o r ec u r r e n t p e r i o d t o a s s u r e t h e c a p a c i t y f e a s ib i l it y ( i f t h e c u r r e n t p e r i o d i s t h e f i r st p e r i o d , t h e nt h e p r o d u c t i o n q u a n t i t y f o r t h i s i t e m i n t h i s p e r i o d w i ll b e p a r t l y o r c o m p l e t e l y l o s t ). I n t h iss h i f ti n g o r m o v i n g e x c es s iv e p r o d u c t i o n b a c k w a r d s p r o c e d u r e , t h e r e m a i n i n g c a p a c i ti e s o f a ll t h er e s o u r c e s i n t h e s e t w o s u c c e s si v e p e r i o d s a r e a d j u s t e d t h r o u g h c o n s i d e r i n g t h e s h i f te d q u a n t i t ya n d t h e p o s s i b l e e l i m i n a t e d o r a d d e d s e t u p t i m e s ( i. e. , t h e s e t u p - c o n s u m e d c a p a c i t i e s ) . T h e s e t u pp a t t e r n s o f t h e s h i f t e d i t e m s i n t h i s t w o p e r i o d s w i ll b e m o d i f i e d w h e n e v e r a p p l i c a b l e .

    T h e d e t a i l e d h e u r i s t ic g e n e t i c a l g o r i t h m f o r c a p a c i t a t e d l o t- s iz i n g p r o b l em s w i t h o u t o v e r t i m i n g( G A C ) c a n b e d e s c r i b e d a s f o l l o w s .

    A l g o r i t h m G A C

    S T E P 1 . g : 0 . R a n d o m l y i n i ti a li z e o l d p o p ={yo, j , j = 1 , 2 , . . . , M A X P O P } , t h e p o p u l a ti o ns e t i n g t h g e n e r a t i o n .

    S T E P 2 . I f g = M A X G E N , p r i n t t h e s o l u ti o n a n d s to p .

    S T E P 3 . F o r ea c h y 0 ,3 E o ld p o p , j = 1 , 2 , . . . , M A X P O P, c o m p u t e i t s o b j e c t i v e fu n c t i o n v a l u eas fo l lows .

    3 . 1. C o n s t r u c t t h e i n i t ia l lo t s i ze s c h e d u l e a c c o r d i n g t o e q u a t i o n ( 9 ) w i t h o u t c o n s i d e r i n g t h er e s o u r c e s c o n s t r a i n t s . C a l c u l a t eX j a c c o r d i n g t o yo, j as fo l lows.

    0 j 0 , jF o r i t e m s i f l 'o m 1 t o N , lfY ~,t; = 1 , ~ t 2 = 1 (1 __ _ t l < t 2

  • 8/3/2019 Heuristic Genetic Algorithms

    8/14

    2 7 0 ,1 . X I E A N D J . D O N G

    t h e r e m a i n i n g c a p a c i t y o f r e s o u r ce k i n p e r i o d t i s z e ro , a n d t h e p r o d u c t i o n q u a n t i t yo f i t e m i i n p e r i o d t - 1 i s i n c r e a s e d b y- C R ~ t / a a - i t . T h a t i s t o s a y, w e s e t

    C R k t X j = X , j C R k t ~ O f J 1 ,X ~ t = X ~ . t 4 - - - , i , t -1 i , t-1 - - - , = 1 , CRa, t = O.

    a k i t a k i t

    ( i i) I f C R k t + ak i tx Jt

  • 8/3/2019 Heuristic Genetic Algorithms

    9/14

    H e u r i s t i c G e n e t i c A l g o r i t h m s 2 71

    3 . 3. H e u r i s t i c G e n e t i c A l g o r i t h m f o r C a p a c i t a t e d L o t - S iz i n g P r o b l e m sw i t h O v e r t i m i n g

    For capacitated lot-sizing problems with overtiming, we can also use the shifting procedure(see [22,27]) to move the lot-sizes backwards to respect the capacity constraints similarly to

    tha t of the capacitat ed lot-sizing problems without overtinfing. The only difference is tha t inthis situation, the capacity of a resource includes two parts, i.e., normal capacity and overtimecapacity. Therefore, before moving excessive pro duct ion backwards from a capacity-i nfeasibleperiod, we first consider eliminating capacity-unfeasibility by overtiming in the current period.If the sum of the normal capacity and maximum overtime capacity is still not enough to assurethe production scheduled, then apply the shifting procedure.

    In order t o assure the feasibility, we change the objective functio n to including penalties asfollows:

    N T K T

    C O ST O (Y ,X ,I ,O ) : ~ ~ {s i t Y it + c~tX~t + h, t I i t} + ~ ~ ot: tOkt"i=1 t=l k=l e=l (14)

    K T

    +/3 ~ y~'[max{(), -I , t) ] ) ',k=l ~=1

    where/3 is the penalty coefficient (a large enough positive number).The heuristic genetic algorithm for capacitated lot-sizing problems with overtinfing (GAO) can

    be described as follows.

    A l g o r i t h m G A O

    Only Steps 3 and 4 of the Algorithm GAC need to be changed.

    STEP 3. For each y0, j E oldpop, j = 1, 2, .. . ,MAXPOP, calculat e its objectiv e funct ion valueas follows.

    3.1. Con str uct th e initial lot size schedule according to equati on (9) witho ut consi dering theresources constr aints (same as in Step 3.1 of the A lgor ithm GAC).

    3.2. Elimin ate t he infeasibilities of the resources by shifting procedure similar to Step 3.2 inthe Algorithm GAC. This procedure goes from period T down to 1 and from the tightestresource to the loosest resource within a period. If the normal capac ity of a resource is notenough to eliminate the infeasibilities in a period, then first consider overtiming with thisresource in this period. If the tota l cap acity (including normal capacity and the overtime)of this resource in this period is still not enough, then shift some or all of the productionquantities to the period just before current period to assure the capacity-feasibility. (Ifthe current period is the first period, then the production for this item in this period

    will be lost.) The shifting procedu re goes for item N down to 1. During the shiftingprocedure, the setup times (i.e., the setup-consumed capacities) are also considered, andthe remaining cap acit y is adjusted. The co rrespon ding setup pat ter ns y0 o, ~0.1~ 1 are alsocorrectly reset.

    3.3. Deter mine in vento ry I j (the same as Step 3.3 of the A lgori thm GAC).3.4. Calculate the corresponding objective function value COSTO according to (14) from y0d ,

    Xa, lJ.

    STEP 4. Same as the Step 4 of the Al gori thm GAC. However, we use COS TO to evaluat e thefitness values of individuals in this algorithm instead of using COSTC in the Algorithm GAC.

    4 . C O M P U T A T I O N A L E X P E R I M E N T S

    The performance of the proposed algorithms GAC and GAO described in the previous sectionh ~ been evaluated on a set of testing problems. The algorithms are programmed with C + +

  • 8/3/2019 Heuristic Genetic Algorithms

    10/14

    2 7 2 J . X I E A N t ) J . D O N E

    r u n n i n g o n a P e n t i u m - I I I . T h e e x p e r i m e n t s r e v e al th a t t h e s e a lg o r i t h m s o b t a i n a v e r y g o o d

    a p p r o x i m a t i o n s o l u t i o n o f G C L S P i n r e a so n a b l e c o m p u t a t i o n t i m e . I n t h e fo l lo w i n g a r e s o m e o f

    t h e e x a m p l e s o f t h e e x p e r i m e n t s .

    We h a v e c o n d u c t e d a p ri r n a r y t e s t t o i n v e s t i g a t e t h e i m p a c t o f t h e c o n v ro l p a r a m e t e r s o f t h e

    g e n e t i c a l g o r i th m s o n t h e p e r f o rm a n c e o f G A C a n d G A O . T h e a l g o r i th m s c o n v e r ge to a s o l u t i o n

    w i t h i n 2 0 0 g e n e r a t i o n s f o r m o s t o f t h e s m a l l - s c a l e e x a m p l e s ( e .g . , N < 1 0, K < 2 ) a .n d w i t h i n 5 0 0

    g e n e r a t i o n s f o r m o s t o f t h e m o d e s t e x a m p l e s ( e . g ., N ~ 2 0 , K ~ 2 ) . T h e c r o s s o v e r p r o b a b i l i t i e s

    b e t w e e n 0 .6 t o 1 . 0 a n d t h e m u t a t i o n p r o b a b i l i t i e s b e t w e e n 0 .0 0 5 t o 0 .0 3 3 g i v e n o s i g n if i c a n t

    d i f f er e n c e r e g a r d i n g t h e t o t a l c o s t p e r f o r m a n c e . B u t , t h e m u t a t i o n p r o b a b i l i t i e s le ss t h a n 0 .0 0 5

    s h o w w o r s e t o t a l c o st p e r f o r m a n c e . I n a d d i t i o n t o th e s e c o n t r o l p a r a m e t e r s , t h e e l it i s t s t r a t e g y

    c a n e n h a n c e t h e p e r f o r m a n c e s i g n if i ca n t ly , a n d t h u s , i t i s i n c o r p o r a t e d i n t o t h e a l g o r i t h m s .

    I n a l l o f t h e f o l l o w i n g n u m e r i c a l e x a m p l e s , w e u s e d t h e f o l l o w i n g c o n t r o l p a r a m e t e r s f o r g e n e t i c

    a l g o r i t h m s :

    M a x i m u m g e n e ra t io n s M A X G E N = 50 0.

    P o p u l a t i o n si ze M A X P O P = 30 .

    M u t a t i o n p r o b a b i l i t y p , , = 0. 03 3 . C r o s s o v e r p r o b a b i l i t y p ~ = 0 .6 .

    5 7 B o t t l e n e c k

    Figure 1 . Produc t s t ruc ture fo r Example 1 .

    Table 2a . Exte rn a l dem ands for end i t em and ava i lab le capac i ty fo r resource (meanvalues* ).

    Perio d t 1 2 3 4 5 6

    E x t e r n a l d e m a n ddl t 40 0 100 0 90 10

    Av ailable capac i ty Ct 10 00 0 0 5000 5000 1000 1000

    Table 2b. Setup co sts and m arginal holding costs for i tems (m ean values*) .

    I tem i 1 2 3 4 5 6 7

    S e t u p c o s t si t(= s i ) 400 500 1000 300 200 4 00 100

    Hold ing cos thit(= hi) 12 0 .6 1.0 0.04 0.03 0.04 0.04

    *Average va lues fo r t en groups of randomly genera ted da ta .

    E X A M P L E 1 . C A PA C 1 TAT ED L O T- S I Z I N G W I T H O U T O V E l qT IM I N G F O R A S SE M B LY S Y S T E M . I n

    t h i s e x a m p l e , t h e p r o d u c t s t r u c t u r e i s s h o w n a s F i g u r e 1 w i t h N = 7 , T = 6 . K = 1 . O n l y t h e

    e n d i t e m ( i t e m 1 ) h a s e x t e r n a l d e m a n d s , a n d t h e m a r g i n a l h o l d i n g c o s t s an d s e t u p c o s t s o f a l lt h e i t e m s a r e a s s u m e d t o b e c o n s t a n t o v e r t i m e . M a r g i n a l p r o d u c t i o n c o s t s a re c o n s t a n t o v e r

    t i m e a n d a r e a s s u m e d t o b e z e r o ( i. e. ,cit = 0 , V ( i , t )) . O n l y t h e p r o d u c t i o n o f i t e m s 2 a n d 3

  • 8/3/2019 Heuristic Genetic Algorithms

    11/14

    H e u r i s t ic G e n e t i c A l g o r i t h m s 2 73

    are capacitated, and the setup times are assumed to be ignorable ( i . e . , A ir = 0 , V ( i , ~ ) , a ~ t = 0 ,V t , Vi 2 , 3 , a 2 t = a 2 = 5 , a a t = a 3 = 8 ) . F o r t h i sexample, e a c h t e s t e d algorithm i s r u nwith ten groups of random ly generated data. The mean demands for the end item (item 1) andthe mean capacity for the resource (bottleneck) in diKe.rent time periods are shown in Table 2a.

    The mean ma rginal ho lding costs and setu p costs of different items in different time perio ds areshown in Table 2b. We compared GAC with SA (simulated annealing a lgori thm [23]), TS (ta boosearch algorithm [23]), and LR (Lagrangean relaxation algorithm [21]). These algorithms areprogrammed by ourselves according to the descriptions in the original papers of Kuik e t a l . [23]and Billington e t e l . [21], respectively. For each of the rand omly gener ated problems, th e th reeprobability algorithms (i.e., algorithms GA, TS, and GAC) are run five times using differentrandom number seeds, respectively. The final results are surmnarized on Table 3. Examinationof the results shows that the solutions obtained by GAC are much better t han that of SA and TSin approximately the same computing time, while GAC obtains approximately the same bettersolutions as LR while in much less time than that, of LR.

    Ta b l e 3. G A C c o m p a r e d w i t h o t h e r a l g o ri t h m s . *

    A l g o r i th m M e a n O p t i m a l Va lu e C o m p a r e d w i t h G A C C o m p u t i n g T i m e ( s)

    SA 10740.00 1.162 9.90

    TS 9620.00 1.041 8.80

    LR 9239.00 0.999 34.10

    GA C 9245.00 1.000 10.10

    * I n t h i s e x a m p l e , e a c h a l g o r i t h m i s t e s t e d w i t h t e n g r o u p s o f r a n d o m l y g e n e r a t e dd a t a , a n d t h e p r o b a b i l i t y a lg o r i t h m s G A , T S , a n d G A C a r e r u n fi ve t i m e s u s i n gd i f f e r e n t r a n d o m n u m b e r s e e d s .

    F i g u r e 2 . P r o d u c t s t r u c t u r e f o r E x a m p l e 2 .

    E X A M P L E 2 . C A PA C I TAT E D L O T- S I Z I N G W I T t t O V E RT I M I N G F O R G E N E R A L S Y S T E M . I n t h i s

    e x a m p l e , t h e p r o d u c t s t r u c t u r e i s s h o w n a s F i g u r e 2 w i t h N = 2 1 , T = 6 , K = 2 . T h i s p r o b l e m

    is a s i m p l if i e d v e rs i o n o f a r e al - w o r ld p r o d u c t i o n e n v i r o n m e n t c o m i n g f r o m a m a n u f a c t u r i n g

    c o m p a n y . O n l y t h e e n d i t e m s 1 a n d 2 h a v e e x t e r n a l d e m a n d s , a n d t h e q u a n t i t i e s o f d e m a n d s f or

    b o t h e n d i t e m s a r e n o n z e r o o n l y i n t h e l a s t p e r i o d ( t h e s e q u a n t i t i e s a r e 4 0 u n i t s a n d 1 0 u n i ts f o r

    i t e m s 1 a n d 2 , r e s p e c t i v e l y, i . e . , d t 6 = 4 0 , d 26 = 1 0 ,d i t = 0 f o r o t h e r i a n d t ) . A l l t h e i t e m s h a v ei n i t i a l s t o c k s o f f iv e u n i t s ( i. e. , Ii 0 = 5 , V i ). T h e m a r g i n a l p r o d u c t i o n c o s t o f o n e u n i t o f e a c h

    i t e m i s c o n s t a n t o v e r t i m e a n d i s a s s u m e d t o b e 1 0 0 ( i. e. ,c i t = 1 0 0, Vi , t ) . T h e c a p a c i t y o f b o t h

  • 8/3/2019 Heuristic Genetic Algorithms

    12/14

    2 7 4 J . X I E A N D J . D O N ( ;

    r e s o u r c e s o c c u p i e d b y e v e r y s e t u p o f al l t h e i t e m s a r e c o n s t a n t ( i. e.,A k i t = 5 fo r a l l k , i , t ) . A l lt h e h o l d i n g c o s ts , s e tu p c o s t p a r a m e t e r s , a n d c a p a c i t y - c o n s u m i n g p a r a i n e t e r s a r e c o n s t a n t o v e rt i m e a n d a r e s h o w n i n Ta b l e 4 . T h e a v a i l a b le c a p a c i ty , m a x i m u m o v e r t i m e , a n d c o r r e s p o n d i n g

    c o s t s a r e s h o w n i n Ta b l e 5 .

    T a b l e 4 , S e t u p c o s t s , h o l d i n g c o s t s, a n d c a p a c i t y - c o n s u m i n g p e r u n i t .

    I t e m S e t u p C o s t H o l d i n g C o s t C a p a c i t y - C o n s u m i n g C a p a c i t y - C o n s u m i n g

    i 8 i t ( = 8 i ) h i t ( = h i ) a l i t ( = a l i ) a 2 i t ( = a 2 i )

    1 1 2 6 0 7 6 2

    2 9 7 6 5 2 1 7 6 8

    3 2 1 6 0 6 5 5

    4 2 5 2 0 1 4 7 6

    5 2 5 2 0 1 4 3 9

    6 ' 1 8 0 0 1 0 8 3

    7 1 8 0 0 1 0 9 8

    8 1 4 4 0 1 2 29 36 0 1 7 6

    1 0 4 6 8 0 1 3 2 3

    11 3 2 4 0 9 3 7

    1 2 2 1 6 0 3 8 4

    1 3 2 1 6 0 3 4 6

    1 4 1 4 4 0 2 5 5

    1 5 1 4 4 0 2 4 6

    1 6 1 4 4 0 2 6 2

    1 7 1 4 4 0 2 4 2

    1 8 7 2 0 1 9 4

    1 9 7 2 0 1 8 8

    2 0 7 2 0 1 9 7

    2 1 7 2 0 1 5 4

    T a b l e 5 . Av a i l a b l e c a p a c i t y , o v e r t i m e , a n d c o r r e s p o n d i n g c o s t s.

    P e r i o d t 1 2 3 4 5 6

    N o r m a l c a p a c i t y C l t 2 0 0 0 1 5 0 0 2 0 0 0 3 0 0 0 2 0 0 0 3 0 0 0

    N o r m a l c a p a c i t y C 2 t 2 0 0 0 1 5 0 0 1 8 0 0 2 4 0 0 2 0 0 0 3 0 0 0

    M a z d m u m o v e r t im eU l t 1 0 0 3 0 0 2 0 0 3 0 0 1 8 0 3 5 0

    M a x i m u m o v e r ti m eU2t 200 2 2 0 1 8 0 2 4 0 2 7 0 3 2 0

    O v e r t i m e c o s t o l t 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0

    O v e r t i m e c o s t o2 t 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

    G A C g i v e s a f e a s ib l e s o l u t i o n w i t h t o t a l c o s t o f 5 8 88 2 6 f o r th i s p r o b l e m w i t h i n t e n m i n u t e s .C h e c k i n g t h e p a r a m e t e r s o f t h e p r o b l e m , w e c a n se e t h a t t h e c a p a c i t y c o n s t r a i n t i n t h i s p r o b l e m i sv e r y t i g h t a n d G A C g i v e s a n a c c e p t a b l e s o lu t i o n . We a l s o t e s t e d t h e l o t - s i z in g p r o b l e m s w i t h t h es a m e p r o d u c t s t r u c t u r e u s in g o th e r i n p u t d a t a , a n d G A C a l w a ys o b t a in e d a c c e p t a b l e s o lu t i o n s i nr e a s o n a b l e c o m p u t i n g t i m e s . F o r t h e a l g o r i t h m s S A , T S o f [ 23 ] a n d L R o f [21 } c a n n o t d e a l w i t ht h e l o t - s i z i n g p r o b l e m s w i t h s e t u p t i m e s , w e h a v e n o t p r o v i d e d t h e s i m i l a r c o m p a r i s o n r e s u l ts a st h o s e p r o v i d e d i n E x a m p l e 1.

    5 . S U M M A R Y

    T h i s p a p e r d e v e l o p s a h e u r is t i c g e n e ti c a l g o r i t h m f o r g e n e r a l c a p a c i t a t e d l o t - si z i n g p r o b l e m s .T h e p r o d u c t s t r u c t u r e s a n d c a p a c i t y c o n s t r a in t s c a n b e a n y t y p e , re s o u r c es c a p a c i t y c a n b e a d -

  • 8/3/2019 Heuristic Genetic Algorithms

    13/14

    Heuristic Genetic Algorithms 275

    justed by overtiming, each item in the system can have external demands, and the cost parameters(setup costs, holding costs, production costs, overtiming costs) can be time-varying. The experi-ments show that this method is efficient and effective to solve the general capacitated lot-sizingproblems. However, the compu tationa l experiments and theoretical analyses presented in thispaper are relatively weak, and more computation experiments and theoretical analyses shouldbe made to this kind of heuristic genetic algorithm. For exanlple, optimal control parametersfor genetic algorithms such as crossover probability and nmtation probability can be identifiedby more detailed numericM experiments, and it is very attractive to study the behavior of thecost and computation time for the heuristic genetic algorithm as the complexity of the problemincreases. The heur istic al gorit hm proposed in this pap er (:an also be generalized to solve somemore complicated lot-sizing problems such as the problems with sequence-dependent setup timesand /or sequence-dependent cost parameters. Oth er genetic operators and selection strategies,such as the uniform crossover amd the ranking or tournament selection strategy, can be incor-porated into this heuristic genetic algorithm.easily. Other more complicated shifting procedurescan also be incorporated into this algorithm; for example, we can consider shutting the scheduleditems to the next earlier period that already has setups for that item. Finally, incorporating theheuristic genetic algorithm with other metaheuristics to solve the general capacitated lot-sizingand scheduling prob lems is also very attractiv e. These will be the potent ial directions for furtherresearch.

    R E F E R E N C E S

    1. H.C. Bahl, L.P. Ritzman and J.N.D. Gupta, Determining lot sizes and resource requirements: A review,Operations Research 35, 329-345, (1987).

    2. Y.P. Gupta and Y. Keung, A review of multi-stage lot-sizing models, International Journal of Operationsand Production Management 10, 57 73, (1990).

    3. J. Mae s, ,l.O. McC lain a nd L.N. Van V~5~ssenhove, Multilevel capa cit ate d lot-sizin g comple xity and LP- bas edheuristics, European Journal of Operational Research 53, 131-148, (1991).

    4. M. Salomon, Deterministic Lot-Sizing Models for Production Planning, Springer-Verlag, Berlin, (1991).5. R. Kuik and M. Salomon, Batehing decision: Structu res and models, European Journal o f Operational

    Research 75, 243-263, (1994).6. S. Helber, Lot-sizing in capacita ted produ ction planning and control system, OR Spektrum 1"~, 5-1 8, (1995).7. N.C. Simpson and S.S. Erengue, Multi-stage production planning research: History and opportunities, In-

    ternational Jour~r~al of Operations and Production Management 16 (6), 25-40, (1996).8. A. Drexl and A. Kimms, Lot sizing and scheduling --Survey and extensions, European Journal of Operational

    i~esearch 99 (2), 221-235, (1997).9. S.S. Erenguc, N.C. Simpson and A.J. Vakharia, Integrat ed produ ctio n/di stri buti on planning in supply chains:

    An invited review, European Journal of Operational Research 115 (2), 219 236 , (1999).10. B.J. Coleman, A furt her analysis of variable demand lot-sizing techniques, Production and Inventory Man-

    agement Journal 33, 19 24, (1992).11. A. Aggarwal and J.K . Park, Improved algor ithms for economic lot size probl ems, Operations Resear'eh 41,

    549 571, (1993).

    12. I. Bara ng, T.J. VanRoy and L.A. Wolsey, Strong formulati ons for multi item capa eit ate d lot-sizing, Manage-ment Science 30, 1255-1261, (1984).

    13. G.D. Eppe n and R.K. Martin, Solving nmlti-item capacita ted lot-sizing problems using variable redefinition,Operations Research 35, 832-848, (1987).

    14. [t.O. Gue nther, Planni ng of lot sizes and capacity requi rements in a single stage producti on system, EuropeanJourn al of Operational Research 31, 223 23 1, (1987).

    15. J. Maes and L.N. Van Wassenhove, Multi-item single-level capaci tated dy namic lot-sizing heuristics: A generalreview, Journa l of the Operational Research Society 39, 991-1004, (1988).

    16. W.W. Trigeiro, L.J. Thomas and J.O. McClain, Cnpac itated lot sizing with setup times, Management Science3 5 , 353-366, (1989).

    17. M.R. Lambrecht , J. V anderEech en and H. Vanderveken, Review of optima l and heuristic models for a class offacilities in series dynamic lot size problems, In Multi-Level Production~Inven tory Control Systems: Theoryand Practice, (Edited by L.B. Schwarz), pp. 69 94, North-Holland, Amsterdam, (1981).

    18. P. Afentakis, B. Ga.vish and V. Karmarkar, Optimal solutions to the lot-sizing problem in multi-stage assemblysystems, Management Science 30, 222 2 39, (1984).

    19. P. Afentakis, A parallel heuristic algori thm for lot sizing in multista ge product ion systems, IIE Transactions1 9 , 34-42, (1987).

  • 8/3/2019 Heuristic Genetic Algorithms

    14/14

    276 d. XIE AND J. DON(';

    20. K. Rosling, Optimal lot sizing for dynamic assembly systems, In Multistage Production Planning and Inven-tory Control, (Edited by S. Axsater et aL), pp. 119-131, Springer, Berlin, (1986).

    21. P.J. Billington, J.O. McClain and L.J. Thomas, Heuristic for multi-level lot-sizing with a bottleneck, Man-agement Science 32, 989 1006, (1986).

    22. Y. Roll and R. Karni, Multi-item, multi-level lot sizing with an aggregate capacity constraint, EuropeanJournal of Operational Research 51, 73-87, (1991).

    23. R. Kuik, M. Salomon, L.N. Van Wassenhove and J. Maes, Linear progra mming, simula ted anneali ng, andtabu search heuristic for lot sizing in bottle neck ~ssembly systems, IIE Transactions 25, 62-72, (1993).

    24. C.E. Heinrich and C. Schneeweiss, Multi-stage lot-sizing for general productio n systems, In Multistage Pro-duction Planning and Inventory Control, (Edited by S. Axsater et al.), pp. 150-181, Springer, Berlin, (1986).

    25. P. Afentakis and B. Gavish, Optimal lot-sizing algorithms for complex produc t structur es, Operations Re-search 34, 237 249, (1986).

    26. It. Tempe lmeier and M. Derstroff, A Lagrangean-base d heuristic for dynamic multilevel nmltiitem constrai nedlotsizing with setup times, Management Science 42 (5), 738 757 , (i996).

    27. A.R. Clark and V.A. Armentano, A heuristic for a resource-c apacitated multi-stage lot-sizing problem withlead-time, Journal of the Operational Research Society 46, 1208-1222, (1995).

    28. G. Belvaux and L.A. Wolsey, A specialized branch-and-cut system for lot-sizing problems, ManagementScience 46 (5), 724-738, (2000).

    29. D.E. Goldberg, Genetic Alg orithms in Search, Optimization, and Machine Learning, Addison-Wesley, Read-ing, MA, (1989).

    30. L. Davis, Handbook of Genetic Algorithms, Van Nost rand Reinhold, New York, (1991).31. Z. Michalewicz, Genetic Algorithms + Data StmLctures = Evolution Programs, Springer-Verlag, Berlin,

    (1994).32. d. Xie, An applic ation of genetic algorithms for general dynamic lotsizing problems, In Proceedings of the

    I ~ 1E E/ IE EE Interna tiona l Conference on Genetic Algorithms in Engineering Systems : Innovati ons andApplications (GALESIA '95), Sheffield, UK, pp. 82 87, (1995).

    33. N. Dellaert and J. Jeunet, Solving large unconstraine d multilevel lot-sizing problems using a hybrid geneticalgorithm, Intern ationa l Journal of Production Research 38 (5), 1083-1099, (2000).

    34. N. Dellaert, J. Je une t and N. ,lonard, A geneti c algor ithm to solve the genera l multi-level lot-siz ing probl emwith time-varying costs, Intemzational Journal of Production Economics 68 (3), 241-257, (2000).

    35. R. Sikora, Genetic al gorithm for integr ating lot-sizing and sequencing in scheduling a cap acitat ed flow line,Cornputers gd Industria l Engineering 30 (4), 969 981, (1996).

    36. i. Lee, R. Sikora and M.J. Shaw, A genetic algorit hm-ba sed appro ach to flexible flow-line schedulin g withvariable lot sizes, IE EE Transactions on System, M an and Cybernetics (B) 27 (1), 36-54, (1997).

    37. L. Ozdamar a nd S.I. Birbil, tlyb rid heuristic s for the cap acitat ed lot-sizing and loading problem with setuptimes and overtime decisions, European Journal of Operational Research 110 (3), 525-547, (1998).

    38. L. Ozdamar and G. Barbarosoglu, Hybrid heuristics for the multi-stag e capac itate d lot sizing and loadingproblem, Journal of the Operational Research Society 50 (8), 810-825, (1999).

    39. A. Kimms, A geneti c algorith m for multi-level, multi-machine lot sizing and scheduling, Computers ~4 Oper-ations Research 26 (8), 829-848, (1999).

    40. U. Kohhnorgen, It. Schmeck and K. Haase, Experiences with fine-grained parallel genetic algorithms, Annalsof Operations Research 90, 203-219, (1999).

    41. Y.-F. Hung, C.-C. Shih and C.-P. Chen, Evolutionary al gorithms for produc tion planni ng problems withsetup decisions, Journal o f the Operational Research Society 50 (8), 857 866, (1999).

    42. Y.-F. Iiung and K.-L. Chien, Multi-class multi-level capaci tated lot siziug model, ffourn.al of the OperationalResearch Society 51 (11), i309 1318, (2000).

    43. N.J. Radcliffe and P.D. Surry, Funda mental limita tions on search algorithms: Evolutionary com puting inperspective, In Computer Science Today: Recent Trends and Developments, (Edited by" J. van Leeuwen),

    pp. 275-291, Springer -Ver lag, New York, (1995).44. D.I:I. Wolpe rt and W .G. Ma cready, No fl'ee lunch theo rems for opti miza tion , IEEE Transactions on Evolu-tionary Computation 1 (1), 67-82, (1997).

    45. J. Xie and W. Xing, Incorporat ing domain-specific knowledge into evolutionary algorithms, Beijing Mathe-matics 4 (2), 131-i39, (1998).