35
Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

Embed Size (px)

Citation preview

Page 1: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

Hendrik Poorter,Frank Gilmer& Uli Schurr

JPPC, FZJ, DE

The yin and yang of meta-phenomics

Page 2: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

JPPC: Jülich Plant Phenotyping Centre

Page 3: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

1. Quality control before data enter the database

2. Extracting biological knowledge from the database

1. Environmental control

2. Data collection

3. Deduction of information

4. Deduction of knowledge

Two topics:

Page 4: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

1. Quality control:

Quality targets for experiments:

• Setup SOPs (standard operation procedures).

• SOPs for – reproducible – growth environments.

• SOPs for – reproducible - plant analysis.

• Collect information (history, phenotype) for every

individual in a plant information database.

• Reliable, reproducible, transparent

Page 5: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

The biologist’s perspective:plant size variability is an issue

80 100 120 140 160 180 200 220 2400

2

4

6

8

# of

obs

erva

tions

Water loss (rel. units) Plant variability across labs:Massonnet et al. (2010) Plant Phys.

Page 6: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

What variability can one expect?

0.1 0.3 0.5 0.7 0.9 1.10

10

20

30

P75 = 0.46P50 = 0.30P25 = 0.21

%

slnW

n = 600 Mean = 1.41

n = 800

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.00

5

10

15

20

25

30

Fre

quen

cy (

%)

W700 / W 350

A meta-analysis of the effect of elevated CO2:350 experiments with 800 mean values

for 350 species

Poorter & Navas (2003) New Phytol.

600 estimates of variability in plant size(standard deviation ln-transformed weight)

Poorter & Garnier (1996) J. Exp. Bot.

Page 7: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

Could the variation in growth response to elevated CO2 be explained simply by plant-to-plant variability?

SDlnW

# ofplants

P20 0.21 4

P50 0.31 8

P80 0.51 12

1. Assume a true W700/W350 of 1.41

2. Draw at random 4, 8 or 12 plants

from a population with 3 variabilities:

B

W700/W350 ?

90.000 simulations

Page 8: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

Yes, all observed variation in growth response could just happen to be caused by sampling too few individuals from too variable experimental populations:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.00

5

10

15

20

25

30

Fre

quen

cy (

%)

Weight Ratio

Poorter & Navas (2003) New Phytol.

Page 9: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

Conclusion 1:

- Quality control in your procedures is an issue

- Biological variation is an equally important issue, and growth chambers are NOT solving this problem

Page 10: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

2. Extracting biological knowledge from the database:

Page 11: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

At the phenotypic level, there is – for plants –a lack of information structured in a database:

TAIR, PLEXdb, Genevestigator,Drastic, CSB,DB, Germinate

LedaGlopnetTRY

(TurboVeg)

? (Floral DB)

Chloroplast 2010, Germinate

Page 12: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

How do plants respond to their environment?

Investigator A:Arabidopsis

Trait x

low light 20 units

high light 40 units

Investigator B:Brassica

Trait x

low light 60 units

high light 60 units

Page 13: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

The 2 experiments may actually tell the same thing:

Page 14: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

The classical dose-response curve:

Nutrient supply

Yie

ldMitscherlich (1909)

Page 15: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

The example ofSLA vs Light:

Light intensity

Irradiance

PFDPPFD

PAR

PFR

µmol m-2 s-1

mol m-2 day-1

W m-2

luxcal cm-2 s-1

langley min-1

lumen foot-2

MJft-c

SLA

SLW

SLM

LSM

LSW

LMAg m-2

mg cm-2

µg cm-2

µg mm-2

m2 kg-1

dm2 g-1

mm2 mg-1cm2 mg-1

Ma

SLA: leaf area / leaf dry mass

Page 16: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

How can we achieve a clear picture from fragmented data?:

SLA(m2 kg-1)

Daily Photon Irradiance(mol m-2 day-1)

Page 17: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

A literature analysis of >1100 data points (mean values) from >150 experiments on >300 species:

DPI (mol m-2 day-1)

SLA

(m

2 kg

-1)

Page 18: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

0 10 20 30 40 500

20

40

60

80

100

DPI (mol m-2 day-1)

Rice & Bazzaz (1989) Ingestad et al. (1994) Sharew et al. (1996) Evans & Poorter (2001)

SLA

(m2 k

g-1)

Four different experiments show that interspecific variation in SLA is large:

0 10 20 30 400

20

40

60

80

100

0 10 20 30 400

20

40

60

80

100

0 10 20 30 400

20

40

60

80

100

Page 19: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

After scaling SLA relative to the (interpolated) value at a reference light intensity of 8 mol m-2 day-1:

0 10 20 30 400

20

40

60

80

100

0 10 20 30 400

20

40

60

80

100

0 10 20 30 400

20

40

60

80

100

0 10 20 30 40 500.0

0.5

1.0

1.5

2.0

DPI (mol m-2 day-1)

SLA

(scale

d)

Page 20: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

>1000 data points from >150 experiments on >300 species:

0 10 20 30 400

20

40

60

80

100

0 10 20 30 400

20

40

60

80

100

0 10 20 30 400

20

40

60

80

100

10 20 30 40 500.25

0.5

1

2

4

DPI (mol m-2 day-1)

SLA

(scale

d)

Page 21: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

Median and the interquartile range for 7 light classes:

0 10 20 30 400

20

40

60

80

100

0 10 20 30 400

20

40

60

80

100

0 10 20 30 400

20

40

60

80

100

0 10 20 30 40 500.25

0.5

1

2

4

SLA

(scale

d)

DPI (mol m-2

day-1

)P10

P90

P50

Page 22: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

10th and 90th percentiles give norm values, by which you can compare new experiments: The red line is an example of an outlying experiment

0 10 20 30 40 500.25

0.50.5

11

22

44

88

P90

Ann. Bot. (1986)

SLA

(scale

d)

DPI (mol m-2 day-1)

P10

Terminalia ivorensis

Page 23: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

1. Light quantity (DPI) 2. Light quality (R/FR) 3. UV-B 4. CO2

5. O3

6. Nutrient availability (N, P, G) 7. Drought stress 8. Waterlogging 9. Submergence10.Temperature11. Salinity12. Soil compaction

Stress box

Can we follow the same approach for other environmental factors?

Page 24: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

SLA responses to light, gases, and nutrients:

0 10 20 30 400.5

1

1.5

2a

SLA

(sc

ale

d)

DPI (mol m-2 day-1)

0.2 0.4 0.6 0.8 1.0 1.2

b

R / FR

0 5 10 15 20

c

UV-B (kJ m-2 day-1)

0 200 400 600 800 10000.5

1

1.5

2

d

SLA

(sc

ale

d)

CO2 (µmol mol-1)

0 20 40 60 80 100

e

O3 (nmol mol-1)

0.2 0.4 0.6 0.8 1.0 1.2

f

Nutrient availability (rel. scale)

1000 50 30

700 150 600

Page 25: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

SLA responses to water, temperature, salinity and soil compaction:

0.0 0.2 0.4 0.6 0.8 1.00.5

1

1.5

2g

SLA

(sc

aled

)

Water availability (rel. scale)0.2 0.4 0.6 0.8 1.0

h

Waterlogging0.0 0.2 0.4 0.6 0.8 1.0

i

Submergence

5 10 15 20 250.5

1

1.5

2

j

SLA

(sc

aled

)

Temperature (°C)0.0 0.2 0.4 0.6 0.8 1.0

l

k

Salinity (rel. to seawater)1.1 1.2 1.3 1.4 1.5 1.6

Soil Compaction (g cm-3)

300 90

70

300 200 70

Page 26: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

An overall non-linear equation to describe the response:

0 10 20 30 400

20

40

60

80

100

0 10 20 30 400

20

40

60

80

100

0 10 20 30 400

20

40

60

80

100

0 20 40 60 800.2

0.5

1.5

4 S

LA

(sc

ale

d)

Poorter et al., Fig. 1

DPI (mol m-2

day-1

)

3202 640201 ...)(log DPISLAsc

r2 = 0.72; PI = 2.92

Page 27: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

Plasticity index: highest divided by lowest fitted value across a predefined range

Range PI

Irradiance 1 – 50 mol m-2 day-1 2.92CO2 200 – 1200 µmol mol-1 1.41Salinity 0 – 100 % seawater 1.23Waterlogging - – + 1.12Compaction 1.0 – 1.6 g cm-3 1.05

R : FR 0.2 – 1.2 mol mol-1 1.00

UV-B 1 – 20 kJ m-2 day-1 1.00

O3 5 – 100 nmol mol-1 1.00

Nutrients 0.05 – 1 rel. units 1.13Water 0.05 – 1 rel. units 1.25

Submergence - – + 1.95Temperature 5 – 35 oC 2.24

Page 28: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

- Species family / name- woody / herbaceous- deciduous / evergreen- shrub / tree- annual / perennial- N2 fixing- C3 / C4 / CAM

Species traits

- Glasshouse, Growth chamber, OTC, Garden- Light (DPI)- Temperature (24h-average)- Substrate (hydroponics / soil, pot volume)

Growth environment

- Shade / Sun- Dry / Wet- Cold / Warm- Non-saline / Saline

Environmental niche

Are there differences between subgroups?

Page 29: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

An example: tropical species are more plastic than boreal species

5 10 15 20 250.5

1

2 low-temp species intermediate high-temp species

S

LA (sc

aled

)

Temperature (°C)

Page 30: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

Growth chamber

Glasshouse

OTC, shade house

Functional groups

Most experiments with herbs were in growth chambers,most with trees were outside in shade houses:

Page 31: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

SLA is just one trait, can we do the same for other traits?:

Env. Factor SLA Trait 2 Trait 3 Trait 4 .... Trait n

1 2 3 4 5 6 ... 12

Page 32: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

0 10 20 30 400.5

1

2

LMF

(sc

aled

)

DPI (mol m-2 day-1)

PI = 1.22n = 400

Yes, for example the % allocation of biomass to leaves as dependent on light intensity:

Page 33: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

- Yield- RGR, ULR, LAR- SLA- LMF, SMF, RMF, (HI)

Growth box (> 4)

- PHOT actual- PHOT capacity (/m2, /g, /N)- gs,Transpiration, - ci/ca

- J / Vmax

- RESP leaf, stem, root, fruit (/g)

Gas exchange (> 3)

- [C], [N], [P] leaf, stem, root, fruit- Starch, Fructan- Nitrate- Sol. Sugars- Lignin- (Hemi-)Cellulose- Protein, Org. N- Org. acids- Minerals, Ash- Sol. Phenolics- Tannin- Construction costs- Delta 13C

Chem. comp. (> 5)

- leaf size- plant height- leaf thickness- leaf density (or FW / DW)- vol / % epidermis, mesophyll air spaces, sclerenchyma- cell size

Morphology / anatomy (> 3)

- Rubisco capacity- PEP carboxylase- SBPase- AGPase- NR- etc

Enzyme box (> 4)

- link to mRNA

Do the same for these plant traits:

Page 34: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

Conclusions:

► Is able to summarise data across many experiments

► Yields quantitative response curves

► As well as normal limits

This meta-phenomics approach :

► Is applicable to (almost all) environmental factors

► Is applicable to all plant traits

► Will be very useful for modeling (global change,

limiting factors)

Page 35: Hendrik Poorter, Frank Gilmer & Uli Schurr JPPC, FZJ, DE The yin and yang of meta-phenomics

Frank Gilmer, FZJ

Uli Schurr, FZJ

Thanks to:

for more info see: - J. Exp. Bot. (2010) 61: 2043-2055 - www.metaphenomics.org

Ismael ArandaOwen AtkinCorine de GrootYulong FengJurg FranzaringKeith FunnellYaskara HayashidaVaughan HurryKen Krauss

Dina RhonzinaFrancesco RipulloneCatherine RoumetPeter RyserDylan SchwilkSusanne TittmannJan Henk VenemaRafael Villar

Dina RhonzinaFrancesco RipulloneCatherine RoumetPeter RyserDylan SchwilkSusanne TittmannJan Henk VenemaRafael Villar

Gerard Bönisch, MPI-Jena

Benjamin Bruns, FZJ