24
Heat Transfer I ENGR 6901 Fall, 2014 Dr. Y.S. Muzychka ER 4021 1

HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

Embed Size (px)

Citation preview

Page 1: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

Heat  Transfer  I  ENGR  6901  Fall,  2014  

Dr.  Y.S.  Muzychka  ER  4021  

1  

Page 2: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

Course  Materials  •  Course  Text:      Fundamentals  of  Heat  and  Mass  Transfer  –  Bergman,  Levine,  Incropera  and  DeWiQ,  7th  EdiSon  –  6th  EdiSon  is  also  OK,  but  some  new  problems  added.    –  Text  went  through  a  major  revision  for  the  6th.  –  Text  went  through  a  minor  revision  for  the  7th.    –  Most    content  is  covered  the  same  in  earlier  ediSons.  

•  Course  Notes  and  Handouts  •  Most  Course  Material  to  be  posted  on  Webpage    •  Power  Point  will  posted  every  week  or  two  •  Office  Hours:  Wednesday’s  @  2-­‐4  PM  

–  Outside  of  this  Sme,  by  appointment  only.  •  Email:  [email protected]  •  TA’s:  To  be  announced.    •  Thermodynamics  and  Fluids  texts  are  also  helpful  for  

addiSonal  material  on  fundamentals  related  to  this  course    

2  

Page 3: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

Important  Dates  •  Classes  Begin:  September,  3rd,  2014  •  Midterm  Break:  October  13/14,  2014  •  October  16th,  2014  (Tuesday  Schedule)  •  Quizzes:  October  17th  /  November  12th  ,  2014  •  Last  Day  of  Classes:  December  3rd,  2014  •  Exams  Begin:  December  8th,  2014  •  Tuesday’s:  Tutorial  is  a  must!  – There  is  slightly  more  material  to  cover  in  this  one  core  course  offering  of  Heat  Transfer,  therefore  we  must  rely  on  tutorials  for  extra  problems.    

 

3  

Page 4: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

Course  Grading  •  Quizzes  (2):  40%  •  Final  Exam:  60%  •  Grade  will  be  based  on  this  scheme  or  a  redistribuSon  of  my  choosing  provided    that:  –   40%/60%  <  Final  Grade  <  30%/70%  

4  

Page 5: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

Text  SecSons  for  this  Course  •  Chapter  1  –  IntroducSon:  1.1-­‐1.5  •  Chapter  2  –  ConducSon:  2.1-­‐2.4  •  Chapter  3  –  1-­‐D  Steady  ConducSon:  3.1-­‐3.6  •  Chapter  4  –  2-­‐D  Steady  ConducSon:  4.3  •  Chapter  5  –  Transient  ConducSon:  5.1-­‐5.7  •  Chapter  6  –  ConvecSon:  6.1-­‐6.7  •  Chapter  7  –  External  Flow:  7.1-­‐7.5  •  Chapter  8  –  Internal  Flow:  8.1-­‐8.5  •  Chapter  9  –  Natural  ConvecSon:  9.1-­‐9.6  •  Chapter  12  –  RadiaSon:  12.1-­‐12.8  •  Chapter  13  –  RadiaSon  Exchange:  13.1-­‐13.3    

–  10  of  14  chapters,  approximately  55%  of  text  by  secSon  topics,  and  by  pages  to  read  (?).  

 

5  

Page 6: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

Heat  Transfer  I  IntroducSon  

6  

Page 7: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

What  is  Heat  Transfer?  •  Heat   Transfer   is   the   study   of   how   energy   is  transferred  through  a  temperature  difference.  

•  Heat   transfer   is   classified   according   to   three  fundamental   modes:   Conduc6on,   Convec6on,  and  Radia6on.  

•  In   Thermodynamics   we   always   worked   with                      a   heat   transfer       given,   but   in   this   course   we  learn  how  to  calculate  it.  

•  In   Thermodynamics   we   worked   with   macro-­‐  energy   balances.   In   this   course   we   will   uSlize  micro-­‐   (differen6al)   energy   balances,   to   obtain  relaSonships  to  obtain          .  

˙ Q

˙ Q

7  

Page 8: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

Three  Modes  of  Heat  Transfer  ConducSon   ConvecSon  

RadiaSon  

T2  

T1  

8  

Page 9: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

Three  Modes  of  Heat  Transfer  Systems  with  ConducSon,  ConvecSon,  and  RadiaSon  

•  We  will  examine  individual  mode  problems  and  mulS-­‐mode  problems.  

9  

Page 10: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

Three  Modes  of  Heat  Transfer  

q' '= −k T2 −T1L

#

$ %

&

' (

q' '= h Ts −T∞( )

q' '1 =σT14, q' '2 =σT2

4Fourier’s  Law   Newton’s  Law   Stefan-­‐Boltzmann  Eqn.  

q' '12 =σ T14 −T2

4( )

10  

Page 11: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

ConducSon  Heat  Transfer  •  Fourier’s  Law  

•  k  is  the  thermal  conducSvity  and  depends  on  the  type  of  material  separaSng  the  two  surfaces:  – Metals  ~  10  –  400  W/mK  –  Non-­‐Metals  ~  0.1  –  500  W/mK  –  Liquids  ~  0.1  –  10  W/mK  –  Gases  ~  0.01  –  0.1  W/mK    

q' '= −k dTdx

≈ −kT2 −T1L

$

% &

'

( )

q = −kA T2 −T1L

#

$ %

&

' ( = kA

T1 −T2L

#

$ %

&

' (

Wm2

" # $

% & '

W[ ]

11  

Page 12: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

ConducSon  Heat  Transfer  12  

Page 13: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

ConvecSon  Heat  Transfer  •  Newton’s  Law  of  Cooling  

 

•  h  is  the  convecSon  heat  transfer  coefficient  and  depends  on  many  things:  –  Process  –  Fluid  ProperSes  –  Geometry  –  LocaSon  

q' '= h Ts −T∞( )

q = hA Ts −T∞( )€

Wm2

" # $

% & '

W[ ]

13  

Page 14: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

ConvecSon  Heat  Transfer  •  Convec6on  Heat  Transfer  is  controlled  by  a  thin  hydrodynamic  fluid  layer  at  the  heat  transfer  surface.  

•  A  thermal  boundary  layer  is  also  present  and  can  be  smaller,  larger  or  equal  in    thickness  to  the  hydrodynamic  boundary  layer.  

•  ConvecSon  Heat  Transfer  coefficients  are  someSmes  called  “film  coefficients”  as  a  result.    

•  ConvecSon  Heat  Transfer  is  classified  according  to:  –  Single  Phase  versus  Two  Phase  (boiling/condensaSon)  –  External  Flow  versus  Internal  Flow  –  Forced  Flow  (pressure  driven  flow)  versus  Natural  Flow  (density  driven  flow)  

14  

Page 15: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

RadiaSon  Heat  Transfer  •  Stefan-­‐Boltzmann  EquaSon  •                                                                         is  the  Stefan-­‐Boltzmann  constant  •  More  generally,  we  write:    •  ε  is  the  surface  emissivity  (a  property).  We  will  examine  

this  later  in  more  detail.  When  ε = 1 we have  a  “black  body”  

•  T  must  be  in  Kelvin  [K]  

 

q' 'rad =σ Ts4 −Tsur

4( )

σ = 5.67 ×10−8 W /m2K 4[ ]

q' 'rad =σε Ts4 −Tsur

4( )€

Wm2

" # $

% & '

Wm2

" # $

% & '

qrad =σεA Ts4 −Tsur

4( )

W[ ]

15  

Page 16: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

•  A  “black  body”  emits  thermal  radiaSon  according  to:  

•  A  body  also  receives  or  absorbs  thermal  radiaSon  according  to  (α  is  the  absorpSvity):  

•  For  a  simple  engineering  surface  where  (ε = α)  or  a  “grey  surface”  as  it  is  called,  we  have:  

•  Radiant  exchange  is  generally  more  complex  as  we  shall  see  later.    There  are  surfaces  where                        .    

RadiaSon  Heat  Transfer  

Eb =σTs4

Gabs = αG = ασTsur4

q' 'rad = εσ Ts4 −Tsur

4( )

E = εEb = εσTs4

or  

q' 'rad = εEb −αG or  

α ≠ ε

16  

Page 17: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

RadiaSon  Heat  Transfer  •  Radia6on  Heat  Transfer  is  the  most  complex  mode  of  heat  transfer.  

•  Thermal  radiaSon  can  be  absorbed,  reflected,  and  transmiQed  by  a  body.  

•  Thermal  radiaSon  is  an  electromagneSc  wave  phenomena  similar  to  light.    

•  Surface  properSes  depend  on  spectral  (wave  length)  and  direcSonality  (specular  or  diffuse)  characterisScs.  

•  Radiant  exchange  between  surfaces  can  be  quite  complicated.  

•  Thermal  radiaSon  is  a  “line  of  sight”  transfer  process  and  requires  “view  factors”.      

 

17  

Page 18: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

RadiaSon  Heat  Transfer  18  

Page 19: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

RadiaSon  Heat  Transfer  19  

Page 20: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

ConservaSon  of  Energy  •  Since  we  are  dealing  with  the  transfer  of  energy,  we  will  be  uSlizing  the  First  Law  of  Thermodynamics  extensively.    

 Closed  System  

Open  System  

20  

Page 21: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

•  Rate  Balance    

 •  ConservaSon  of  energy  is  also  frequently  used  in  the  following  form  using  enthalpy  h:    

 •  Closed  System  

 €

dECV

dt= ˙ Q CV − ˙ W CV + ˙ m i

inlets∑ hi +

Vi2

2+ gzi

$

% &

'

( ) − ˙ m e

exits∑ he +

Ve2

2+ gze

$

% &

'

( )

dECV

dt= ˙ Q CV − ˙ W CV

ΔECV =QCV −WCVor    

E = KE + PE +U

time rateof changeof energy containedwithin thecontrolvolume at time t

"

#

$ $ $ $

%

&

' ' ' '

CV

=

net rateof energytransferred inasheat transferat time t

"

#

$ $ $ $

%

&

' ' ' '

˙ Q

net rateof energytransferredoutaswork at time t

"

#

$ $ $

%

&

' ' ' ˙ W

+

net rateof energytransfer int o thecontrol volumeaccompanyingmassflow through ports

"

#

$ $ $ $ $ $

%

&

' ' ' ' ' '

ConservaSon  of  Energy  21  

Page 22: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

Surface  Balances  

˙ E in = ˙ E out

qcond'' = qconv

'' + qrad''

•  We  frequently  rely  on  surface  balances  in  calculaSons:    

22  

Page 23: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

Units  and  NotaSon  •  Review  the  secSon  on  units  carefully.  We  will  use  SI  units  in  this  course.  Also  be  familiar  with  the  various  prefixes:  micro,  milli,  nano,  pico,  etc.    

•  Finally,  the  text  has  adopted  the  following  notaSon  for  heat  transfer  rates:  –             [W]  is  heat  transfer  rate  [W  =  J/s].  –             [W/m]  is  heat  transfer  per  unit  length.  –             [W/m2]  is  heat  flux.  –             [W/m3]  is  heat  transfer  per  unit  volume.    

 €

˙ q

q' '

q'

q

Note:  I  someSmes  (occasionally  or  frequently)  use  Q  [W]  and  q  [W/m2]  along  with  Q/L  [W/m].  Its  old  school  and  I’m  older  (than  you)!    Just  check  the  equaSons  for  the  presence  of  the  area  A  or  lack  thereof.                          

23  

Page 24: HeatTransfer%I ENGR6901% Fall,%2014% · PDF file– Bergman,%Levine,%Incropera%and%DeWiQ,%7thEdion – th6 %EdiSon%is%also%OK,%butsome%new%problems%added.%%

Example  -­‐  1  •  Consider   the   three   modes   of   heat   transfer:  conducSon,   convecSon,   and   radiaSon,   from  the   perspecSve   of   the   basic   laws.   Let’s  examine:    –  i)   convecSon/conducSon   balance   for   a   boundary  layer,  and    

–  Ii)   the   concept   of   an   equivalent   radia6on   heat  transfer  coefficient,  and    

–  iii)   how   the   radiaSon   heat   transfer   coefficient  varies  under  ideal  condiSons.    

24