26
Heat Transfer in Polymers Summer Research 2008 Melissa Cederqvist Dr. Justin Houseknecht Dr. Douglas Dudis Chemistry & Computational Science Departments Wittenberg University, Springfield OH Wright Patterson Air Force Base, Dayton OH

Heat Transfer in Polymers Summer Research 2008

  • Upload
    gayle

  • View
    47

  • Download
    0

Embed Size (px)

DESCRIPTION

Melissa Cederqvist Dr. Justin Houseknecht Dr. Douglas Dudis Chemistry & Computational Science Departments Wittenberg University, Springfield OH Wright Patterson Air Force Base, Dayton OH. Heat Transfer in Polymers Summer Research 2008. Outline. Introduction Methods Results Next step. - PowerPoint PPT Presentation

Citation preview

Page 1: Heat Transfer in Polymers Summer Research 2008

Heat Transfer in PolymersSummer Research 2008

Melissa CederqvistDr. Justin HouseknechtDr. Douglas DudisChemistry & Computational Science DepartmentsWittenberg University, Springfield OHWright Patterson Air Force Base, Dayton OH

Page 2: Heat Transfer in Polymers Summer Research 2008

Outline

Introduction

Methods

Results

Next step

http://www.wittenberg.eduhttp://www.wpafb.af.mil/

Page 3: Heat Transfer in Polymers Summer Research 2008

Heat Transfer in Polymers Heat dissipation

Materials and Manufacturing directorate Wright Patterson Air Force Base

Classical Molecular Dynamics simulations Changes in molecular motion ▪ EPON 862 & DETDA

Page 4: Heat Transfer in Polymers Summer Research 2008

Crosslinked polymer EPON-862 & DETDA

O

OH

NH

O

OH

NH

EPON-862 DETDA

“Heat Transfer in Polymers” hand out from Dr. Justin Houseknecht, Wittenberg University

Page 5: Heat Transfer in Polymers Summer Research 2008

Molecular Dynamics

A computer approach to statistical mechanics

Calculation of structure and properties for large systems

Motion

Nave, R. Georgia State University. June 9, 2008. <http://hyperphysics.phy-astr.gsu.edu/Hbase/thermo/heatra.html#c1>

Page 6: Heat Transfer in Polymers Summer Research 2008

Purpose

Are classical molecular dynamics simulations useful for study of heat flow?

Heat Molecular motion Low frequency vibrations

Classical molecular dynamics uses molecular mechanics Parameterized for high frequency vibrations

Page 7: Heat Transfer in Polymers Summer Research 2008

Name Use Energy Term

Harmonic Bond stretch

Harmonic Angle bend

Cosine Torsion

Leonard-Jones 6-12 van der Waals

Coulomb Electrostatic

Taylor Stretch-bend

Molecular Mechanics

Mathematical method to model the shape of molecules

Parameterized

Young, D. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. New York: John Wiley & Sons, Inc. 2001. p. 49-52p; p.60-62

Page 8: Heat Transfer in Polymers Summer Research 2008

Ab initio

Based on interactions between nuclei and electrons No electron correlation

Not parameterized

Long time, no molecular dynamics

Analyze ability of molecular mechanics to calculate low frequency vibrations

Page 9: Heat Transfer in Polymers Summer Research 2008

Adressing the problem

Calculate low frequency vibrations for a small portion of polymer Molecular mechanics (parameterized)▪ MMFF▪ DREIDING▪ UFF

Semi-empirical (parameterized)▪ AM1

Ab initio (not parameterized)▪ HF/6-31G*▪ HF/6-31+G*

Repeat molecular dynamics calculations with similar models

O

OH

NH

O

OH

NH

Cramer, Christopher J. Essentials of Computational Chemistry – Theories and Models. 2nd ed. West Sussex, England: John Wiley & Sons, Inc. 2006. p. 165-167.

Page 10: Heat Transfer in Polymers Summer Research 2008

Geometry optimization Build unit of EPON-862 DETDA

Monomer at 20.2 Å Dimer at 39.0 Å

Optimize MMFF

Select five lowest energy conformations AM1 HF/6-31G* HF/6-31+G*

File: F:\Calculations\Monomer\Locked\MMFF\Conformational search\MCederqvistEPON-862 DETDA 1OPT9bconfirmsearch2-20.2.M001.spartan

Page 11: Heat Transfer in Polymers Summer Research 2008

Geometry optimization

Similarity analysis Measure dihedral angle for atoms 1,2,3,4;

2,3,4,5 etc. in structureNH

O

OH

O NH

OH

1 2 34

5678910111213

14 15 16

1718

1920

From file: F:\Calculations\Monomer\Locked\RHF631+Gd\Monomer001HFlocked2.spartan

Page 12: Heat Transfer in Polymers Summer Research 2008

Similarity analysis: Monomer

From file: F:\Analysis\Monomer\Monomersimilarity.xlsx

Structure Level of theory 12,13,14,15 13,14,15,16 14,15,16,17 15,16,17,18 16,17,18,19 17,18,19,20 STDMolecule001 MMFF 176.65 176.03 176.65 -166.78 -86.64 171.27 Molecule001 AM1 178.63 177.66 -172.94 -168.03 -82.35 -179.20Molecule001 HF/6-31G* -178.62 -179.52 -176.72 -177.22 -81.71 177.63 Molecule001 HF/6-31+G* -179.08 179.90 -176.54 -178.60 -81.68 177.63 ∆bond angle 4.73 4.45 6.63 11.82 4.96 3.17 4.94Molecule013 MMFF 173.74 176.05 178.66 -166.01 -84.33 172.47Molecule013 AM1 176.95 176.39 -174.05 -162.76 -85.01 -178.69 Molecule013 HF/6-31G* 177.01 -178.97 -177.73 -175.55 -82.75 178.06 ∆bond angle 3.27 4.98 7.29 12.79 2.26 8.84 7.56Molecule024 MMFF 173.03 176.32 179.62 -167.72 -85.74 172.98Molecule024 AM1 177.22 176.46 -174.03 -161.06 -85.45 -178.46 Molecule024 HF/6-31G* 177.14 -178.99 -177.74 -175.50 -82.67 178.21 ∆bond angle 4.19 4.69 6.35 14.44 3.07 8.56 7.79Molecule035 MMFF 173.20 176.81 177.97 -166.76 -83.56 170.95Molecule035 AM1 178.70 176.15 -173.44 -170.15 -82.95 -178.63 Molecule035 HF/6-31G* 177.93 -178.25 -176.59 -175.70 -81.22 177.52 ∆bond angle 5.50 5.60 8.59 8.94 2.34 10.42 8.51Molecule046 MMFF 174.07 175.78 178.15 -165.01 -84.37 172.67Molecule046 AM1 175.38 175.95 -173.82 -167.69 -76.06 178.96 Molecule046 HF/6-31G* 176.59 -179.27 -178.49 -175.26 -74.51 177.39 ∆bond angle 2.52 4.95 8.03 10.25 9.86 6.29 7.07

Page 13: Heat Transfer in Polymers Summer Research 2008

Similarity analysis: Dimer

From file: F:\Analysis\Dimer\Dimersimilarity.xlsx

Structure Level of theory 12b,13b,14b,15b 13b,14b,15b,16b 14b,15b,16b,17b 15b,16b,17b,18b 16b,17b,18b,19b STDMolecule001 MMFF -170.86 -59.07 -175.12 -166.70 -83.92Molecule001 AM1 -176.35 -64.60 -175.98 -148.45 -78.90Molecule001 HF/6-31G* -175.82 -65.34 -175.05 -173.54 -81.92∆bond angle 5.49 6.27 0.93 25.09 5.02 10.04Molecule013 MMFF -172.66 -59.57 -176.06 -166.51 -85.39Molecule013 AM1 -175.41 -64.56 -175.85 -149.12 -79.52Molecule013 HF/6-31G* -175.81 -65.34 -175.07 -173.53 -81.84∆bond angle 3.15 5.77 0.99 24.41 5.87 10.27Molecule024 MMFF -170.73 -60.67 -178.27 -164.34 -81.01Molecule024 AM1 -177.58 -63.35 -171.68 -167.54 -72.90Molecule024 HF/6-31G* -175.49 -65.54 -175.98 -173.52 -74.08∆bond angle 6.85 4.87 6.59 9.18 8.11 9.74Molecule035 MMFF -165.94 -62.95 -175.18 -168.78 -87.55Molecule035 AM1 -171.59 -64.87 -175.67 -153.62 -82.46Molecule035 HF/6-31G* -172.38 -67.19 -175.31 -176.08 -82.60Molecule035 HF/6-31+G* - - - - -∆bond angle 6.44 4.24 0.49 22.46 5.09 9.38Molecule046 MMFF -171.85 -58.89 -175.58 -166.12 91.27Molecule046 AM1 -176.60 -65.12 -176.84 -143.72 106.85Molecule046 HF/6-31G* -177.71 -65.79 -174.13 -172.80 92.89∆bond angle 5.86 6.90 2.71 29.08 15.58 10.09

Page 14: Heat Transfer in Polymers Summer Research 2008

Energy: Monomer

Conformations of EPON862 DETDA 1Opt9bconfirmsearch2 MMFF E(kJ/mol) MMFF Erel AM1 E(kJ/mol) AM1 Erel HF/6-31G* E (kJ/mol) G03 HF/6-31G* Erel

Molecule001 593.6 0.0 -570.9 0.0 -4259555.3 0.0

Molecule013 594.0 0.4 -570.7 0.2 -4259555.9 -0.7

Molecule024 595.1 1.5 -570.4 0.5 -4259557.2 -1.9

Molecule035 595.3 1.7 -570.3 0.6 -4259555.5 -0.3

Molecule046 598.3 4.7 -570.0 0.8 -4259551.8 3.4

File:F:\Analysis\Monomer \Energy.xlsx

Conformation chosenLowest energy

Page 15: Heat Transfer in Polymers Summer Research 2008

Geometry optimization: Result Monomer001

File: F:\Calculations\Monomer\Locked\RHF631Gd\Conformational search\Monomer001HFlocked.spartan

Page 16: Heat Transfer in Polymers Summer Research 2008

Energy: Dimer

File: F:\Analysis\Dimer\Energy.xlsx

Conformations of EPON 862 DETDA 2Opt2-39confirmsearch MMFF E(kJ/mol) MMFF Erel AM1 E (kJ/mol) AM1 Erel HF/6-31G* E (kJ/mol) G03 HF/6-31G* Erel

Molecule001 1233.1 0.0 -1097.8 0.0 -8371594.2 0.0

Molecule013 1234.8 1.7 -1097.5 0.3 -8371595.4 -1.2

Molecule024 1236.9 3.8 -1097.1 0.6 -8371590.4 3.8

Molecule035 1237.0 3.9 -1097.9 -0.1 -8371594.9 -0.7

Molecule046 1237.5 4.4 -1096.2 1.5 -8371588.0 6.2

Conformation chosenLowest energy

Page 17: Heat Transfer in Polymers Summer Research 2008

Geometry optimization: Result Dimer035

File: F:\Calculations\Dimer\Locked\RHF631Gd\dimer035HFlocked.spartan

Page 18: Heat Transfer in Polymers Summer Research 2008

Frequency analysis

Level of theory

Geometry 1

Geometry 2

MMFF MMFF HF/6-31+G*

SYBYL SYBYL HF/6-31+G*

AM1 AM1 HF/6-31+G*

HF/6-31G* HF/6-31G* HF/6-31+G*

HF/6-31+G* HF/6-31+G*

HF/6-31+G*

Page 19: Heat Transfer in Polymers Summer Research 2008

Frequency analysis at HF/6-31+G*:A

%Std Level of theory//RHF/6-31G+*%MMFF//RHF/6-31+G* %SYBYL//RHF/6-31+G* %AM1//RHF/6-31+G* %RHF/6-31G*//RHF/6-31+G* %DREIDING//RHF/6-31+G* %UFF//RHF/6-31+G*

10 76 26 33 19 224 47 54 33 29 48

115 48 42 29 13 25108 57 43 1 28 3274 41 30 7 17 2754 25 25 9 5 2161 36 38 0 8 3367 33 32 1 20 4070 35 51 9 25 3858 21 30 5 9 2354 18 25 7 10 17

0 500 1000 1500 2000 2500 3000 3500 4000 45000

20406080

100120140

%MMFF//RHF/6-31+G*%SYBYL//RHF/6-31+G* %AM1//RHF/6-31+G* %RHF/6-31G*//RHF/6-31+G*%DREIDING//RHF/6-31+G*%UFF//RHF/6-31+G*

Monomer001 from RHF/6-31+G* geometry: Absolute Percent Error

Frequency (cm-1)

Perc

ent E

r-ro

r

Page 20: Heat Transfer in Polymers Summer Research 2008

Frequency analysis at HF/6-31+G*:A

0 50 100 150 200 2500

20

40

60

80

100

120

140

%MMFF//RHF/6-31+G*%SYBYL//RHF/6-31+G* %AM1//RHF/6-31+G* %RHF/6-31G*//RHF/6-31+G*%DREIDING//RHF/6-31+G*%UFF//RHF/6-31+G*

Monomer001 from RHF/6-31+G* geometry: Absolute Percent Error

Frequency (cm-1)

Perc

ent E

rror

Page 21: Heat Transfer in Polymers Summer Research 2008

LAMMPS Large-scale Atomic/Molecular Massively Parallel

Simulator

Sandia National Laboratories US Department of Energy laboratory

Classical Molecular Dynamics simulation

Model atomic, polymeric, biomolecular systems

Systems of a few to billions of particlesLAMMPS. Sandia Laboratories. May 21, 2008. June 23, 2008. http://lammps.sandia.gov/

Page 22: Heat Transfer in Polymers Summer Research 2008

LAMMPS

Simulate heating

Unit of EPON-862 DETDA

Enter

Exit

Exit

Page 23: Heat Transfer in Polymers Summer Research 2008

LAMMPS

Temperature vs. distance Insulator Conductor

r

T

Enter

Unit of EPON-862 DETDA

ExitExit

rr

Insulator

Conductor

Page 24: Heat Transfer in Polymers Summer Research 2008

ReferencesCramer, Christopher J. Essentials of Computational Chemistry – Theories and Models. 2nd ed. West

Sussex, England: John Wiley & Sons, Inc. 2006. p. 165-167.

Houseknecht, Justin. PhD. “Heat Transfer in Polymers”. Wittenberg University. May 2008.

LAMMPS. Sandia Laboratories. May 21, 2008. June 23, 2008. http://lammps.sandia.gov/

Nave, R. Georgia State University. June 9, 2008. http://hyperphysics.phy-astr.gsu.edu/Hbase/thermo/heatra.html#c1

The College of St. Scholastica. June 16, 2008. http://faculty.css.edu/lmcgahey/web/CHM220/conform/diClEt.html

Young, D. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. New York: John Wiley & Sons, Inc. 2001. p. 19-21; 49-52p; 60-62; 78-82

Wittenberg University. June 23, 2008. http://www.wittenberg.edu/

Wright Patterson Air Force Base. June 23, 2008. http://www.wpafb.af.mil/

Page 25: Heat Transfer in Polymers Summer Research 2008

Frequency analysis at HF/6-31+G*:NA

0 500 1000 1500 2000 2500 3000 3500 4000 4500

-75

-25

25

75

125

175

%MMFF//RHF/6-31+G*%SYBYL//RHF/6-31+G* %AM1//RHF/6-31+G* %RHF/6-31G*//RHF/6-31+G*%DREIDING//RHF/6-31+G*%UFF//RHF/6-31+G*

Monomer001 from RHF/6-31+G* geometry: Non Absolute Percent Error

Frequency (cm-1)

Perc

ent E

rror

Page 26: Heat Transfer in Polymers Summer Research 2008

Frequency analysis at HF/6-31+G*:NA

0 50 100 150 200 250

-75

-25

25

75

125

175

%MMFF//RHF/6-31+G*%SYBYL//RHF/6-31+G* %AM1//RHF/6-31+G* %RHF/6-31G*//RHF/6-31+G*%DREIDING//RHF/6-31+G*%UFF//RHF/6-31+G*

Monomer001 from RHF/6-31+G* geometry: Non Absolute Percent Error

Frequency (cm-1)

Perc

ent E

rror