18
Heat conduction by photons through superconducting leads G R E N O B L E UNIVERSITE J OSEPH F OURIER SCIENCES. TECHNOLOGIE. MEDECINE W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P. Pekola Low Temperature Laboratory, Helsinki University of Technology, Espoo, Finland

Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

  • View
    221

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Heat conduction by photons through superconducting leads

G R E N O B L E 1

UNIVERSITEJOSEPH F OURIERSCIENCES. TECHNOLOGIE. MEDECINE

W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France

M. Meschke, and J.P. Pekola Low Temperature Laboratory, Helsinki University of Technology, Espoo, Finland

Page 2: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Thermal conductance

TK

nncqQ

ph

kcoldkhotsoundk k

kkph

)(

TKQ

TK

ffL

Q

el

kcoldkhotkk

kel

1

T1

Heat flow (T1 > T2)

T2

Heat flow Thermal conductance

What conducts heat in a solid ?

Phonons (lattice vibrations)

Quantum of thermal conductanceT T +T

Q

Th

kK B

Q 3

22

and what about photons ?

Electrons (important for metals)

Page 3: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Measurement of quantized thermal conductance

2DEG in a GaAs-AlGaAs heterostructure

Molenkamp et al. Phys. Rev. Lett 68 (1992)

Quantized electronic thermal conductance

Quantized phonon thermal conductance

K. Schwab et al. , Nature 404 (2000)

Silicon nitride membrane

Th

kK B

Q 3

22

Page 4: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Energy relaxation in a submicron metal island

1

1),(

/)(

eBTkµEe

eTEf

0 100 200 300 400 500

100

80

60

40

20

0

RS

INIS

[M]

TBATH

[mK]

0

100

200

300

400

500

Te[m

K]

M.Meschke et al.

In thermal equilibrium:

Electron-electron collissions

Electron-phonon collisions T0

TenvTe

Ge

Gep

fWPmKT

mmm

mKWT

PT

TTP

exe

phex

e

pheex

1100

025.06.04

102

3595 5

55

Pex

Pep

Page 5: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Energy relaxation in a submicron metal island

1

1),(

/)(

eBTkµEe

eTEf

0 100 200 300 400 500

100

80

60

40

20

0

RS

INIS

[M]

TBATH

[mK]

0

100

200

300

400

500

Te[m

K]

M.Meschke et al.

In thermal equilibrium:

Electron-electron collisions

Electron-phonon collisions T0

TenvTe

Ge

Gep

fWPmKT

mmm

mKWT

PT

TTP

exe

phex

e

pheex

1100

025.06.04

102

3595 5

55

+Electron-photon „radiative“ relaxation ?

Pex

Pep

Pe

Page 6: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Heat transported between two resistors

2

1

1e

1**4)(

/

th

hRvS iiV

21

22

22

21

02121

32

)]()([

TTh

krP

dhnhnhrP

B

net

1,

)(

42

21

21

rRR

RRr

Voltage noise emitted by resistor Ri:Ge= ?

1D Black body radiation

R2,T2R1,T1

Th

kKrK

dT

dPK B

QQ 3 ,

22 Quantum of thermal

Conductance:

Net heat flow from hot to cold resistor:

Schmidt et al.,Phys. Rev. Lett., 93 (2004)

Page 7: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Competition between ep- and e- coupling

3/122

15

Vh

krT B

cr

0.05 0.1 0.15 0.2 0.250.310-15

10-14

10-13

10-12

Gep

, = 2.0 109, = 6.0 10-20

Ge, r = 1

Ge, r = 0.2

G (

WK

-1)

T (K)

TCO

Cross-over temperature:

Th

krVTK

TTKr

PTTVP

Bep

enveQeeep

3K 5

)(2

22

e4

221

50

51

Page 8: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Typical experimental set-up

Island size:6.6 m x 0.8 m x 20 nm

SINIS junction size:3 m x 0.1 m

SQUID junction size:3 m x 0.1 m

Iheat

V

Ib

Electrical circuit

Page 9: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Actual experimental configuration: tunable impedance between the resistors

)(

* 21

totZ

RRr

QSQUIDceffe GRRCIrG ,...),,,( 21h

Tkvvx B

thth with /

dxe

exxr

G

G

x

x

thQ

e2

2

0 1

Page 10: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Electrical Model I

0.0 0.5 1.0 1.5 2.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G/G

Q

Ic=1nA Ic=10nA Ic=200nA

cmc

thth 1

cJ I

L2

0

Transmission line:C0 C0 C0

L0 L0 L0

C0 C0 C0

L0 L0 L0

R1 R2

R1 R2

Tunable inductance:

Here:

cJ I

L2

0

L~30 μm

Page 11: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Electrical Model II

0.0 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

G/G

Q

Ic=500nA Ic=100nA Ic=20nA Ic=0.1nA

LSQ

CSQ R2R1LSQ

CSQ

CSQUID=30fF

Page 12: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Thermal model

Typical parameter values:P1 = 1 fWP2 = 0

50

522

222

211

2

2

50

511

222

211

2

1

12

12

TTTrTrh

kP

TTTrTrh

kP

eeeB

eeeB

Page 13: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

SINIS thermometer

0 100 200 300 400 500 600 700 8000.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

V (

mV

)

T (mK)

Measured at I = 9 pA

Probes electron temperature of N island (and not of S!) in the case of T/Tc<0.4

Low leakage of junctions

-0.6 -0.4 -0.2 0.0 0.2 0.4-6

-4

-2

0

2

4

6

215mK 250mK 285mK 320mK 360mK 395mK 430mK

I (n

A)

V (mV)

38mK 48mK 78mK 110mK 145mK 180mK

Page 14: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Measured variation of island temperature:

T0

Te2Te1

Ge

Gep1 Gep2

P2P1

-0.162

-0.161

-0.160

-0.159

-0.158

-0.157

-0.156

-0.155

V S

INIS

[mV

]

Flux [a.u.]

Page 15: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Measured variation of island temperature:variation of bath temperature

Flux Φ0

T0

Te2Te1

Ge

Gep1 Gep2

P2P1

-2 -1 0 1 2

90

100

110

120

130

140

150

160

170 TBATH

= 157mK 147mK 114mK 102mK 75mK 60mK

T[m

K]

Ic=20nACSQUID=15fFR1=R2=200P1=1fWP2=0

Page 16: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Increase island temperature Te1

-2 -1 0 1 2

160

170

180

190

200

210

220

17800 fW2700 fW180 fW70 fW30 fW0 fW

T[m

K]

-2 -1 0 1 290

100

110

120

130

140

150

160

170

180

190

200

210 17800 fW7100fW2700 fW1100 fW450 fW180 fW70 fW30 fW5 fW2 fW0 fW

T[m

K]

Flux Φ0 Flux Φ0

T0<40mK T0=150mKT0

Te2Te1

Ge

Gep1 Gep2

P2P1

Page 17: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Measured variation of island temperature:amplitude of modulation

<40mK 75mK 102mK 114mK 147mK 157mK

T0

Page 18: Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P

Conclusion

-First observation of the crossover from phonon relaxation to radiative photon relaxation at temperatures of about 100 mK

-Thermal and electrical model explain quite well the measured data

-Implications on:performance of bolometers (sensitivity): coupling to the heat bath

removing excessive heat from devices at milli-kelvin range