Heat and Thermodynamics(2)

Embed Size (px)

Citation preview

  • 8/3/2019 Heat and Thermodynamics(2)

    1/7

    HeatandTherm

    ody

    namics

    Whyw

    ou

    ldsome

    onedesigninga

    pipelineincludethesestrangeloops?

    Temperatureand

    theZerothLaw

    of

    Thermody

    namics

    Zeroth

    Law

    ofThermody

    namics

    Ifobjec

    tsAandBareseparatelyinthermal

    equilibriumwithathirdobjectC,ThenAandB

    areine

    quilibriumwitheachother

    Implication:

    Thislaw

    isimportantbecausewecannow

    definewhattemperatureis

    Tempera

    tureisapropertythatcandeterminewheth

    er

    objectsa

    reinthermalequilibrium

    ThermalEqu

    ilibriu

    m

    y

    Wecansaythat

    objectsinthermalequilibriumwitheachotherare

    atthesa

    metemperature

    Orobjectswithdifferenttemperaturesarenotintherm

    al

    equilibriu

    m

    Wayso

    fmeasu

    ringtemperatures

    1.

    Expansionofmaterialsas

    temper

    aturechanges

    Mater

    ialsexpand

    when

    heated.

    Mercu

    ryandalcohol

    Theflowofelectronsina

    materialvarywith

    temperature

    (resistancethermometers)

    Resistanceismeasuredas

    temperatureisvaried

    2.Temperaturedependenceof

    pressureatconstantvolume

    (gasthermometers)

    Pressurechangeswithtemperature

    (volumeofGasisconstant)

    Pressureiszeroat

    T=-2

    73.1

    5C

  • 8/3/2019 Heat and Thermodynamics(2)

    2/7

    Thermalex

    pansion

    Linearexpansionobje

    ctsincreasesinlengthwhen

    temperatureincreases,and

    contractswhentemperature

    decreases.T~L

    Note:Differentmaterialshavedifferent

    coefficientsofthermalexpansion

    VolumeExpansion

    volumeofanobjectchangeswith

    temperature

    Sample

    applicationofthermal

    ex

    pans

    ion

    Circuitbreaker.T

    heswitchisoffifthetemperatureincreases.

    WHYM

    ATTEREXPANDS?

    Atomsoscillatewithgreateramplitude

    whentemperatureincreases

    10-

    10m

    Atordinarytemperature,atomsoscillate

    withamplitudeof10-11m

    Heat

    y

    Rememb

    erwhenthereistemperaturedifferencebetween

    twoobjects,heatflowsfromaregionofhigher

    temperaturetoaregionoflowertemperature.

    Heat

    Heatisdefinedasthetransferofene

    rgyacrossthe

    boundaryofasystemduetoatempe

    raturedifference

    betweenthesystemanditssurround

    ings

    UnitsofHeat

    calorie(cal)

    theamountofenergytran

    sfernecessaryto

    raisethetemperatureof1gofwaterfrom

    14.5

    Cto15.5

    C

    Joule(J)isalsoaunitofheat

    1calorie=4.186J

  • 8/3/2019 Heat and Thermodynamics(2)

    3/7

    Mechanical

    equ

    ivalentofheat

    Heatcapacitya

    ndspecificHeat

    TheheatcapacityCofa

    particularsampleofasubstance

    isdefinedastheamountof

    energyneededtoraisethe

    temperatureofthatsampleb

    y1C

    Q

    =CT

    Specificheatistheamountofheatneededtoraisethe

    temperatureofaunitmasso

    fmaterialbyaunitdegreein

    temperature.

    Q

    =mcT

    m=

    mass

    c=specificheat

    T=changeintemperature

    Specificheatofsomecommon

    materials

    Water:

    c=1.0cal/g-

    0C

    Ice:

    c=0.5cal/g-

    0C

    Lead:

    c=0.031cal/g-

    0C

    Latent

    Heat

    Thechang

    einphase(solid,

    liquid,gas)ofasubstancedueto

    theadditionorremovalofheatwithoutchangingits

    temperat

    ure Ic

    eHeat

    Ti=00C

    LiquidWater

    Tf=00C

    y

    Latenth

    eatoffusion

    theheatneededtochangethe

    phaseofmatterfromSolidtoLiquid

    y

    Latenth

    eatofvaporization-theheatneededtochange

    thephase

    ofmatterfromLiquidtoGas

    y

    Latenth

    eatofsolidificationliquidtosolid

    y

    Latenth

    eatofsublimationSolidtogas

    Sample

    A10gsolidiceinitiallyat-2oCisheated.T

    heice

    turnedtoliquidwaterandhavea

    final

    temperatureof10oC.Howmuchheatwasadded?

    G

    iven:m=10g

    Tf=10oC

    Ti=-2oC

    Q=?

    Solution:

    Qtotal=Qtempchange

    +Q

    phasechange

    +Qtempchange

    =mcice

    T+mLf+mcwater

    T

    =(10g)(0.5cal/g-oC)(0-(-2))+(10g)(80cal/g)+(10g)(1cal/g-oC)(10-0)

    =10cal+800cal+100cal

    =910cal

    y

    Note:Seemanualformoresamplecalculations

    AdditionorRemovalofHea

    tcauses.

    y

    Temperaturechange

    y

    Phasechange

    y

    Expansion

    y

    Changeininternalenergy

  • 8/3/2019 Heat and Thermodynamics(2)

    4/7

    ModesofHeat

    Transfer

    y

    Conduction

    y

    Convection

    y

    Radiation

    Condu

    ction

    Condu

    ction

    -Theflowofthermalenergydirectlythroughmatter

    withoutmotionofthe

    materialitself.

    -Kineticenergytransferbetweenmoleculesand

    atomsthatcomprisestheconductor

    Higher

    Temperature

    Conductor

    Lower

    Temperature

    Condu

    ction

    Factors

    thataffecttherate

    ofthermalcondu

    ction

    1.

    Material(thermalconductivity)

    a.

    Con

    ductors(metal)

    b.Insu

    lators(wood,asbestos,gases)

    2.

    TemperatureDifference

    Obvio

    uslythermalenergytransfer(heat)w

    ill

    onlyo

    ccurifthereisdifferenceintempera

    ture

    3.Thick

    nessofthematerialslabandthecross

    sectio

    nalarea

    Factors

    thataffecttherate

    ofthermalcondu

    ction

    Conv

    ection

    y

    Convectionisthetransferofheatbymas

    smotionofafluid

    fromoneregionofspacetoanother.

    Radiation

    y

    Radiationisthetransferofheatbyelectr

    omagneticwaves

    suchasvisiblelight,

    infrared,andultravioletradiation.Does

    notneedamediumtopropagate

    y

    Allobjectsemitcontinuouslyintheform

    ofproducedby

    thermalvibrationsofthemolecules

  • 8/3/2019 Heat and Thermodynamics(2)

    5/7

    Sample

    y

    Dewerflask

    InthePhilippinesitisco

    mmonlyknownastermos

    (ThermosBrand)

    Law

    sofThermody

    namics

    1.

    FirstLawofTherm

    odynamics

    Q=U+W

    2.

    SecondLawofThermodynamics

    Entropy

    HeatEngines

    FirstLaw

    ofThermody

    namics

    Statement:

    Theneth

    eattransferredequalsthechangeinINTERNA

    L

    ENERGY

    ofthesystemandWORKISDONEBYthe

    system.

    Q=U+W

    Q=heat

    U=inte

    rnalenergy

    W=workdone

    FirstLaw

    ofThermody

    namics

    y

    AstatementofLawofConservationEnergy

    (Inthisca

    seHeatisconvertedtomechanicalenergy)

    Internalenergyincreases

    andworkisdoneis

    done

    bythesystem

    Heat

    Interna

    lEnergy

    y

    Thesomeofalltheenergiesofthemoleculesandatoms

    that

    makeup

    thesystem

    y

    Includestranslational,rotationalkineticenergyandthe

    potential

    energybetweenthemoleculesoratomsthatm

    ake

    upthesystem

  • 8/3/2019 Heat and Thermodynamics(2)

    6/7

    FirstLaw

    ofThermody

    namics;

    AdiabaticProcess

    AdiabaticProcess:NOHEATISADDED

    Q=0

    Therefore

    U

    =W

    AdiabaticProce

    ss

    Workdonebythesystem:decreasessystems

    internalenergy

    (result:LowerT

    emperature)

    Workdoneintothe

    system:Increasessystems

    internalenergy

    (result:HigherTem

    perature)

    AdiabaticProce

    ss

    Ex

    ample

    250C50

    C

    -50C

    -150C

    150C

    4km 1km2

    km3km 0

    km

    SecondLaw

    ofThermody

    namics

    Heatwil

    lneverofitselfflowfromacoldobjectt

    oa

    hotobject

    y

    KelvinPlanckStatementof2ndLawofthermodynamics:

    Itisim

    possibletoconstructaheatenginethat,

    operatinginacycle,producesnoeffectotherth

    an

    theabso

    rptionofenergyfromareservoirandthe

    perform

    anceofanequal

    amount

    ofwork

    Inshort

    Noheatenginecan

    completely

    convertheatinto

    mechanicalwork

    Heatengine-device

    thatconvertsinternal

    energytomechanical

    energy

    SampleofHeatEngine

  • 8/3/2019 Heat and Thermodynamics(2)

    7/7

    Refrigerator

    Idealefficiency

    ofaheatengine

    y

    Example:

    Findthe

    efficiencyofaheatenginethatabsorbs

    2000Jofenergyfromahotreservoirandexhausts

    1500Jtoacoldreservoir?

    Solution: e=1(Qc/Qh)

    =1(1500J/2000J)

    =0.25or25%

    Entrop

    y

    Entropy

    =fromG

    reekwordsmeaningturning

    into

    =me

    asureofhow

    muchenergyorheatis

    unavailableforconversionintowork

    =me

    asureoftheamountofdisorder

    S=Q/T

    Entrop

    y

    Entropyisa

    quantitativemeasureofDISORDER

    Restating2ndLawofThermodynamics:

    Inanyis

    olatedsystem,entropyincreases

    Wheneverenergyisfreelytransformsfromoneformtoanother,

    thedirectionofthetransformationistowardsastateofgreater

    disorder(

    greaterentropy)

    Implicat

    ion:NaturalSystemtendstowardsgreater

    disorder

    ReadMore

    y

    http://www.a

    llaboutscience.org/laws-o

    f-thermodynamics-

    faq.htm

    y

    ConceptualPhysicsbyG.

    Hewitt

    y

    CollegePhysicsbySerwayandVaughn