Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

Embed Size (px)

Citation preview

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    1/21

    Slope Engineering for Low Cost

    Mountain Roads

    G J Hearn

    with significant contributions from T Hunt

    NB This summary is taken from the full document currently in press by the Geological Society of London. No information or illustrations can be

    reproduced without prior agreement from the Geological Society of London and Scott Wilson Ltd. For further information on the document

    please contact Gareth Hearn at [email protected]

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    2/21

    Slope Engineering for Low Cost

    Mountain Roads

    G J Hearn

    Table of Contents

    Table of Contents ...................................................................................... i

    List of Figures.......................................................................................... vi

    List of Tables ........................................................................................... xi

    List of Text Boxes................................................................................... xii

    Acknowledgements ............................................................................... xiiiHow to use this document ................................................................... xxii

    Part A Landslides and Low Cost Roads ..............................................1A1 Introduction .......................................................................................................1

    A1.1 Purpose ......................................................... ........................................................... ..........1A1.2 Low volume and low cost roads ........................................................... ............................. 1A1.3 Geographical coverage ..................................................... ................................................. 2A1.4 Landslide hazards and low cost mountain roads................................................................6

    A2 Project phasing and procurement in relation to slope management............8A2.1 Project phasing ....................................................... ........................................................... 8A2.2 Construction procurement .......................................................... ..................................... 11

    A2.2.1 Price-based..............................................................................................................11Price-based: lump sum .................................................... ..................................... 11

    Price-based: remeasurement ..................................................... ........................... 12A2.2.2 Cost-based...............................................................................................................12

    Cost-based: target cost .................................................... ..................................... 12Cost-based: cost reimbursable (cost plus) ......................................................... 12

    A2.2.3 Rates-only ...................................................... ......................................................... 14A2.2.4 Directly-employed labour ............................................................ ........................... 14

    A2.3 Labour-based and local resource-based approaches ........................................................ 14A3 Slope materials, landslide causes and landslide mechanisms......................16

    A3.1 Common soil types and their influence on slope stability ............................................... 16A3.1.1. In situ weathered soils............................................................................................16A3.1.2 Transported soils.....................................................................................................24

    A3.2 Common rock types and their influence on slope stability..............................................26A3.3 Outline of landslide causes ......................................................... ..................................... 31A3.4 Landslide types and characteristics..................................................................................34

    A3.4.1 Slides.......................................................................................................................39Planar failures......................................................................................................39

    Debris slides .......................................................... ............................................... 40Mudslides............. ............................................................ ..................................... 40Rockslides .................................................... ......................................................... 41Wedge failures ....................................................... ............................................... 42Circular failures .................................................... ............................................... 42

    Mudflows ................................................................................... ........................... 44A3.4.2 Debris flows............................................................................................................44A3.4.3 Avalanches..............................................................................................................46

    A3.4.4 Falls and topples ...................................................... ............................................... 48A3.5 Landslide displacement .................................................... ............................................... 50

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    3/21

    A3.6 Landslide impacts on the road network ......................................................... ..................51A3.7 Case studies .................................................. ........................................................... ........54

    A3.7.1 Ethiopia...................................................................................................................54A3.7.2 Philippines ..................................................... ......................................................... 55A3.7.3 Himalayas ...................................................... ......................................................... 55A3.7.4 China.......................................................................................................................57

    A4. Landslide risk management for low cost roads...........................................59A4.1 Introduction................................................................................................................59 A4.2 Landslide susceptibility, hazard and risk ........................................................... ........59A4.3 Risk management ................................................... ......................................................... 62

    A4.3.1 New road construction ....................................................... ..................................... 62A4.3.2 Improving existing roads ................................................... ..................................... 64A4.3.3 Landslide stabilisation on existing roads ........................................................ ........65

    Part B Site Investigation......................................................................68B1. Introduction ....................................................................................................68

    B1.1. Range of techniques........................................................................................................68B1.2 Programming of techniques ............................................................ ........................... 69

    B1.2.1 New road construction ....................................................... ..................................... 69

    B1.2.2 Road improvement................................................... ............................................... 70B1.2.3 Landslide damage reinstatement ........................................................... ..................70B1.2.4 Road operation and maintenance .......................................................... ..................70

    B2 Desk studies ................................................................................................72B2.1 Introduction................................................................................................................72 B2.2 Aerial photograph interpretation......................................................................................73B2.3 Satellite image interpretation ...................................................... ..................................... 79

    B2.3.1 Potential applications and choice of imagery..........................................................79B2.3.2 Satellite-derived topographical data........................................................................85B2.3.3 Airborne imagery ..................................................... ............................................... 85

    B2.4 Terrain models ........................................................ ......................................................... 87B2.5 Terrain classification........................................................................................................89B2.6 Landslide susceptibility, hazard and risk maps................................................................95

    B2.7 Geographical Information Systems (GIS) applications ................................................. 101B2.7.1 Introduction...........................................................................................................101B2.7.2 Using GIS..............................................................................................................101

    B3. Field mapping ...............................................................................................104B3.1 Reconnaissance surveys.................................................................................................104B3.2 Reference condition mapping ..................................................... ................................... 104B3.3 Landslide hazard mapping .......................................................... ................................... 104B3.4 Engineering geological mapping .......................................................... .........................107

    B3.4.1 Recognition of landslide features .......................................................... ................107B3.4.2 Landslide mapping................................................... ............................................. 107

    B4 Ground investigation.....................................................................................117B4.1 Introduction....................................................................................................................117B4.2 Scope of investigation....................................................................................................117

    B4.2.1 Access .................................................. ........................................................... ......118B4.2.2 Depth of investigation........................................................ ................................... 118B4.2.3 Sampling and testing .......................................................... ................................... 118

    B4.3 Investigation methods ....................................................... ............................................. 118B4.3.1 Trial pits and trenches ........................................................ ................................... 119B4.3.2 Augering................................................................................................................121B4.3.3 Boreholes and drillholes........................................................................................121

    Cable percussion boring (boreholes)..................................................................121Rotary drilling (drillholes) .............................................. ................................... 121Wash boring........................................................................................................122

    B4.3.4 Probing..................................................................................................................122B4.3.5 Sampling and testing in soil and rock ................................................... ................122

    Disturbed sampling...................................... ....................................................... 122Undisturbed sampling.........................................................................................122In-situ testing ......................................................... ............................................. 123

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    4/21

    Laboratory testing .............................................................................. ................123B4.3.6 Geophysical investigations....................................................................................125B4.3.7 Groundwater observations.....................................................................................125

    B4.4 Supervising a ground investigation................................................................................126B5 Slope movement monitoring.........................................................................127

    B5.1 Introduction....................................................................................................................127

    B5.2 Monitoring methods.......................................................................................................127B5.2.1 Observational methods..........................................................................................127

    Remote sensing ...................................................... ............................................. 127Field inspections.................................................................................................128

    Line-of-sight monuments .................................................................... ................128B5.2.2 Measurement methods ....................................................... ................................... 129

    Surface monuments.............................................................................................129Tension crack measurements..............................................................................129

    B5.3 Interpretation of monitoring data .......................................................... .........................130B5.4 Assessing depth of slope movement from monitoring data ........................................... 131

    Part C Design and Construction ......................................................134C1. Route corridor selection and alignment design .........................................134

    C1.1 Introduction....................................................................................................................134C1.2 Route corridor identification and selection....................................................................134C1.2.1 Topography .................................................... ....................................................... 134C1.2.2 River crossings......................................................................................................136C1.2.3 Slope stability........................................................................................................136C1.2.4 Land use ......................................................... ....................................................... 139C1.2.5 Comparison of alternatives....................................................................................140

    C1.3 Alignment and carriageway design................................................................................140C1.3.1 Alignment..............................................................................................................140C1.3.2 Camber and crossfall.............................................................................................142C1.3.3 Superelevation.......................................................................................................142

    C1.4 Case history .................................................. ........................................................... ......142C2 Design and construction of earthworks.......................................................147

    C2.1 Choice of cross-section..................................................................................................147C2.2.1 Knowledge-based approach ......................................................... .........................153C2.2.2 Empirical approach ............................................................ ................................... 154C2.2.3 Analytical approach ........................................................... ................................... 156

    C2.3 Choice of cut slope profile.............................................................................................158C2.3.1 Benched profiles....................................................................................................158C2.3.2 Continuous slope profiles......................................................................................160C2.3.3 Compound slope profiles ................................................... ................................... 160

    C2.4 Fill slopes.......................................................................................................................162C2.5 Earthworks balance........................................................................................................163C2.6 Spoil disposal.................................................................................................................165

    C2.6.1 New roads and road improvement schemes.......................................................... 165C3 Soil slope stabilisation ...................................................................................170

    C3.1 Introduction..............................................................................................................170 C3.2 Soil slope stability assessment.................................................... ................................... 170

    C3.2.1 Ground model .......................................................... ............................................. 170C3.2.2 Stability analysis ...................................................... ............................................. 172

    Basic concepts .............................................................................................. ......172C3.2.3 Design factors of safety.........................................................................................176

    C3.3 Soil slope stabilisation ...................................................... ............................................. 179Requirement......................................................................................................................182

    C3.4 Slope failure type 1: cut slopes................................................... ................................... 182C3.4.1 Case history...........................................................................................................183

    C3.5 Slope failure type 2: fill slope failures ........................................................... ................186C3.5.1 Case history...........................................................................................................186

    C3.6 Slope failure type 3: above-road slope failures..............................................................188C3.6.1 Case history...........................................................................................................189

    C3.7 Slope failure type 4: below-road slope failures..............................................................191

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    5/21

    C3.7.1 Case history...........................................................................................................193C3.8 Slope failure type 5: failure of the entire slope........................................................ ......195

    C3.8.1 Case history...........................................................................................................196C4 Rock slope stabilisation.................................................................................201

    C4.1 Rock slope stability assessment ............................................................ .........................201C4.1.1 Controls on rock slope stability.............................................................................201

    Failure controlled by the intact rock strength .................................................... 201Failure controlled by discontinuities..................................................................203Persistent discontinuity-controlled stability (assessment method 1) ..................203

    Multiple, closely-spaced discontinuity-controlled stability (assessment method 2)

    ...........................................................................................................................................204 C4.2 Managing rock slope stability along mountain roads .................................................... 206C4.3 Stabilisation measures....................................................................................................209

    C4.3.1 Reinforcement and support .......................................................... .........................209Dowels ......................................................... ....................................................... 209Bolts................................................... ........................................................... ......211Anchors........................................................ ....................................................... 211Tied-back walls and similar structures...............................................................211Shotcrete ...................................................... ....................................................... 212

    Restraining mesh ................................................................................ ................212Underpinning buttresses.....................................................................................213Toe support ............................................................ ............................................. 215

    C4.3.2 Drainage......................................................... ....................................................... 215C4.3.3 Removal (scaling) .................................................... ............................................. 216

    C4.4 Protection measures .......................................................... ............................................. 216C4.4.1 Containment................................................... ....................................................... 216

    Hanging mesh nets................................................. ............................................. 216Catch ditches and buffer zones ........................................................... ................217Catch walls and rigid barriers............................................................................217Catch fences........................................................................................................219

    C4.4.2 Shelters and tunnels...............................................................................................219C4.4.3 Case history...........................................................................................................220

    C5 Retaining structures ......................................................................................222C5.1 Introduction....................................................................................................................222C5.2 Types of earth retaining structure ......................................................... .........................222

    C5.2.1 Masonry retaining walls........................................................................................225C5.2.2 Concrete retaining walls........................................................................................225C5.2.3 Gabion walls ............................................................ ............................................. 226C5.2.4 Crib walls ....................................................... ....................................................... 226C5.2.5 Soil nails................................................................................................................228C5.2.6 Reinforced fill structures.......................................................................................229

    C5.3 Design of retaining walls ............................................................ ................................... 230C5.3.1 Equilibrium calculations for retaining walls ................................................... ......230C5.3.2 Passive pressures...................................................................................................234C5.3.3 Water pressures ........................................................ ............................................. 234C5.3.4 Surcharges.............................................................................................................234C5.3.5 Seismic loads.........................................................................................................234C5.3.6 Factors of safety ....................................................... ............................................. 234C5.3.7 Case history...........................................................................................................235

    C5.4 Selection of wall cross-section.......................................................................................238C5.5 Wall backfill and drainage .......................................................... ................................... 239

    C5.5.1 Backfill..................................................................................................................239C5.5.2 Drainage......................................................... ....................................................... 239

    C5.6 Retaining wall construction ........................................................ ................................... 242C5.6.1 Access for wall construction ........................................................ .........................242C5.6.2 Wall heights, founding levels and foundation stability ......................................... 242C5.6.3 Wall length............................................................................................................245

    C5.6.4 Excavation stability...............................................................................................246C5.6.5 Construction quality control..................................................................................248Backfill........................... ............................................................ .........................248

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    6/21

    Mortared masonry walls............................................................ .........................248Gabion walls.......................................................................................................249

    Reinforced concrete walls.......................................................... .........................250C5.6.6 Improvements to the stability of existing walls.....................................................250

    C6 Drainage .........................................................................................................252C6.1 Introduction....................................................................................................................252

    C6.2 Slope drainage ........................................................ ....................................................... 252C6.2.1 Routine slope drainage....................................................... ................................... 254C6.2.2 Drainage as a slope stabilisation measure ....................................................... ......256

    Surface drains.....................................................................................................256Herringbone drains ........................................................................... ................257Counterfort drains ........................................................... ................................... 257Sub-horizontal (drilled) drains ........................................................... ................257Toe drains...........................................................................................................258

    C6.3 Road drainage ......................................................... ....................................................... 258C6.3.1 Design criteria .......................................................... ............................................. 258C6.3.2 Field inspection........................................................ ............................................. 260C6.3.3 Road drainage structures .................................................... ................................... 261

    Roadside drains ..................................................... ............................................. 261

    Turnouts..............................................................................................................261 C6.3.4 Types of cross-road drainage structures .......................................................... ......265C6.3.5 Design of culverts .................................................... ............................................. 265

    C7 Erosion control ..............................................................................................268C7.1 Introduction....................................................................................................................268C7.2 Slope erosion .......................................................... ....................................................... 268

    C7.2.1 Options..................................................................................................................268C7.2.2 Revetments............................................................................................................268C7.2.3 Surface coverings ..................................................... ............................................. 271

    Shotcrete ...................................................... ....................................................... 271Chunam...............................................................................................................273

    Mattresses and matting.............................................................. .........................273C7.2.4 Bio-engineering measures............................................................ .........................273

    Using vegetation in engineering......................................................... ................277Bio-engineering technique selection.......................................... .........................278Slope preparation ............................................................ ................................... 284Selection of the appropriate plant species... ....................................................... 284Timing of bio-engineering works........................................................................285

    C7.3 Stream erosion ........................................................ ....................................................... 285C7.3.1 Checkdams..................................................... ....................................................... 285C7.3.2 Cascades................................................................................................................287C7.3.3 Channel linings ........................................................ ............................................. 290

    C7.4 Culvert outlets................................................................................................................290C7.5 Toe protection and river training .......................................................... .........................297

    Part D - Slope Management.................................................................302

    D1 Slope Management ........................................................................................302D1.1 Introduction .................................................. ........................................................... ......302D1.2 Planning slope maintenance ....................................................... ................................... 302D1.3 Categories of slope maintenance .......................................................... .........................303

    D1.3.1 Routine slope maintenance .......................................................... .........................304D1.3.2 Preventative slope maintenance................................................... .........................306D1.3.3 Emergency slope maintenance..............................................................................307D1.3.4 Remedial slope maintenance.................................................................................308

    D1.4 Inspection and prioritisation ....................................................... ................................... 308D1.4.1 Routine inspection ................................................... ............................................. 309D1.4.2 Detailed inspection................................................................................................310

    D1.5 Prioritisation ........................................................... ....................................................... 313D1.5.1 Preventative maintenance ............................................................ .........................313D1.5.2 Emergency and remedial maintenance..................................................................315

    D1.6 Risk management ................................................... ....................................................... 316

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    7/21

    D1.7 Maintenance procurement .......................................................... ................................... 317

    References..............................................................................................320

    Index.......................................................................................................330

    List of FiguresFigure A1.1 Broad distribution of climate and topography in the humid tropics and sub-tropics............5

    Figure A1.2 Typical landslide hazards affecting mountain roads .................................................. ..........7

    Figure A2.1 Local resource-based approaches to slope and drainage management...............................15

    Figure A3.1 Rock weathering grade classification.................................................................................18

    Figure A3.2 Case-hardening on the surface of a residual soil slope formed on granite ......................... 19

    Figure A3.3 Some typical departures from the standard weathering profile and their engineering

    implications ..................................................... ............................................................ ........................... 20

    Figure A3.4 Core stone within weathering grade V granite gneiss ........................................................ 21

    Figure A3.5 Weathering grade VVI soil developed on folded metamorphic rock with weathering

    grade III rock adjacent............................................................................................................................22

    Figure A3.6 Shear strength along relict joints is often the most important control on stability .............23

    Figure A3.7 Black cotton soil, overlying weathered tuff........................................................................24

    Figure A3.8 Volcanic ash overlying silt/clay residual soil ................................................... ..................24

    Figure A3.9 Typical transported soils found in hilly and mountainous regions ..................................... 25

    Figure A3.10 Core stone erratics within a weathered colluvial soil ....................................................... 26

    Figure A3.11 Folded geological structure creates complex outcrop patterns.........................................27

    Figure A3.12 Tight folding causes fracturing of the rock mass prone to ravelling failure..................... 28

    Figure A3.13 Cleavage orientated out of the slope, adverse to stability ................................................ 29

    Figure A3.14 Failure along adverse jointing leading to loss of road edge ............................................. 29

    Figure A3.15 Typical rock structure variations................... ........................................................... ........30

    Figure A3.16 Joint infill with fine-grained weathering products ................................................... ........31

    Figure A3.17 Some factors controlling the stability of soil and rock slopes .......................................... 33

    Figure A3.18 River scour on bend opposite an aggrading tributary fan triggers slope failure and road

    damage .................................................. ............................................................ ..................................... 34

    Figure A3.19 Common forms of slope failure........................................................................................37

    Figure A3.20 Common failure mechanisms in rock...............................................................................37

    Figure A3.21 Common failure mechanisms in soil/debris ................................................... ..................39

    Figure A3.22 Subtle planar failure in weathering profile overlying rockhead ....................................... 40

    Figure A3.23 Deep-seated planar failure through rock blocks valley .................................................... 42

    Figure A3.24 Circular (rotational) failures in fine-grained soil and weathered rock..............................43

    Figure A3.25 Mudflow, probably triggered by seismicity .................................................... .................44Figure A3.26 Levees deposited either side of a debris flow channel ..................................................... 45

    Figure A3.27 Typical debris flow in mountain terrain at bridge outlet .................................................. 45

    Figure A3.28 Debris avalanches arising from the 2008 Sichuan earthquake, China..............................46

    Figure A3.29 Rock avalanche flow track .......................................................... ..................................... 47

    Figure A3.30 Landslide dam formed by a rock avalanche................................................... ..................47

    Figure A3.31 Catastrophic rock fall along vertical joints in sandstone... ............................................... 48

    Figure A3.32 Incipient toppling failure ................................................... ............................................... 49

    Figure A3.33 Columnar jointing in basalt promotes small-scale planar, topple and wedge failures on

    steep slopes and in excavations ..................................................... ......................................................... 49

    Figure A3.34 Talus slopes formed beneath retreating cliff faces ................................................... ........50

    Figure A3.35 Typical range of slope failures in relation to a road constructed across side-long ground

    ................................................................................................................................................................51

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    8/21

    Figure A3.36 Mudslide and mudflow impacts on mountain roads.........................................................52

    Figure A3.37 Fill slope erosion due to lack of road runoff control ........................................................ 53

    Figure A3.38 Typical low-angle slope failures developed on residual clay soils bordering the RiftValley in Ethiopia...................................................................................................................................54

    Figure A3.39 Extreme slope conditions along the Halsema Highway, Philippines ............................... 55

    Figure A3.40 Slope failures and excavations make access difficult for traffic ...................................... 56Figure A3.41 Circular (rotational) failure in weathered Murree Formation mudstone, Pakistan,

    triggered by stream erosion ........................................................... ......................................................... 56

    Figure A3.42 Mudslide in the Murree Formation, Pakistan ........................................................... ........57

    Figure A3.43 Rock avalanche in limestone (with flow tracks indicated) following the 2008 Sichuan

    earthquake, China...................................................... ........................................................... ..................58

    Figure A4.1 Illustration of risk matrix application...................................................... ........................... 62

    Figure A4.2 Failed section of road and viaduct requiring total road realignment .................................. 64

    Figure B 2.1 Features commonly observed in stereo aerial photography of landslide areas.......... ........73

    Figure B2.2 Engineering geomorphological map for route corridor assessment in west Nepal, derived

    primarily from aerial photograph interpretation .......................................................... ........................... 76

    Figure B2.3 Stereo aerial photographs for an area of east Nepal ................................................... ........77Figure B2.4 Terrain and landslide interpretation of air photography in Figure B2.3 ............................. 78

    Figure B2.5 Illustration of some satellite image interpretation from Nepal ........................................... 86

    Figure B2.6 Terrain model for the Blue Nile Gorge, Ethiopia ....................................................... ........88

    Figure B2.7 Sub-model for a problematic alignment section ......................................................... ........88

    Figure B2.8 Landscape evolution model for a route corridor feasibility study, West Africa.................90

    Figure B2.9 Geological model developed for a specific alignment corridor in West Africa..................91

    Figure B2.10 Terrain classification mapping .................................................... ..................................... 92

    Figure B2.11 Terrain classification for route selection, Nepal...............................................................94

    Figure B2.12 Illustration of landslide susceptibility mapping for route corridor assessment, Nepal .....97

    Figure B2.13 Post-construction landslide that occurred in one of the least stable areas shown on FigureB2.12 ..................................................... ............................................................ ..................................... 98

    Figure B2.14 Landslide susceptibility, hazard and risk mapping for route corridors, Nepal .................99

    Figure B2.15 Observed landslide runout distances according to failure mechanism and volume........100

    Figure B2.16 Flow chart of GIS activities for terrain and landslide assessment .................................. 103

    Figure B3.1 Perspective map showing reference condition distribution along the Blue Nile gorge

    alignment, Ethiopia...............................................................................................................................105

    Figure B3.2 Landslide hazard and runout mapping, Papua New Guinea............................................. 108

    Figure B3.3 Hazard matrix applied to mine access road field investigations, Papua New Guinea ......109

    Figure B3.4 Failure surface daylights in cut slope ...................................................... .........................111

    Figure B3.5 Geomorphological map of deep-seated landslide.............................................................112

    Figure B3.6 Mapped slope showing subtle landslide features (dotted lines are back scarps, dashed linesare deposits, solid line is road. Photo taken in direction of arrow on Figure B3.5)............................. 113

    Figure B3.7 Engineering geological investigations for bridge abutment stability assessment....... ......114

    Figure B3.8 Structural geological rock slope stability mapping...........................................................115

    Figure B3.9 Engineering geological and geomorphological map for road widening and slope protection

    on a hairpin stack in Sri Lanka...................................................... ....................................................... 116

    Figure B5.1 Common methods of surface movement monitoring........................................................129

    Figure B5.2 Typical layout of crack extensometer...............................................................................130

    Figure C1.1 Choice between gentle, unstable ground and steep, rocky, though largely stable ground for

    route corridors ........................................................... ........................................................... ................135

    Figure C1.2 Bridge and bridge approach buried by tributary fan deposition ....................................... 136

    Figure C1.3 Hairpin stack construction abandoned due to slope instability.........................................138 Figure C1.4 Hairpin stack constructed on stable slope with minimal earthworks disturbance.............139

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    9/21

    Figure C1.5 Blue Nile and Difarsa River confluence showing Option 1 ............................................. 143

    Figure C1.6 Summary geomorphology of alignment options ........................................................ ......144

    Figure C1.7 Option 2 (bend out of sight) .......................................................... ................................... 145

    Figure C2.1 Use of retaining structures in steep mountain terrain ....................................................... 149

    Figure C2.2 Piered structures can be used where full cut and retaining walls are impracticable.........150

    Figure C2.3 Choice of section in difficult and potentially unstable ground ......................................... 151Figure C2.4 Slope cut to 3:1 in weathering grade V material remains largely intact forty years after

    construction ..................................................... ............................................................ .........................154

    Figure C2.5 Slope height angle stability relationships for rock slopes, Papua New Guinea..........156

    Figure C2.6 Mass haul diagram............................................................................................................164

    Figure C2.7 Failure of end-tipped spoil into watercourse .................................................... ................165

    Figure C2.8 Failure of natural ground beneath spoil dump due, at least in part, to loading.................166

    Figure C2.9 Rapid vegetation regrowth within twelve months on side-cast material .......................... 168

    Figure C2.10 Use of bio-engineering (principally grass and shrub planting) to protect a spoil slope from

    erosion (Section C7.2) ......................................................... ........................................................... ......169

    Figure C3.1 Driving and resisting forces acting on an existing or potential failure surface.................173

    Figure C3.2 Typical soil slope failure mechanisms..............................................................................174

    Figure C3.3 Five common configurations of soil slope failure along mountain roads.........................179

    Figure C3.4 Type 1 slope before and after implementation of remedial measures .............................. 184

    Figure C3.5 Geomorphological map and plan of remedial measures...................................................185

    Figure C3.6 Type 2 fill slope failure ....................................................... ............................................. 187

    Figure C3.7 Below-road masonry wall constructed at crest of fill slope with grass planting on.... ......187

    Figure C3.8 Type 3 slope stabilisation in Hong Kong ......................................................... ................189

    Figure C3.9 Taluvium exposed in access track excavation ................................................... ...............190

    Figure C3.10 Cross-section showing analysed reinforced concrete and gabion retaining walls ..........191

    Figure C3.11 Road located across the head of a type 4 regressive landslide (realignment in progress

    into hillside towards right)....................................................................................................................193Figure C3.12 Plan showing road across landslide head........................................................................194

    Figure C3.13 Cross-section through landslide at A-A1 ........................................................................194

    Figure C3.14 Road access maintained across a type 5 landslide..........................................................195

    Figure C3.15 Road realignment to avoid a deep-seated landslide........................................................196

    Figure C3.16 Analysed sections .................................................... ....................................................... 197

    Figure C3.17 General layout and design details for the selected option...............................................199

    Figure C3.18 Gabion toe wall and fill slope shortly after construction................................................200

    Figure C3.19 Previous type 5 landslide slope with gabion toe wall and full growth of planting to the

    lower slope (September 2009)..............................................................................................................200

    Figure C4.1 Incipient type 1 failure through the rock mass brought about by blasting effects ............202

    Figure C4.2 Discontinuity-controlled rock slope stability....................................................................203

    Figure C4.3 Planar, wedge and toppling discontinuity failure mechanisms.........................................204

    Figure C4.4 Simple classification of rock slope materials, failure mechanisms1and outline prescriptive

    remedial measures ..................................................... ........................................................... ................208

    Figure C4.5 Rock stabilisation and protection commonly applied to mountain roads .........................209

    Figure C4.6 Typical details for dowels, bolts and anchors (modified from GEO 1997) ......................210

    Figure C4.7 A tied-back surface retention structure under construction on a type 3 slope ..................212

    Figure C4.8 Wire mesh dowelled to rock face (modified from GEO 2003a).......................................213

    Figure C4.9 Typical detail for a concrete rock buttress (modified from GEO 2003a) .........................214

    Figure C4.10 Masonry dentition as cavity infill to cut slopes ........................................................ ......215

    Figure C4.11 Wire mesh applied to a rock slope..................................................................................217Figure C4.12 Gabion catch wall with access for machine clearance....................................................218

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    10/21

    Figure C4.13 Reinforced concrete catch wall.......................................................................................218

    Figure C4.14 Shelter to protect against rock fall ......................................................... .........................220

    Figure C4.15 Large type 3 rock slope failure.................................................... ................................... 221

    Figure C5.1 Retaining wall descriptors ................................................... ............................................. 222

    Figure C5.2 Typical retaining structures ........................................................... ................................... 223

    Figure C5.3 Use of mortared masonry retaining walls for road reinstatement ..................................... 225Figure C5.4 Composite masonry retaining wall .......................................................... .........................226

    Figure C5.5 Reinforced concrete grid wall...........................................................................................226

    Figure C5.6 Concrete crib wall.............................................................................................................227

    Figure C5.7 Timber crib wall ........................................................ ....................................................... 227

    Figure C5.8 Typical detail of soil nail incorporating shotcrete surface protection (modified from CEDD

    Standard Drawing C2106/3F, 1991).....................................................................................................228

    Figure C5.9 Installation of soil nails in a cut slope ..................................................... .........................229

    Figure C5.10 Reinforced fill wall.........................................................................................................230

    Figure C5.11 Active and passive forces acting on a retaining wall......................................................231

    Figure C5.12 Failure mechanisms for soil retaining walls .................................................... ...............232Figure C5.13 Options for below-road retaining walls and road reinstatement for a road project inEthiopia ........................................................... ............................................................ .........................236

    Figure C5.14 Illustrations of the three main wall types constructed following selection and design from

    Figure C5.13.........................................................................................................................................237

    Figure C5.15 Typical drainage details for retaining walls....................................................................240

    Figure C5.16 Interceptor drain detail....................................................................................................241

    Figure C5.17 Drainage grip detail ........................................................... ............................................. 242

    Figure C5.18 Dynamic Cone Penetrometer (DCP) ..................................................... .........................244

    Figure C5.19 Wall constructed too short..............................................................................................246

    Figure C5.20 Angled return into hillside..............................................................................................246

    Figure C5.21 Unsupported temporary excavation in taluvium for an above-road mid slope retainingwall ........................................................ ............................................................ ................................... 247

    Figure C5.22 Steep temporary excavation for a below-road retaining wall showing the made

    ground/original ground interface..........................................................................................................247

    Figure C5.23In situdensity testing of backfill ........................................................... .........................248

    Figure C5.24 Examples of good (on the left) and poor (on the right) mortared masonry ....................249

    Figure C5.25 Dry stone retaining wall in excellent condition after 40 years ....................................... 249

    Figure C5.26 Examples of good (on the left) and poor (on the right) stone filling in gabions.............250

    Figure C5.27 Masonry buttressing to an above-road gabion wall supporting a failed slope................251

    Figure C5.28 Masonry buttressing to a below-road fill retaining wall.................................................251

    Figure C6.1 Typical slope drainage measures......................................................................................252

    Figure C6.2 Typical slope drainage details ....................................................... ................................... 253

    Figure C6.3 Typical benched cut slope erosion and drain blockage problems.....................................255

    Figure C6.4 Slope failure on fill embankment with berm drain at immediate risk...............................256

    Figure C6.5 Construction of an ..................................................... ....................................................... 257

    articulated drain across an unstable slope.............................................................................................257

    Figure C6.6 Herringbone sub-soil and surface water drainage of a landslide ...................................... 257

    Figure C6.7 Installation of sub-horizontal drains ........................................................ .........................258

    Figure C6.8 Installation of a subsoil drain beneath a mass concrete U drain ....................................... 259

    Figure C6.9 Side drain erosion leads to failure of adjacent cut slope...................................................261

    Figure C6.10 Use of scour checks in areas vulnerable to erosion and failure ...................................... 262

    Figure C6.11 Slope failure exacerbated by water discharge from a roadside drain turnout .................262Figure C6.12 Erosion beneath side drain turnout ........................................................ .........................263

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    11/21

    Figure C6.13 Continuous outlet protection below side drain turnout from a hairpin stack..................264

    Figure C6.14 Severe scour at lower end of retaining wall....................................................................265

    Figure C6.15 Chute inlet ..................................................... ........................................................... ......266

    Figure C6.16 Cross drainage configuration and its influence on inlet blockage and outlet scour potential

    ..............................................................................................................................................................267

    Figure C7.1 Masonry revetments ............................................................ ............................................. 269Figure C7.2 Mortared masonry revetment used to protect the lower portion of a cut slope against

    erosion and shallow failure...................................................................................................................269

    Figure C7.3 Combined concrete and mortared masonry revetment ..................................................... 270

    Figure C7.4 Composite masonry revetment used in combination with planting..................................270

    Figure C7.5 Reinforced concrete slope revetment................................................................................271

    Figure C7.6 Use of fibre-reinforced shotcrete for rock slope protection..............................................272

    Figure C7.7 Hand-applied mesh-reinforced concrete...........................................................................272

    Figure C7.8 Natural root development of a tree in shallow soil (about 200-300mm depth) overlying

    laterite...................................................................................................................................................274

    Figure C7.9 Differences of root development in two shrubs used for bio-engineering in Nepal .........275

    Figure C7.10 Differences of rooting in two grass species .................................................... ................276Figure C7.11 Dense surface protection provided by the large grassImperata cylindrica...................276

    Figure C7.12 Typical bio-engineering details ................................................... ................................... 282

    Figure C7.13 Some illustrated planting applications............................................................................283

    Figure C7.14 Typical gabion checkdam details....................................................................................286

    Figure C7.15 Typical scour check detail ........................................................... ................................... 286

    Figure C7.16 Dry stone cascade where flow rates are low...................................................................287

    Figure C7.17 Gabion cascade where flow rates are high......................................................................287

    Figure C7.18 Masonry and gabion cascades ..................................................... ................................... 288

    Figure C.19 Gabion cascade constructed on an unstable slope ...................................................... ......288

    Figure C7.20 Typical details for a gabion cascade...............................................................................289Figure C7.21 Rigid channel lining dislocated by ground movement ................................................... 290

    Figure C7.22 Example of typical pipe culvert outlet scour protection for a low cost road ..................292

    Figure C7.24 Example of culvert outlet protection works, Laos..........................................................293

    Figure C7.25 Details of culvert outlet protection shown in Figure C7.24............................................294

    Figure C7.26 Stilling basin and cascade combination .......................................................... ................295

    Figure C7.27 Damaged outlet protection..............................................................................................296

    Figure C7.28 Undermining of roadside structures due to river scour...................................................297

    Figure C7.29 Flood damage in Nepal...................................................................................................298

    Figure C7.30 Riverside scour protection in a highly erosive environment...........................................299

    Figure C7.31 Typical protection in a riverside location of moderate scour potential...........................300Figure D1.1 Indicative schedules of routine slope maintenance activities for two geographical areas(wet season shown as hatching)............................................................................................................306

    Figure D1.2 Landslide debris tipped on a newly-stabilised slope during emergency maintenance .....308

    Figure D1.3 Slope, wall and culvert inventory.....................................................................................309

    Figure D1.4 Instability Report..............................................................................................................311

    Figure D1.5 Decision-making process for slope inspection and maintenance ..................................... 317

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    12/21

    List of TablesTable A1.1 Countries most relevant to this book ........................................................ ............................. 4

    Table A2.1 Common split of activities between project stages..............................................................10

    Table A2.2 Common forms of construction contract and their principal advantages and disadvantages

    ................................................................................................................................................................13 Table A3.1 Common soil types found in the humid tropics and sub-tropics..........................................17

    Table A3.2 Main factors controlling the stability of rock and soil slopes .............................................. 32

    Table A3.3 Summary characteristics of landslide types: slides..............................................................35

    Table A3.4 Summary characteristics of landslide types: flows, avalanches and falls.......... ..................36

    Table A4.1 Risk assessment matrix........................................................................................................60

    Table B1.1 Relative importance of desk studies and field investigations according to project stage.....69

    Table B1.2 Use of site investigation techniques for low cost road projects ........................................... 70

    Table B1.3 Typical information provided by site investigation techniques at each project stage..........71

    Table B2.1 Data typically derived from traditional desk study sources ................................................. 72

    Table B2.2 Landslide and related features commonly identifiable on stereo aerial photographs........... 74Table B2.3 Range of government and commercial satellite data currently available (correct as of July

    2009).......................................................................................................................................................80

    Table B2.5 Potential applications of satellite imagery for low cost road projects..................................83

    Table B2.6 Imagery used in the Nepal and Bhutan study.......................................................................84

    Table B2.7 Digital mapping data from the common sensors..................................................................85

    Table B2.8 Land facet designations ........................................................ ............................................... 92

    Table B2.9 Extract from land facet table detailing engineering attributes ............................................. 93

    Table B2.10 Typical uses of GIS..........................................................................................................102

    Table B3.1 Reference condition summary for in siturock and transported soil units in the Blue Nile

    gorge, Ethiopia .......................................................... ........................................................... ................106

    Table B3.2 Common features indicative of landslides and potential landslide locations.....................110Table B4.1 Typical range of sub-surface techniques for the investigation of slopes along low cost roads

    ..............................................................................................................................................................119

    Table B4.2 Range of laboratory tests on soils for slopes affecting low cost roads...............................124

    Table C1.1 Landform and land use features, slope stability and construction difficulty......................137

    Table C1.2 Typical national standards for low volume roads in mountainous terrain .........................142

    Table C1.3 Comparison of alignment alternatives for a section of new road, Ethiopia .......................146

    Table C2.1 Comparison of road sections..............................................................................................149

    Table C2.2 Recommended cross-sections for unstable ground...................................................... ......151

    Table C2.3 Typical cut slope angles1

    ...................................................................................................153

    Table C2.4 Maximum observed angles (in degrees) for natural slopes (based on data from Nepal) ...155Table C2.5 Indicative cut slope angles in rock1....................................................................................157

    Table C2.6 Indicative cut angles for structurally-controlled rock slopes ............................................ 158

    Table C2.7 Advantages and disadvantages of benched cut slopes ....................................................... 159

    Table C3.1 Level of importance of information for soil slope stability assessment and analysis ........172

    Table C3.2 Suggested factors of safety for the analysis of new slopes ................................................ 177

    Table C3.3 Suggested absolute minimum factors of safety for the analysis of existing slopes and for

    remedial or preventive works ........................................................ ....................................................... 177

    Table C3.4 Recommended Partial Factors for use with Approach 1 Combination 2 of Eurocode 7 (BS

    EN 2004) ......................................................... ............................................................ .........................178

    Table C3.5 Acceptable annual probability of failure according to consequence in Norway................179

    Table C3.6 Typical engineering management options for the failure types shown in Figure C3.3......181Table C3.7 Options for soil slope stabilisation.....................................................................................182

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    13/21

    Table C3.8 Calculated factors of safety................................................................................................198

    Table C4.1 Level of importance of information for rock slope stability assessment and analysis.......201

    Table C4.2 Rock type groups ........................................................ ....................................................... 202

    Table C4.3 Options for rock slope stabilisation and protection............................................................207

    Table C5.1 Advantages and disadvantages of various wall types .................................................. ......224

    Table C5.2 Factors affecting active earth pressures .................................................... .........................233Table C5.4 Wall shape advantages and disadvantages.........................................................................238

    Table C5.5 Typical presumed/allowable bearing pressures1 ................................................................244

    Table C5.6 Allowable bearing pressures and the equivalent DCP blow count .................................... 245

    Table C6.1 Types of slope drainage, their function and limitations..................................................... 254

    Table C6.2 General guidance on the design of drainage structures for low cost roads ........................260

    Table C7.1 The main plant classes and their anticipated effective depths of rooting...........................275

    Table C7.2. Bio-engineering techniques ........................................................... ................................... 279

    Table C7.3. Selection of bio-engineering technique according to site characteristics..........................284

    Table D1.1 Typical routine maintenance works for slopes and retaining walls.........................................304

    Table D1.2 Checklist for completing the Instability Report (Figure D1.4)..........................................312Table D1.3 Risk-based prioritisation matrix for preventative works....................................................314

    Table D1.4 Possible vulnerability class definitions for use in Table D1.3...........................................315

    Table D1.5 Risk-based prioritisation matrix for emergency and remedial works ................................ 315

    Table D1.6 Road category....................................................................................................................316

    List of Text BoxesBox A3.2 Fully-developed residual soil (weathering grade VI).............................................................21

    Box A3.3 Relict discontinuities in highly and completely weathered residual soils (weathering grades

    IV and V)................................................................................................................................................22

    Box A3.4 Earthquake effects on slope stability......................................................................................32

    Box A4.1 Feasibility study for slope stability management in Laos ...................................................... 63

    Box A4.2 Flood damage to the Naubise to Mugling road, Nepal, following road improvement...........65

    Box A4.3 Landslide damage to the Hirna to Kulubi road, Ethiopia, following road improvement .......65

    Box B2.1 Aerial photographs ........................................................ ......................................................... 75

    Box B4.1 Trial pitting investigation of a landslide in Ethiopia ...................................................... ......120

    Box B5.1 Mapping landslide movements from aerial photographs......................................................128

    Box B5.2 Inclinometers and slip indicators..........................................................................................131

    Box B5.3 The use of short-term inclinometers to help determine movement depth in conditions of

    complex failure.....................................................................................................................................132

    Box C1.1 Recommended geometric standards for low volume roads..................................................141Box C2.1 Choice of cross-section ........................................................... ............................................. 148

    Box C2.2 Variable soil and rock sequences encountered in Laos and Ethiopia................................... 160

    Box C2.3 Importance of the accurate assessment of the soil/rock interface.........................................161

    Box C3.1 Stabilisation of a type 3 landslide in Bhutan ........................................................ ................188

    Box C3.2 Type 4 regressive landsliding leading to significant loss of road formation ........................192

    Box C4.1 Rock slope stability analysis for slope design......................................................................205

    Box C6.1 Experience with cut-off drains in Nepal...............................................................................255

    Box D1.1 Performance-based contracts ............................................................ ................................... 318

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    14/21

    This book has been prepared by Scott Wilson Ltd for its Client, the Department for

    International Development (DFID) UK. The Authors and Scott Wilson Ltd would like to

    thank the following for the opportunity to carry out the work illustrated in this book:

    Department for International Development (DFID) UK Asian Development Bank

    World Bank (IDA) International Finance Corporation (IFC)

    United Nations Environment Programme (UNEP) Islamic Development BankDepartment of Roads, Nepal Department of Roads, Bhutan

    Department of Public Works and Highways,

    Philippines

    Ministry of Works and Transport, Laos

    Ministry of Transport, Tajikistan Road Development Authority, Sri Lanka

    Geotechnical Engineering Office, CEDD, Hong Kong Ethiopian Roads Authority

    Department of Roads and Railways, Libya IKRAM, Malaysia

    SNV Netherlands Rio Tinto Iron Ore

    Broken Hill Proprietary (BHP) Arcelor Mittal

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    15/21

    How to use this bookThis book covers the design, construction and maintenance of low cost, low volume mountain

    roads in the humid tropics and sub-tropics and focuses on slope stability aspects. During the

    early stages of its preparation the intended use of the book was as a manual. The manual was

    aimed principally at road engineers who are required to build and maintain roads in hilly and

    mountainous regions with limited resources. As the document developed it became expandedto include reference to, advice on and illustration of, a range of desk study and field

    investigation techniques, some of which are routinely employed on low cost roads, others of

    which are of a more specialist nature but have the potential to be of value to low cost road

    applications. The book should therefore be of interest to a range of practitioners with

    experience in engineering geology and road design, construction and maintenance.

    The book is split into four parts.

    Part A: Landslides and low cost roads (background)

    Part B: Site investigation (desk study, field mapping and ground investigation)

    Part C: Design and construction (alignments, cross-sections, earthworks, soil and rock slope

    stabilisation, retaining structures, drainage control and erosion protection)

    Part D: Slope maintenance management (inspections, works prioritisation, routine andemergency management).

    An Index, Glossary of Terms and Reference List are also provided. Definitions and

    explanations or clarifications are also provided as footnotes where required.

    Part A describes and illustrates the background to landslide and slope instability problems

    affecting roads in hilly and mountainous areas of the humid sub-tropics. Simple

    classifications of soils and rocks are provided, along with weathering grades and the

    description of soil types and rock structures that prove problematic for the stability of roads

    and roadside slopes. Mechanisms of landslides in both soil and rock are also described in

    simple terms together with a review of landslide causes and the impact that landslides and

    earthworks failures have on mountain roads. Basic considerations of hazard and risk are

    discussed because these have important implications for road planning, design, construction

    and maintenance.

    Road engineers already working in the tropics and humid sub-tropics will gain most benefit

    from Parts C and D. However, even though they will be familiar with the ground conditions

    and site investigation techniques available to them, it is recommended that they consult Parts

    A and B as well in order to provide context to their own experience, and to draw their

    attention to issues and considerations that they might not have otherwise been aware of.

    Part C is by far the largest section of the book, and its aim has been to provide practical

    advice on a range of issues that relate to the design and construction of alignments, slopes,retaining structures, drainage and erosion protection works. All these have important bearings

    on slope stability.

    Part D focuses on slope maintenance and related activities. In terms of engineering, there is

    much overlap between the construction and maintenance of roads in unstable terrain, and

    frequent reference is made to Part C. The principal reason for this is that mountain roads in

    the tropics and humid sub-tropics are located in a dynamic environment where slopes,

    retaining structures and drainage works need to be maintained, repaired and sometimes

    redesigned and reconstructed due to the changing patterns and effects of rainfall, runoff, river

    scour, land use, seismicity and, of course, slope instability.

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    16/21

    Part A Landslides and Low Cost Roads

    A1 Introduction

    A1.1 PurposeThis book deals with landslides, earthworks (cut and fill slopes), retaining structures and

    erosion protection on low cost roads and embraces feasibility study, investigation, design,

    construction, improvement and maintenance. The focus is on hilly and mountainous areas in

    the humid tropics and sub-tropics where heavy seasonal rainfall is responsible for a high

    incidence of slope instability. Nevertheless, large parts of this book will also be of interest to

    practitioners working in higher latitudes.

    A1.2 Low volume and low cost roadsThe term low volume roads is used to describe roads with traffic volumes of up to 400

    AADT1(Keller and Sherar, 2003). These authors also suggest a maximum design speed of 80

    kph as another defining parameter, but this would not apply in hilly or mountainous areas

    where design speeds associated with steep terrain and difficult alignment geometry might beexpected to be lower (Section C1).

    A low volume, low cost road would normally be considered to apply to rural roads and

    feeder roads, and not to the more heavily trafficked roads that form important links in a

    countrys transport network. However:

    due to limited budgets the trunk road network in many countries within the humid

    tropics and sub-tropics (Section A1.3) is also constructed and managed within a low cost

    framework, despite the fact that some of these roads have AADTs in excess of 1000, or even

    as much as 3000 in some cases. While the budgets for the construction and maintenance of

    these trunk roads are usually significantly higher than for low volume roads per se, they still

    remain essentially low cost by comparison with some other parts of the world; low volume, low cost roads are common in hilly and mountain areas throughout the

    world. These areas are often prone to landslides and earthworks failures arising from steep

    terrain, high rainfall or snow melt, earthquakes in some areas, and changing land use and

    drainage patterns (the latter potentially being affected significantly by deforestation, irrigation

    and road construction effects). Even in the advanced economies of the world available

    budgets may be insufficient to counter these hazards and temporary road closures and road

    damage are frequent outcomes (for example Winter et al 2009).

    The term low costis therefore preferred to low volumein the context of this book because it

    encapsulates, to varying degrees, low volume/low cost as well as high volume/limited budget

    situations.

    Although there have been several key texts published in recent decades concerning landslide

    hazard and risk assessment for engineering projects (for example Fookes et al 1985, Turner

    and Schuster 1996, Fookes 1997a, Griffiths et al 2001, Fookes et al 2005, Glade et al 2005

    and Waltham 2009), there have been few that focus on the assessment and management of

    landslides in the context of road design, construction and maintenance. The publication by

    Fookes et al (1985) was probably the first detailed account of the use of engineering geology

    and geomorphology in the design and construction of low cost mountain roads to appear in

    the international literature2. The FHWA

    3 in the United States (FHWA 1988) published a

    1AADT ~ Average Annual Daily Traffic (motorised vehicles)2

    The five-fold terrain model, for example, developed by these authors has become one of the mostcopied of illustrations found anywhere on the subject.3FHWA ~ Federal Highway Authority, US Department of Transportation

  • 8/10/2019 Hearn - Summary Slope Engineering for Low Cost Mountain Roads (1)

    17/21

    manual of landslide management on federal highways in six states, but this focussed primarily

    on embankment failures. The publications by TRL4 (1997) and Keller and Sherar (2003)

    provide greater engineering detail and advice for mountain road construction and maintenance

    than Fookes et al (1985), however the former focuses to a large extent on Nepal, while the

    latter does not cover landslide management and slope engineering in any great detail. Finally,

    the Department of Roads, Nepal (2003) has published a useful guide to slope protection on

    low cost mountain roads but this guide is aimed principally at management level practitioners

    and provides only limited engineering detail.

    Given the rate at which mountain road construction is taking place in many countries, and the

    need to maintain existing infrastructure for strategic, economic and community access

    purposes, an update and expansion of the work of Fookes et al (1985) and TRL (1997) is

    required for geologists, geotechnical engineers and civil engineers responsible for the design,

    construction and maintenance of mountain roads. Accordingly, this bookdescribes, illustrates

    and advises on:

    the geological, geomorphological and engineering context of landslide and slope

    instability impacts on mountain roads, with particular reference to the humid tropics and sub-

    tropics (Part A); the techniques available to identify, define and assess landslides and unstable slope

    conditions for design purposes (Part B);

    the design, construction and improvement of mountain roads with regard to

    topography and ground conditions and slope stability considerations in particular (Part C);

    the maintenance of mountain roads with regard to slope stability (Part D).

    A1.3 Geographical coverageThis book is aimed principally at those regions of the world where many or all of the

    following factors combine to create serious sl