116
1 University of Helsinki Division of Pain Medicine Department of Anaesthesiology, Intensive Care and Pain Medicine Helsinki University Hospital and University of Helsinki and Doctoral Programme of Clinical Research, Doctoral School of Health Faculty of Medicine Health-related quality of life in patients with chronic pain Pekka Vartiainen ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Medicine of the University of Helsinki, for public discussion in the Seth Wichmann Lecture Hall, HYKS Naistenklinikka, Haartmanninkatu 2, Helsinki, on 29.9.2018, 10:00 Helsinki 2018

Health-related quality of life in patients with chronic pain

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Health-related quality of life in patients with chronic pain

  1  

 

University  of  Helsinki    

Division  of  Pain  Medicine  Department  of  Anaesthesiology,  Intensive  Care  and  Pain  

Medicine  Helsinki  University  Hospital  and  University  of  Helsinki  

 and    

Doctoral  Programme  of  Clinical  Research,  Doctoral  School  of  Health  

Faculty  of  Medicine  

 

Health-related quality of life in patients with chronic pain

Pekka  Vartiainen  

 

 

 

 

ACADEMIC  DISSERTATION

To  be  presented,  with  the  permission  of  the  Faculty  of  Medicine  of  the  University  of  Helsinki,  for  public  discussion  in  the  Seth  Wichmann  Lecture  Hall,  HYKS  Naistenklinikka,  

Haartmanninkatu  2,  Helsinki,  on  29.9.2018,  10:00  

Helsinki  2018  

Page 2: Health-related quality of life in patients with chronic pain

  2  

Supervised  by  

Professor  Eija  Kalso,  MD,  PhD    Division  of  Pain  Medicine  Department  of  Anaesthesiology,  Intensive  Care  and  Pain  Medicine    University  of  Helsinki  and  Helsinki  University  Hospital,  Finland    Professor  Risto  P.  Roine,  MD,  PhD  University  of  Helsinki  and  Helsinki  University  Hospital  ,  and  Research  Centre  for  Comparative  Effectiveness  and  Patient  Safety,    University  of  Eastern  Finland  

Reviewed  by  

Docent  Markus  Paananen,  MD,  PhD  Oulu  University  Hospital  and  University  of  Oulu,  Finland    Docent  Tuula  Manner,  MD,  PhD  Department  of  Anaesthesiology,  Intensive  Care  and  Pain  Treatment,  Turku  University  Hospital  and  University  of  Turku,  Finland  

Opponent  

Professor  Torsten  Gordh,  MD,  PhD  Multidisciplinary  Pain  Centre,  Uppsala  University  Hospital,  and  Pain  Research,  Department  of  Surgical  Sciences,    Uppsala  University,  Sweden          (C)  Pekka  Vartiainen  ISBN  978-­‐‑951-­‐‑51-­‐‑4445-­‐‑4  (print)  ISBN  978-­‐‑951-­‐‑51-­‐‑4446-­‐‑1  (PDF)  ISSN  2342-­‐‑3161  (print)  ISSN  2342-­‐‑317X  (online)  Painosalama  OY  Helsinki,  Finland  2018      

Page 3: Health-related quality of life in patients with chronic pain

  3  

                               One  man,  when  he  has  done  a   service   to   another,   is   ready   to   set   it   down   to  his  account  as  a  favour  conferred.  Another  is  not  ready  to  do  so,  but  still  thinks  of  the  man  as  his  debtor,  and  he  knows  what  he  has  done.  A  third  in  a  manner  does  not  even  know  what  he  has  done,  but  he  is  like  a  vine  that  has  produced  grapes  and  seeks  for  nothing  more  after  it  has  once  produced  its  proper  fruit.  As  a  horse  when  he  has  run,  a  dog  when  he  has  tracked  the  game,  a  bee  when  it  has  made  the  honey,  so  a  man  when  he  has  done  a  good  act,  does  not  call  out  for  others  to  come  and  see,  but  he  goes  on   to  another  act,   as   a  vine  goes  on   to  produce  again   the  grapes   in  season.        Marcus  Aurelius,  121-­‐‑180  A.D.      

Page 4: Health-related quality of life in patients with chronic pain

  4  

Table  of  contents    

Abstract  .............................................................................................................................................................  6  Tiivistelmä  .......................................................................................................................................................  8  List  of  original  publications  ....................................................................................................................  10  List  of  abbreviations  ..................................................................................................................................  11  Introduction  ..................................................................................................................................................  13  Review  of  the  literature  ...........................................................................................................................  14  Definition  of  pain  ..........................................................................................................................  14  Normal  pain  sensation  ..........................................................................................................  14  

Definition  of  chronic  pain  .........................................................................................................  17  Classification  of  chronic  pain  ..................................................................................................  17  Biopsychosocial  model  ...............................................................................................................  19  Overview  of  biological  mechanisms  of  chronic  pain  ...............................................  20  Psychosocial  factors  associated  with  chronic  pain  ..................................................  23  Social  aspects  of  chronic  pain  ............................................................................................  29  

Epidemiology  of  chronic  pain  .................................................................................................  31  Prevalence  ..................................................................................................................................  31  Chronic  pain,  health  and  other  diseases  and  symptoms  ........................................  32  

The  consequences  of  chronic  pain  ........................................................................................  34  Functioning  and  well-­‐‑being  ................................................................................................  34  Health-­‐‑related  quality  of  life  ..............................................................................................  35  Societal  costs  .............................................................................................................................  35  

Treatment  of  chronic  pain  ........................................................................................................  36  Multidisciplinary  pain  management  ...............................................................................  37  Definition  and  organization  of  MPM  ...............................................................................  37  Outcome  measures  of  pain  management  .....................................................................  39  Evidence  of  multidisciplinary  pain  management  ......................................................  40  

Health-­‐‑related  Quality  of  Life  ..................................................................................................  41  Definition  and  aims  of  the  measurement  .....................................................................  41  Theory  of  measuring  HRQoL  ..............................................................................................  42  Quality-­‐‑adjusted  Life  Years  .................................................................................................  45  

Different  HRQoL  Measures  .......................................................................................................  45  Generic  instruments  ....................................................................................................................  45  EQ-­‐‑5D  ...........................................................................................................................................  45  15D  ................................................................................................................................................  47  SF-­‐‑6D  and  SF-­‐‑36  ......................................................................................................................  48  Other  measures  ........................................................................................................................  49  

Properties  of  HRQoL  instruments  .........................................................................................  49  Comparison  of  different  HRQoL  measures  ..................................................................  50  

Use  of  HRQoL  instruments  in  chronic  pain  patients  .....................................................  51  Aims  of  the  study  ........................................................................................................................................  51  

Page 5: Health-related quality of life in patients with chronic pain

  5  

Materials  and  methods  .............................................................................................................................  52  Participants  .....................................................................................................................................  52  Multidisciplinary  pain  management  ....................................................................................  53  Measures  ..........................................................................................................................................  54  Health-­‐‑related  Quality  of  Life  Instruments  ..................................................................  54  Socioeconomic  background  ................................................................................................  54  Clinical  pain  questionnaire  .................................................................................................  54  Symptom-­‐‑specific  measures  ..............................................................................................  55  

Characteristics  of  multidisciplinary  pain  management  programme  .....................  56  Study  setting  ...................................................................................................................................  57  Study  I  ..........................................................................................................................................  57  Study  II  &  III  ..............................................................................................................................  57  

Statistical  analyses  .......................................................................................................................  59  Imputation  of  missing  answers  .........................................................................................  60  

Results  .............................................................................................................................................................  61  Participants  .....................................................................................................................................  61  KROKIETA  study  sample  .....................................................................................................  61  Helsinki  study  sample  ...........................................................................................................  61  

HRQoL  results  ................................................................................................................................  64  KROKIETA  study  sample  .....................................................................................................  64  Helsinki  Study  sample  ...........................................................................................................  65  

Agreement  of  HRQoL  instruments  ........................................................................................  66  HRQoL  instruments  and  other  measures  of  pain  and  symptoms  ...........................  68  KROKIETA  study  sample  .....................................................................................................  68  Helsinki  study  sample  ...........................................................................................................  70  

Multidisciplinary  pain  management  ....................................................................................  72  Change  in  15D  score  after  treatment  ...................................................................................  73  15D  profiles  and  their  changes  .........................................................................................  74  Variables  associated  with  HRQoL  outcome  .................................................................  77  

Discussion  ......................................................................................................................................................  82  Principal  findings  .........................................................................................................................  82  Comparison  with  other  studies  and  significance  of  results  .......................................  83  Health-­‐‑related  quality  of  life  ..............................................................................................  83  Comparison  and  validity  of  HRQoL  instruments  ......................................................  84  Effectiveness  of  multidisciplinary  pain  management  .............................................  87  

Methodological  considerations  when  assessing  outcome  of  MPM  .........................  88  Which  patients  benefit  from  MPM?  ......................................................................................  90  Strengths  and  limitations  ..........................................................................................................  92  Future  perspectives  .....................................................................................................................  94  

Conclusions  ...................................................................................................................................................  95  Acknowledgements  ....................................................................................................................................  96  References  .....................................................................................................................................................  98    

Page 6: Health-related quality of life in patients with chronic pain

  6  

Abstract    Chronic  pain  impairs  health  and  both  physical  and  cognitive  function,  and  is  associated  with   considerable   psychosocial   problems.   The   management   of   chronic   pain   is  challenging,   and  multidisciplinary   pain  management   (MPM)   is   considered   the  most  efficacious  method  of  treating  chronic  pain.  However,  treatment  outcomes  vary  greatly,  and  it  is  not  possible  to  predict  which  patients  will  benefit  from  MPM.        Health-­‐‑related   quality   of   life   (HRQoL)   measurement   aims   to   capture   the  comprehensive,   subjective   health   state   of   a   patient.   Generic   HRQoL   enables  comparison  across  all  patient  populations  and  is  an  integral  component  of  cost-­‐‑utility  studies.   Several   instruments   can   measure   HRQoL.   However,   they   may   produce  differing   results.   Although   measuring   HRQoL   is   considered   essential   for   treatment  effectiveness,   and   it   is  also   recommended   in   trials  of   chronic  pain  management,   the  validity  of  different  instruments  has  not  previously  been  compared.    The  aim  of  this  thesis  is:    

•   To  assess  the  validity  of  two  HRQoL  instruments,  the  15D  and  the  EQ-­‐‑5D,   in  chronic  pain  patients  treated  at  a  tertiary  pain  centre.  

•   To  describe   the  HRQoL   in  a   large  sample  of  severe  chronic  pain  patients;   to  analyse   the   association   between   HRQoL,   socioeconomic   background   and  different  aspects  of  chronic  pain.  

•   To  describe  the  long-­‐‑term  HRQoL  changes  after  outpatient  MPM  at  a  tertiary  pain  centre  

•   To  identify  possible  associations  between  good  or  bad  HRQoL  outcomes  and  the  background  variables.  

 The  thesis  consists  of  three  publications,  and  reports  on  two  patient  populations.  The  validity  of   the   two  HRQoL   instruments,   the  EQ-­‐‑5D  and   the  15D  was  studied  using  a  sample  of  391  patients  attending  secondary  or  tertiary  multidisciplinary  pain  clinics.  At  the  beginning  of  their  treatment  episode,  the  patients  responded  to  the  two  HRQoL  instruments’   questionnaires,   as   well   as   another   set   of   questionnaires   measuring  socioeconomic   factors,  self-­‐‑rated  health,  pain   intensity  and   interference,  depression,  pain  acceptance,  pain-­‐‑related  anxiety,  and  sleep.  The  second  study  sample  consisted  of  1528  patients  with  chronic  non-­‐‑cancer  pain,  treated  at  a  tertiary  multidisciplinary  pain  clinic   of   the   Helsinki   University   Hospital.   These   patients   filled   in   the   15D   HRQoL  questionnaire  at  baseline  and  again  after  a  12-­‐‑month  follow-­‐‑up.  They  also  filled  in  the  pre-­‐‑admission   questionnaire   of   the   pain   clinic,   which   contained   questions   on   pain,  related  psychosocial   disability   and   socioeconomic   background.   The   structure   of   the  treatment  episode  was  extracted  from  the  hospital's  electronic  archives.  We  compared  the  baseline  HRQoL  results  with  those  of  an  age-­‐‑  and  gender-­‐‑matched  sample  of  the  general   population,   and   studied   the   association   between   HRQoL   and   background  variables   using   stepwise   linear   regression.   We   examined   the   mean   and   individual  changes  in  HRQoL  and  studied  the  association  between  the  background  variables  and  

Page 7: Health-related quality of life in patients with chronic pain

  7  

the  HRQoL  change  using  linear  and  logistic  regression  methods.    The  EQ-­‐‑5D  and  the  15D  showed  moderate  agreement,  but  the  scores  had  considerable  differences.  Both  HRQoL  instruments  were  strongly  associated  with  the  pain-­‐‑related  factors,  but  the  15D  appeared  slightly  more  sensitive  than  the  EQ-­‐‑5D  in  relation  to  the  psychosocial   factors  of   chronic  pain,   and  had  better  discriminatory  power   in  better  health  states.  The  mean  HRQoL  of  chronic  pain  patients  in  tertiary  care  was  very  low,  much  below  that  of  the  general  population  sample,  and  one  of  the  lowest  reported  by  the   15D   instrument.   The   15D   HRQoL   score   was   associated   with   measures   of  psychosocial  burden  of  chronic  pain,  but  pain  intensity  had  no  independent  predictive  value  in  HRQoL.      There  was  a  clinically  and  statistically  significant  mean  improvement  (+0.017)  in  the  15D   score   12   months   after   the   beginning   of   MPM.   Fifty-­‐‑three   per   cent   of   patients  reported  a  clinically  significant  improvement,  and  43%  a  major  improvement  in  their  15D  HRQoL  score.  However,   the  HRQoL  changes  varied  considerably,  and   the  mean  HRQoL  of  the  patients  remained  below  that  of  the  general  population  and  most  other  patient   populations.   Being   employed,   having   a   higher   education,   and   shorter   pain  duration  as  the  only  pain-­‐‑related  variable  were  associated  with  a  higher  probability  of  improvement.      The  results  demonstrate  the  validity  of  the  two  HRQoL  instruments   in  patients  with  chronic  pain;  the  widely-­‐‑used  EQ-­‐‑5D  and  the  15D.  However,   the  scores  that  the  two  instruments  produced  differed  considerably,  the  results  slightly  favouring  the  15D.  The  very   low   observed   HRQoL   underlines   the   considerable   burden   of   disease   among  patients  with   chronic   pain,   and   the   psychosocial   aspects   of   pain  were   important   in  determining  the  overall  quality  of   life.  The   large  variations   in  the  changes   in  HRQoL  after  MPM  imply  a  need  to  better  recognize  patients  who  will  or  will  not  benefit  from  the  treatment.        

Page 8: Health-related quality of life in patients with chronic pain

  8  

Tiivistelmä    Krooninen  kipu  heikentää  terveyttä  sekä  toimintakykyä  ja  siihen  liittyy  huomattavia  psykososiaalisia  ongelmia.    Kroonisen  kivun  hoito  on  haastavaa,  ja  hoitotuloksissa  on  suurta  vaihtelua.  Moniammatillinen  kivunhoito  (multidisciplinary  pain  management,  MPM)  on  nykykäsityksen  mukaan  tehokkain  kroonisen  kivun  hoitomenetelmä,  mutta  hoidosta  hyötyviä  potilaita  ei  pystytä  tunnistamaan.    Terveyteen   liittyvä   elämänlaatu   kuvaa   potilaan   kokonaisvaltaista,   itse   koettua  terveydentilaa.   Elämänlaatua   mitataan   väestötutkimuksissa   arvotetuilla  kyselylomakkeilla,   ja   sitä  voidaan  vertailla  kaikkien  eri  potilasryhmien  välillä.   Se  on  keskeinen   työkalu   hoidon   vaikuttavuuden   arvioinnissa   sekä  kustannushyötytutkimuksissa.  Vaikka   terveyteen   liittyvää  elämänlaatua   suositellaan  myös  kroonisen  kivunhoidon  vaikuttavuuden  tutkimuksissa,  eri  mittarien  validiteettia  ei  kipupotilailla  ole  vertailtu.      Tämän  väitöskirjan  tavoitteet  olivat  seuraavat:    

•   Arvioida  kahden  elämänlaatumittarin,  15D:n   ja   laajalti  käytetyn  EQ-­‐‑5D:n  validiteettia   erikoissairaanhoidon   kipuklinikalla   hoidetuilla   kroonisilla  kipupotilailla  

•   Kuvailla   terveyteen   liittyvää   elämänlaatua   suurikokoisessa,  vaikeahoitoista   kroonista   kipua   sairastavien   potilaiden   aineistossa   sekä  tutkia  sosioekonomisten  taustatekijöiden  ja  kroonisen  kivun  eri  piirteiden  yhteyttä  elämänlaatuun    

•   Kuvata   elämänlaadun   muutokset   polikliinisesti   yliopistosairaalassa  toteutetun  moniammatillisen  kivunhoitojakson  jälkeen  

•   Tunnistaa  mahdollisia  yhteyksiä  hyvän  tai  huonon  elämänlaatumuutoksen  ja  potilaiden  taustatekijöiden  välillä.    

 Väitöskirja   koostuu   kolmesta   osajulkaisusta,   jotka   on   tehty   kahden   potilasaineiston  pohjalta.  Kahden  elämänlaatumittarin,  EQ-­‐‑5D:n  ja  15D:n  validiteettia  tutkittiin  391:llä  erikoissairaanhoidon   kipuklinikalla   hoidetulla   kroonisella   kipupotilaalla.   Potilaat  vastasivat   hoitojakson   alussa   näihin   kahteen   elämänlaatukyselyyn,   ja   muilla  kyselylomakkeilla  selvitettiin  sosioekonomisia  tekijöitä,   itse  koettua  terveyttä,  kivun  voimakkuutta,   häiritsevyyttä,   masennusta,   kivun   hyväksymistä,   kipuun   liittyvää  ahdistusta  ja  uniongelmia.  Toinen  tutkimusaineisto  koostui  1528:sta  ei-­‐‑syöpäperäistä  kroonista  kipua  sairastavasta  potilaasta,  joita  hoidettiin  HYKS:n  kipuklinikalla.  Nämä  potilaat   vastasivat   15D-­‐‑elämänlaatukyselyyn   hoitojakson   alussa   sekä   uudelleen   12  kuukauden   kuluttua   hoitojakson   alusta.   Potilaat   täyttivät   myös   kipuklinikan  esitietokyselyn,   jolla   selvitettiin   kivun   luonnetta,   siihen   liittyvää   psykososiaalista  kuormittuneisuutta   ja   sosioekonomista   taustaa.   Kipuklinikan   hoitojakson   rakenne  selvitettiin  sairaalan  tilastointiohjelmasta.  Kipupotilaiden  lähtötilanteen  elämänlaatua  verrattiin   ikä-­‐‑   ja   sukupuolijakaumaltaan   vastaavan   terveen   väestön   elämänlaatuun.  Elämänlaadun,   kivun   ja   taustatekijöiden   yhteyttä   tutkittiin   lineaariregression  menetelmillä.  Elämänlaadun  muutosta  tutkittiin  keskimääräisesti  sekä  yksilötasolla,  ja  elämänlaadun   muutoksen   ja   taustatekijöiden   yhteyttä   tutkimme   lineaarisella   sekä  logistisella  regressiolla.    

Page 9: Health-related quality of life in patients with chronic pain

  9  

 Vastaavuus  EQ-­‐‑5D:n  ja  15D:n  välillä  oli  kohtalainen,  mutta  kahden  mittarin  välillä  oli  huomattavia  eroja.  Molemmat  elämänlaatumittarit  olivat  vahvasti  yhteydessä  kivun  eri  piirteitä   mittaaviin   muuttujiin,   mutta   15D   osoittautui   näihin   muuttujiin   verrattuna  hieman   herkemmäksi.   Lisäksi   15D   erotteli   tarkemmin   potilaita   paremmissa  terveydentiloissa.   Keskimääräinen   elämänlaatu   yliopistosairaalan   kipuklinikalla  hoidetuilla  potilailla  oli  hyvin  alhainen,  paljon  huonompi  kuin  verrokkiväestöllä  ja  yksi  alhaisimmista   15D-­‐‑mittarilla   raportoiduista   tuloksista.   Elämänlaatu   oli   yhteydessä  kroonisen   kivun   psykologiseen   ja   toiminnalliseen   sairaudentaakkaan,  mutta   näiden  lisäksi  kivun  intensiteetillä  ei  näyttänyt  olevan  itsenäistä  yhteyttä  elämänlaatuun.    Elämänlaadussa   havaittiin   kliinisesti   ja   tilastollisesti   merkitsevä   keskimääräinen  parantuminen   (15D-­‐‑elämänlaadun   muutos   +0,017)   12   kuukautta   hoitojakson  alkamisen   jälkeen.   53%:lla   potilaista   elämänlaadun   paraneminen   ylitti   kliinisesti  merkittävän  rajan  (+0.015),   ja  43%:lla  elämänlaadussa   tapahtui  suuri  paraneminen  (>+0.035).  35  %:lla  elämänlaatu  kuitenkin  laski  kliinisesti  merkittävästi,  ja  potilaiden  keskimääräinen   elämänlaatu   jäi   yhä  paljon   alhaisemmaksi   kuin   verrokkiväestöllä   ja  suurimmalla   osalla   muista   potilasryhmistä.   Töissä   olo,   korkeampi   koulutus   ja  lyhyempi  kivun  kesto  ennakoivat  hieman  suurempaa  elämänlaadun  kohentumista.    Tulokset  osoittavat,  että  EQ-­‐‑5D  ja  15D  ovat  valideja  elämänlaatumittareita  kroonisilla  kipupotilailla.   Nämä   mittarit   kuitenkin   tuottavat   huomattavan   erilaisia  elämänlaatutuloksia.  Kroonisilla  kipupotilailla  on  hyvin  alhainen  elämänlaatu,  ja  tähän  vaikuttaa  merkittävästi   kivusta   aiheutuva   psykososiaalinen   kuormitus.   Yksilötasolla  suuresti  vaihteleva  elämänlaadun  muutos  hoitojakson   jälkeen  korostaa,  että  meidän  tulisi  paremmin  tunnistaa  ne  potilaat  jotka  hyötyvät  (tai  eivät  hyödy)  kroonisen  kivun  hoidosta.      

   

Page 10: Health-related quality of life in patients with chronic pain

  10  

List  of  original  publications    This  thesis  is  based  on  the  following  original  publications  (Studies  I-­‐‑III)  and  some  unpublished  data.    I.   Vartiainen   Pekka,   Mäntyselkä   Pekka,   Heiskanen   Tarja,   Hagelberg   Nora,  

Mustola  Seppo,  Forssell  Heli,  Kautiainen  Hannu,  Kalso  Eija.  Validation  of  EQ-­‐‑5D  and  15D  in  the  assessment  of  health-­‐‑related  quality  of  life  in  chronic  pain,  Pain  2017  Aug;158(8):1577–85.  DOI:  10.1097/j.pain.0000000000000954  

 II.   Vartiainen  Pekka,  Heiskanen  Tarja,  Sintonen  Harri,  Roine  Risto  P.,  Kalso  Eija.  

Health-­‐‑related  quality  of  life  and  burden  of  disease  in  chronic  pain  measured  with   the   15D   instrument,   Pain   2016   Oct;157(10):2269-­‐‑76.   DOI:  10.1097/j.pain.0000000000000641    

III.   Vartiainen  Pekka,  Heiskanen  Tarja,  Sintonen  Harri,  Roine  Risto  P.,  Kalso  Eija.  Health-­‐‑related   quality   of   life   change   in   patients   managed   at   an   outpatient  multidisciplinary  pain  clinic.  Submitted  in  10.5.2018  

     

The   original   publications   are   reproduced   with   the   permission   of   their   copyright  holders.  

Page 11: Health-related quality of life in patients with chronic pain

  11  

List  of  abbreviations  

15D   The  15-­‐‑dimensional  health-­‐‑related  quality  of  life  instrument  

AAPT   ACCTION-­‐‑APS  Pain  Taxonomy  

AQoL   Australian  Quality  of  Life  Instrument  

BDI   Beck  Depression  Inventory    

BNSQ   Basic  Nordic  Sleep  Questionnaire    

BPI   Brief  Pain  Inventory  

CBT   Cognitive-­‐‑Behavioural  Therapy  

CI   Confidence  Interval  

CPAQ   Chronic  Pain  Acceptance  Questionnaire  

DALY   Disability-­‐‑Adjusted  Life  Year  

EQ-­‐‑5D   Euro-­‐‑QoL  5-­‐‑dimensional  health-­‐‑related  quality  of  life  instrument  

EQ-­‐‑5D-­‐‑3L   EQ-­‐‑5D   questionnaire   with   three   levels   of   severity   in   each  dimension  

EQ-­‐‑5D-­‐‑5L   EQ-­‐‑5D  questionnaire  with  five  levels  of  severity  in  each  dimension  

EQ-­‐‑VAS   Visual  analogue  scale  on  quality  of  life,  used  as  a  reference  for  the  EQ-­‐‑5D    

ES   Effect  Size  

FM   Fibromyalgia  

HRQoL     Health-­‐‑Related  Quality  of  Life  

IASP   International  Association  for  the  Study  of  Pain  

IBS   Irritable  Bowel  Syndrome  

ICD   International   Statistical   Classification   of   Diseases   and   Related  Health  Problems  

IMMPACT   Initiative  on  Methods,  Measurement  and  Pain  Assessment  in  Clinical  Trials  

ISOQOL   International  Society  for  Quality  of  Life  Research  

LBP   Low  Back  Pain  

MID/MIC   Minimum  Important  Difference/Minimum  Important  Change  

MPM   Multidisciplinary  Pain  Management  

MRI   Magnetic  Resonance  Imaging  

NICE   National  Institute  for  Health  and  Care  Excellence  

Page 12: Health-related quality of life in patients with chronic pain

  12  

     

NRS   Numeric  Rating  Scale  

OR   Odds  Ratio  

PAG   Periaqueductal  Gray  

PASS   Pain  Anxiety  Symptoms  Scale  

PB   Parabrachial  nucleus  

PTSD   Post-­‐‑Traumatic  Stress  Disorder  

QALY   Quality-­‐‑Adjusted  Life  Years  

RA   Rheumatoid  Arthritis  

RCT   Randomized  Controlled  Trial  

RVM   Rostral  Ventral  Medulla  

SD   Standard  Deviation  

SEM   Standard  Error  of  Mean  

SF-­‐‑12   Shortened,  12-­‐‑item  version  of  the  SF-­‐‑36  

SF-­‐‑36   The  36-­‐‑Item  Short  Form  Health  Survey  

SG   Standard  Gamble  

TMD   Temporomandibular  Disorder  

TTO   Time  Trade-­‐‑Off  

VAS   Visual  Analog  Scale  

VRS   Verbal  Rating  Scale  

WHO   World  Health  Organization  

WTP   Willingness-­‐‑to-­‐‑Pay  

YLD   Years  Lived  with  Disability  

YLL   Years  of  Life  Lost  

   

Page 13: Health-related quality of life in patients with chronic pain

  13  

Introduction    Chronic  pain  poses  a  great  burden  on  individuals  and  is  a  serious  problem  to  modern  society.  It  is  associated  with  impaired  health  and  functioning.  Its  pathogenesis  is  poorly  understood,   and   consequently,   its   treatment   often   symptomatic.   Many   treatment  modalities  have  emerged,  but  their  efficacy  remains  modest  at  best.      The   gold   standard   of   chronic   pain   treatment   is  multidisciplinary   pain  management  (MPM).   However,   trials   of   chronic   pain   management   usually   suffer   from   extensive  heterogeneity  in  their  study  designs  and  outcomes.  Thus,  these  studies  are  generally  not  comparable  with  each  other,  and  our  knowledge  of  the  efficacy  of  pain  management  programmes   remains   limited   (Scascighini   et   al.,   2008).   Moreover,   the   treatment  outcomes   observed   in   chronic   pain   management   trials   vary   greatly,   most   patients  achieving  either  a  major  benefit  or  no  benefit  at  all  (Heiskanen  et  al.,  2012;  Moore  et  al.,  2014).  We  still  do  not  know  what  makes  MPM  superior  to  other  forms  of  treatment,  or  which  patients  benefit  from  it.      Health   care   interventions  must   be   proven   effective.   The   gold   standard   of   evidence-­‐‑based  medicine,   the   randomized  controlled   trial   (RCT)   study   setting,   is  not  without  limitations,   and   it  may  not  be  applicable   to  all   research  questions.  For  example,   the  external  validity  of  RCT  results  can  sometimes  be  questioned,  as  the  real-­‐‑world  clinical  environment   in  which   the   treatments  are  provided   is  not  necessarily  an   ideal  study  setting.  (Frieden,  2017;  Rothwell,  2005)  It   is  important  that  we  also  critically  assess  the  efficacy  of  health  care  interventions  in  this  real-­‐‑world  setting.    Health-­‐‑related   quality   of   life   (HRQoL)   measurement   aims   to   capture   the  comprehensive,  subjective  health  of  patients.  It  encompasses  various  aspects  of  health  and   combines   them   into   an   index   that   reflects   the  patient's  health   state   against   the  preferences  of  a  healthy  population.  It  has  many  advantages  that  make  it  an  appealing  outcome  measure  for  chronic  pain  management.  It  is  subjective,  comparable  across  all  patient   groups   and   treatments,   and   it   facilitates   cost-­‐‑effectiveness   studies.   The  measurement  of  HRQoL  is  recommended  in  trials  of  chronic  pain  management  (Turk  et  al.,  2003)  as  well  as  in  trials  assessing  MPM  (Kaiser  et  al.,  2018).  However,  different  HRQoL   instruments   have   produced   differing   results   among   chronic   pain   patients  (Lillegraven  et  al.,  2010;  Torrance  et  al.,  2014),  as  well  as  among  other  patient  groups  (Hawthorne  et  al.,  2001;  Richardson  et  al.,  2011).  This  has  brought  to  attention  the  fact  that   the   properties   of   different  HRQoL   instruments,   such   as   validity,   have  not   been  studied  among  chronic  pain  patients  (Schofield,  2014).      We  conducted  the  present  study  to  acquire   information  on  the  properties  of  HRQoL  instruments  in  treating  chronic  pain  patients,  to  study  the  effect  of  pain  on  HRQoL,  and  to  estimate  changes  in  HRQoL  after  MPM.      

Page 14: Health-related quality of life in patients with chronic pain

  14  

Review  of  the  literature    

Definition  of  pain    Pain  is  the  flagship  of  unpleasantness.  The  sensation  has  evolved  to  teach  us  to  avoid  harmful  situations;  for  example,  not  to  use  a  broken  limb  in  order  to  give  it  time  to  heal.  To  make  us  remember  the  lesson,  pain  sensation  is  accompanied  by  strong,  negative  emotions.  Physiologically,  pain  signals  tissue  injury  or  a  threat  of  such  and  encourages  withdrawal  from  painful  situations.  Another  function  of  pain  is  to  facilitate  the  healing  of   a   tissue   injury,   by  making   us   avoid   the   use   of   the   injured   site.   The   International  Association   of   the   Study   of   Pain   (IASP)   defines   pain   as   ‘an   unpleasant   sensory   and  emotional  experience  associated  with  actual  or  potential  tissue  damage,  or  described  in  terms  of  such  damage’  (1994).  In  other  words,  the  experience  of  pain  is  our  brain’s    meaningful  reaction  to  signals  of  tissue  damage.      Normal  pain  sensation    The   typical   pathway   from   painful   stimulus   to   pain   experience   can   be   divided   into  transduction,   transmission,   modulation,   and   perception.   Transduction   implies   the  activation   of   peripheral   primary   afferent   nerve   fibres.   The   activation   of   these  nociceptors   can   be   caused   by  mechanical   or   chemical   energy   (such   as   pressure   or  heat),   or   by   inflammation-­‐‑signalling   molecules   released   by   injured   cells.   The  nociceptors  discharge  action  potentials  in  response  to  these  stimuli,  the  rate  of  which  correlates   to   the   intensity  and  duration  of   the  noxious  stimulus.  Nociceptors  have  a  certain  threshold  of  activation,  and  normally  only  produce  action  potentials  when  the  intensity   of   a   potentially   noxious   stimulus   crosses   this   threshold.   Nociceptors   are  classified   into   two   major   groups,   A-­‐‑delta   fibres   and   C   fibres.   A-­‐‑delta   fibres   are  myelinated,  and   transmit  signals  of  acute,  well   localized  pain  sensation.  C   fibres  are  unmyelinated,  and  they  convey  poorly  localized,  slow  pain  signals.    The  nociceptors  synapse   in   the  dorsal  horn  of   the  spinal  cord.  There,   the  secondary  neurons  transmit  the  pain  signal  towards  the  thalamus  and  somatosensory  cortex,  but  in  the  central  nervous  system  the  pain  signal  is  subject  to  significant  modulation  and  interpretation.   A   classic   example   of   this   modulation   is   the   gate-­‐‑control   theory  (originally   proposed   by   Melzack   and   Wall,   1965),   which   suggests   that   the  transmission  from  the  primary  afferent  neurons  to  the  spinal  cord  is  modulated  at  the  spinal  cord  level,  more  accurately,  in  the  substantia  gelatinosa  of  the  dorsal  horn.  This  gating  mechanism  is  controlled  by,  for  example,  the  activity  of  somatosensory  fibres:  nociceptive  fibre  activity  opening  the  gate,  and  non-­‐‑nociceptive  fibre  activity  closing  it.  In   practice,   the   theory   implies   that   a   non-­‐‑nociceptive   stimulus,   such   as   touch,   can  inhibit  pain  sensation.  This  modulation  can  be  produced  by  a  multitude  of  pathways,  and  can  be  either  inhibitory  or  excitatory.      The  role  of  modulation  of  the  pain  signal  has  been  studied  by  functional  imaging  of  the  brain   (e.g.   positron   emission   tomography,   PET)   and   simultaneous   pain   stimulation.  The  number  of  neurons  activated  in  areas  processing  the  affective  component  of  pain  

Page 15: Health-related quality of life in patients with chronic pain

  15  

after   pain   stimulus  has   shown   to  be   smaller   among   subjects  who  know   to   expect   a  painful  stimulus  than  among  those  who  are  unaware  of  it.  If  the  attention  of  a  subject  is  focused  on  something,  the  number  of  neurons  activated  in  these  areas  is  smaller.    In  laboratory  experiments  on  acute  pain,  the  intensity  of  stimulus  has  correlated  fairly  well   with   experienced   pain   intensity.   Outside   experimental   laboratories,   the  mechanism   that   causes   pain   (e.g.   a   surgical   procedure)   and   the   experienced   pain  intensity   varies   substantially   among   individuals.   In   chronic   pain,   this   difference   in  intensity   among   individuals   is   even   more   pronounced.   Even   everyday   experience  shows   that   psychological   factors   such   as   intense   concentration   in   a   competitive  situation,  or  fear,  can  profoundly  affect  pain  perception.    The  brain  areas  identified  in  the  descending  modulation  include  periaqueductal  grey  matter  (PAG),  the  nucleus  raphe  magnus  and  the  nearby  formatio  reticularis,  and  locus  coeruleus  in  the  tegmentum.  Endogenous  opioids,  serotonin,  noradrenalin  and  gamma-­‐‑aminobutyric   acid   (GABA)  are   involved   in   the  neurotransmission  of   the  descending  modulatory  signals  (Millan,  2002).  For  a  review  on  the  modulation  mechanisms  at  the  spinal  level,  see  (Todd,  2010),  and  for  supraspinal  mechanisms,  see  (Apkarian  et  al.,  2005).      Painful   stimuli,   such   as   trauma   or   surgery,   also   trigger   various   autonomic   and  endocrine  responses,  which  include  the  activation  of  the  sympathetic  nervous  systen,  and   the   release   of   e.g.   catecholamines   and   cortisol.   This   produces   well-­‐‑recognized    responses  such  as  an  increase  in  blood  pressure  and  heart  rate,  and  they  may  affect  the  recovery  from  the  trauma  or  surgery.  These  mechanisms,  and  the  effect  of  anaesthesia  on  them,  are  reviewed  by  (Desborough  et  al.,  2000).  However,  the  magnitude  of  these  mechanisms  does  not  necessarily  correlate  with  the  intensity  ratings  of  postsurgical  pain  (Ledowski,  2012).      The  interpretation  of  pain  experience  involves  many  brain  regions  and  pathways.  The  spinothalamic   tract   conveys   signals   of   nociception   from   the   spinal   cord   to   the  thalamus.  This  is  especially  relevant  in  the  perception  of  acute  pain  and  its  sensory-­‐‑discriminative   component.   The   somatosensory   cortex   is  mainly   responsible   for   the  sensory-­‐‑discriminative  component.  Pain  experience  also  has  many  other  components:  for  example,  acute  pain  evokes  negative  emotions  and  possibly  results  in  behavioural  changes  in  the  organism  experiencing  pain.  The  concept  of  the  pain  matrix  refers  to  the  several   interconnected   neural   networks   involved   in   pain   processing.   This   involves  several  levels  of  processing:    the  nociceptive  matrix  is  responsible  for  nociception  and  receives   input   from   spinothalamic   projections.   Second-­‐‑order   processing   is   not  nociceptive-­‐‑specific,   but   involves   a   conscious   perception   of   pain,   attentional  modulation  and  control  of  vegetative  reactions,  involving  areas  such  as  the  posterior  parietal,   prefrontal   and   anterior   insular   cortices.   Third-­‐‑order   areas,   such   as   the  orbitofrontal  and  perigenual/limbic  networks  can  further  mediate  the  effect  of  one's  beliefs,  emotions  and  expectations  concerning  the  pain  experience  (Garcia-­‐‑Larrea  and  Peyron,  2013).      

Page 16: Health-related quality of life in patients with chronic pain

  16  

Some  brain  areas  and  connections  involved  in  the  processing  of  a  pain  signal.  It  must  be  noted  that  the  image  is  a  gross  simplification,  and  in  reality  many  more  connections  and  areas  are  involved  in  the  pain  experience.      Blue  signal   indicates  an   incoming  pain  signal   from  the  spinal  cord  via   the  spinothalamic  tract   that   is   transmitted   to   the   somatosensory   cortex,   and   contributes   to   the   sensory-­‐‑discriminative   component   of   the   pain   experience.   Green   indicates   the   brain   areas   and  networks  involved  in  the  secondary  processing  of  pain  signal,  such  as  behavioural  changes  or   attentional  modulation,   that   are   not   nociceptive-­‐‑specific.   Red   indicates   the   signals   of  descending  modulation  of  pain,  that  can  be  either  facilitative  or  inhibitory.    RVM  =  Rostral  Ventral  Medulla;  PB  =  Parabrachial  Nucleus;  PAG  =  Periaqueductal  grey;  S1,  S2  =  Primary  &  secondary  somatosensory  cortices    The  image  is  based  on  the  illustration  "Skull  and  brain  sagittal.svg"  by  Patrick  J.  Lynch  and  C.  Carl  Jaffe  (https://commons.wikimedia.org/wiki/File:Skull_and_brain_sagittal.svg).  The  original  image  is  licensed  under  CC  BY-­‐‑SA  2.5          

Amygdala

Thalamus

Descending1modulation1 (+1/17)Pain1signal

Page 17: Health-related quality of life in patients with chronic pain

  17  

Definition  of  chronic  pain    The   role   of   the   pain   experience   in   facilitating   an   organism's   survival   is   clear   -­‐‑   pain  should  teach  us  to  avoid  harmful  situations.  However,  chronic  pain  seems  to  provide  no  benefit  at  all  for  an  organism's  survival  or  adaptation.  Generally,  pain  is  considered  chronic  when  it  persists  for  more  than  the  normal  time  for  tissue  healing.  For  the  new  ICD-­‐‑11  coding  tool  for  diagnoses,  the  Task  Force  for  the  Classification  of  Chronic  Pain,  set  up  by  the  IASP,  has  defined  pain  as  chronic  if  it  lasts  for  over  three  months  (Treede  et  al.,  2015).        

Classification  of  chronic  pain    A   ‘Chronic  pain’   category  has  been  proposed   for   the  new   ICD-­‐‑11  classification.  This  category   is   divided   into   seven  major   groups:   (1)   chronic   primary   pain,   (2)   chronic  cancer  pain,  (3)  chronic  post-­‐‑traumatic  and  post-­‐‑surgical  pain,  (4)  chronic  neuropathic  pain,  (5)  chronic  headache  and  orofacial  pain,  (6)  chronic  visceral  pain,  and  (7)  chronic  musculoskeletal  pain  (Treede  et  al.,  2015).    Other  approaches  to  classification  have  also  been  proposed.  The  Analgesic,  Anesthetic,  and  Addiction   Clinical   Trial   Translations,   Innovations,   Opportunities,   and  Networks  (ACTTION)  public-­‐‑private  partnership  with  the  US  Food  and  Drug  Administration  and  the  American   Pain   Society   (APS)   have   published   the  ACTTION-­‐‑APS   Pain   Taxonomy  (AAPT).  The  aim  of  AAPT  is  to  create  an  evidence-­‐‑based  approach  to  classifying  and  diagnosing  major  chronic  pain  conditions  (Dworkin  et  al.,  2016).    The  AAPT  suggests  the  following  classification  for  chronic  pain  conditions.  Listed  are  the  specific  chronic  pain  conditions  for  which  the  AAPT  has  diagnostic  criteria.  They  do  not  cover  all  the  chronic  pain  conditions  that  occur  within  the  categories:      

Page 18: Health-related quality of life in patients with chronic pain

  18  

 

Peripheral  nervous  system  

Complex  regional  pain  syndrome  Painful  peripheral  neuropathies  Postherpetic  neuralgia  Post-­‐‑traumatic  neuropathic  pain,  including  pain  after  surgery  Trigeminal  neuralgia  

Central   nervous  system  

Pain  associated  with  multiple  sclerosis  (MS)  Post-­‐‑stroke  pain  Spinal  cord  injury  pain  

Spine  pain   Chronic  axial  musculoskeletal  low  back  pain  Chronic  lumbosacral  radiculopathy  

Musculoskeletal  pain  

Fibromyalgia  and  chronic  myofascial  and  widespread  pain  Gout  Osteoarthritis  Rheumatoid  arthritis  Spondyloarthropathies  

Orofacial   and  head  pain  

Headache   disorders   (See   International   Classification   of  Headache  Disorders)  Temporomandibular  disorders  

Abdominal,  pelvic   and  urogenital  pain  

Interstitial  cystitis  Irritable  bowel  syndrome  Vulvodynia  

Disease-­‐‑associated   pain  not   classified  elsewhere  

Pain  associated  with  sickle-­‐‑cell  disease  Pain   associated   with   cancer:   cancer-­‐‑induced   bone   pain,  chemotherapy-­‐‑induced   peripheral   neuropathy,   and  pancreatic  cancer  pain  

 Table  modified  from  Dworkin  et  al.,  2016.    The  AAPT  has  also  developed  a  multidimensional  framework  that  can  be  assessed  in  all  chronic  pain  conditions  (Dworkin  et  al.,  2016).  The  dimensions  are:    

•   Core  diagnostic  criteria  •   Common  features  (that  are  not  included  in  the  core  diagnostic  criteria)  •   Common  medical  and  psychiatric  comorbidities  •   Neurobiological,  psychosocial  and  functional  consequences  •   Putative  neurobiological  and  psychosocial  mechanisms,  risk   factors,  and  

protective  factors    It   has   been   increasingly   noted   that   many   common   chronic   pain   conditions   do   not  manifest  alone;  they  frequently  coexist  in  patients.  These  conditions  include,  but  are  not  limited  to,  temporomandibular  disorder  (TMD),  fibromyalgia  (FM),  irritable  bowel  syndrome   (IBS),   vulvodynia,   chronic   fatigue   syndrome,   interstitial   cystitis/painful  bladder  syndrome,  endometriosis,  chronic  tension-­‐‑type  headache,  migraine  headache,  and  chronic   lower  back  pain   (Maixner  et  al.,  2016).  Although   these  conditions  have  multifactorial   aetiologies   and   diverse   clinical   manifestations,   they   share   many  

Page 19: Health-related quality of life in patients with chronic pain

  19  

characteristics,   such   as   a   high   prevalence   of   comorbid   symptoms   including   fatigue,  sleep  impairment,  problems  with  cognition,  physical  dysfunction,  and  disturbances  in  affect  (e.g.  anxiety,  anger,  depression).  The  definitions  of  these  syndromes  also  overlap,  and   many   patients   may   fulfil   the   criteria   for   several   conditions.   Traditionally,   the  significant   overlap   in   chronic  pain   conditions  has  not  been  paid   sufficient   attention  during  patient  recruitment  for  clinical  trials.  Maixner  and  colleagues  have  summarized  the   theory,   mechanisms   and   implications   of   chronic   overlapping   pain   conditions  (Maixner  et  al.,  2016).      

Biopsychosocial  model      Historically,  chronic  pain  was  seen  as  a  simple  pathological  process,   the   intensity  of  which  was  linearly  dependent  on  the  extent  of  tissue  damage,  and  which  could  be  fixed  with  medication  or  surgery  (Jensen  and  Turk,  2014).  If  pain  was  not  ‘organic’,  it  was  deemed   ‘psychogenic’   or   ‘functional’.   Any   psychological   factors   assessed   were  regarded   as   underlying   mechanisms   or   causal   factors,   i.e.,   something   that   caused  psychogenic   pain.   The   prevailing   view,   however,   is   that   chronic   pain   is   a   complex,  multidimensional  problem,  and  the  biopsychosocial  model  of  chronic  pain  describes  chronic  pain   as   a  dynamic   interaction  of   related  biological,   psychological   and   social  processes.    Pain  experience  and  its  impact  is  a  combination  of  somatic  input  (e.g.  pain  stimulus),  psychological  processes  (e.g.  beliefs,  coping  strategies  and  mood),  and  environmental  factors  (i.e.,  social  contexts  associated  with  significant  others,  community  or  cultural  rules  and  expectations,  occupational  aspects).  All  these  aspects  also  interact  with  each  other.  Rather  than  direct  causative  agents,  cognitive,  psychological,  and  social  factors  are  also  seen  as  mediators  that  influence  pain  experience  and  behaviour  (Fillingim  et  al.,  2016;  Gatchel  et  al.,  2007;  Turk  et  al.,  2016).      The  biopsychosocial  model   is  widely  accepted  and   supported,   although  not  without  criticism.  It  has  been  criticized  as  being  rather  vague  and  wide-­‐‑ranging,  and  as  failing  to  provide  concrete  concepts  of  the  connections  between  the  biological,  psychological  and  social  aspects   (Blyth  et  al.,  2007;  Edwards  et  al.,  2016).  Weiner  argues   that   the  model  may   place   too  much   emphasis   on   psychological   factors,   especially  when   the  underlying  pathology  is  not  clearly  defined  (Weiner,  2008).  Also,  according  to  Blyth  et  al.,   the   social   aspects   and   the   interaction   of   social,   psychological   and   behavioural  factors  have  been  paid  little  attention  (Blyth  et  al.,  2007).    It  should  also  be  noted  that  psychological   factors   such   as   fear   and   anxiety   caused   by   pain   are   often   normal  reactions,  also  observable  in  healthy  populations.  These  various  psychological  factors  in  chronic  pain  are  outlined  later.    

Page 20: Health-related quality of life in patients with chronic pain

  20  

   The  graph   lists   factors   that  are  associated  with   chronic  pain  and  pain-­‐‑related  disability.  According  to  current  understanding  and  the  biopsychosocial  model,  all  of  these  factors  are  in  interaction  with  each  other  in  contributing  to  chronic  pain  problem.      

Overview  of  biological  mechanisms  of  chronic  pain    The  mechanisms  and  functions  of  acute  pain  are  rather  well  understood  in  comparison  to   those   that   cause   chronic   pain.   The   pathology   behind   chronic   pain   may   be  everywhere  in  the  sensorineural  pathway,  and  various  sensory  mechanisms  contribute  to   the   development   of   chronic   pain,   depending   on   the   underlying   cause   or   disease.  Many  of  the  pathological  mechanisms  that  cause  chronic  pain  are  unknown.    

Biological(mechanisms Psychological(constructs Social(aspects

Chronic(pain

Peripheralmechanisms6 injury6 sensitization

Immunologicalmechanisms6 glial function6 neuroinflammation6 low6grade systemicinflammation?

Central3mechanisms6 Central(sensitization6 Descending(modulation6 Learning(and(rewardnetworks

Genetic3factors

Sleep

Personality3traits Sociodemographic

factors

Social3relations

Early3life3events

Work=related3factors

Depression

Catastrophizing

Vulnerability(traits

Self=efficacy,3resilience

Acceptance

Cognitive3flexibility

Protective(traits

Copingmechanism

Distress,3pain=related3fear

Page 21: Health-related quality of life in patients with chronic pain

  21  

Peripheral  mechanisms    When  tissue  injury  or  inflammation  occurs,  chemical  signalling  molecules  released  by  the  damaged  cells  sensitize  and  activate  the  peripheral  nociceptors.  The  sensation  of  pain   is   heightened,   and   pain   threshold   is   lowered   by   this   sensory   change   called  hyperalgesia.   In  allodynia,  normally  non-­‐‑painful   stimuli,   such  as   soft   touch  or  mild  heat,  can  be  interpreted  as  painful.  These  changes  in  pain  signalling  and  perception  can  be  caused  by  prolonged  inflammation,  and  inflammatory  diseases  such  as  rheumatoid  arthritis  are  a  common  cause  of  chronic  pain.  Allodynia  can  also  occur  with  damage  to  peripheral   nerves,   either  mechanical   or   biochemical.   Often   but   not   always,   sensory  abnormalities  follow  the  anatomical  pattern  of  the  injured  nerves.    There   are  many   possible   aetiologies   for   chronic   pain   from   peripheral   nerve   injury.  Peripheral  nerve  injury  may  occur  as  a  result  of  metabolic  changes  or  diseases.  One  of  the  most  common  peripheral  neuropathies   is  diabetic  peripheral  neuropathy.  When  the  elevation  of  blood  glucose   levels   is  prolonged,  nerve  cells   suffer  and  die.  A  high  blood  glucose  level  is  directly  toxic  to  nerve  cells,  but  this  toxicity  is  also  mediated  via  microvascular  changes  in  the  capillaries  that  nurture  the  nerve  cells.  Manual  workers’  prolonged  exposure  to  hand-­‐‑transmitted  strong  vibrations  may  also  cause  neuropathic  changes.   Prolonged   compression   of   a   nerve   may   in   turn   cause   local   ischemia   and  demyelination  and  death  of  the  axons.  Toxins  such  as  alcohol  or  certain  chemotherapy  agents,  can  also  cause  polyneuropathy.    However,  not  all  patients  with  damaged  nerves  develop  chronic  pain.  The  incidence  of  disabling  chronic  pain  after  an  operation  is  estimated  to  be  2–10%,  depending  on  the  operation,  and  nerve  injury  alone  is  not  sufficient  for  the  development  of  a  chronic  pain  condition  (Kehlet  et  al.,  2006).  More  intense  pre-­‐‑amputation  pain  increases  the  risk  for   severe   phantom   limb   pain   (Jensen   et   al.,   1985),   and   the   intensity   of   acute  postoperative  pain  is  associated  with  a  risk  of  severe  chronic  postoperative  pain  (Katz  et  al.,  1996;  Tasmuth  et  al.,  1996).  The  risk  factors  for  chronic  pain  after  nerve  injury  have  been  identified,  and  many  are  psychosocial  in  nature  (Katz  et  al.,  2009;  Kehlet  et  al.,  2006).  Meretoja  et  al.  have  developed  a  prognostic  model  for  predicting  the  risk  of  persistent  pain  after  a  breast  cancer  operation.  Pain   in   the  operative  area  prior   to  operation,  high  body  mass  index,  axillary  lymph  node  dissection,  and  more  severe  acute   postoperative   pain   intensity   on   the   seventh   postoperative   day   were  independently  associated  with  the  risk  of  persistent  pain  (Meretoja  et  al.,  2017).      Central  mechanisms    Hyperalgesia   and   allodynia   can   also   be   caused   by   processes   involving   the   central  nervous  system,  and  such  changes  are  part  of  normal  pain  perception.  In  a  burn  injury,  for   example,   primary   hyperalgesia   occurs   in   the   damaged   area,   but   the   sensation  surrounding  the  immediate,  injured  site  also  becomes  sensitized.  The  development  of  a  neuropathic  pain   condition   involves   changes   in  peripheral   and   central  pathways,  even   though   it   may   have   originated   from   a   purely   peripheral   process.   Primary  

Page 22: Health-related quality of life in patients with chronic pain

  22  

hyperalgesia   in   the   affected  area   is  mainly  mediated  by  C   fibres,   and   secondary  hyperalgesia  by  sensitized  A-­‐‑delta  and  A-­‐‑beta  fibres.    Many  chronic  pain  conditions  are  described  according  to  their  anatomical  location,  but  certain  syndromes  present  pain  in  multiple  body  locations.  FM  is  a  condition  in  which  the  primary  complaint   is  widespread  chronic  pain   in  various  parts  of   the  body.   It   is  often   accompanied   by   chronic   fatigue,   psychological   disorders,   sleep  problems,   and  impaired  cognitive  processes.  FM  is  also   included   in   the   list  of   frequently  coexisting  pain  conditions.  Local  musculoskeletal  pain  is  the  most  significant  risk  for  developing  widespread  pain  (Markkula  et  al.,  2016).      Chronic  pain  may  also  be  central  in  origin.  A  striking  example  of  this  is  central  post-­‐‑stroke   pain,   occurring   in   approximately   10%   of   stroke   patients.   Stroke   in   the  spinothalamocortical  network  predisposes  to  post-­‐‑stroke  pain.  It  may  manifest  months  after  the  initial  stroke,  and  is  accompanied  by  diverse  sensory  abnormalities  (Kumar  et  al.,  2009).    Most  often,  no  clear  known  neurologic  pathology  can  be  demonstrated  in  chronic  pain  conditions.  The  descending  modulatory  mechanisms  of  pain  sensation  have  shown  to  function  differently  in  chronic  pain  states.  For  example,  the  activation  of  descending  pain  facilitator  networks  is  accepted  as  a  contributor  to  chronic  pain  (Heinricher  et  al.,  2009).  Central  sensitization  refers  to  the  activation  of  the  neurons  responsible  for  pain  experience  as  a  result  of  a  previous  subthreshold  stimulus,  and  is  a  contributor  to  pain  hypersensitivity  and  alterations  in  pain  perception  in  chronic  pain  states  (Latremoliere  and  Woolf,  2009).  In  other  words,  central  sensitization  represents  an  increased  gain  of  the  pain  perception  system.   It   is  a  normal  physiological   change  after   injury,  but   the  same  mechanisms  have  also  shown  to  be  activated  in  chronic  pain  states  (Latremoliere  and  Woolf,  2009),  and  they  contribute  to  the  development  of  chronic  widespread  pain  (Meeus  and  Nijs,  2007).  The  mechanisms  of   central   sensitization  are  described   in  a  review  by  Latremoliere  and  Woolf  (Latremoliere  and  Woolf,  2009).      In  a  follow-­‐‑up  study  of  patients  with  subacute  low  back  pain  (LBP),  those  still  in  pain  after  six  months  had  stronger  connections  between  nucleus  accumbens  and  the  frontal  cortex   already   in   the   subacute   phase,   indicating   the   involvement   of   learning   and  reward  systems  in  the  development  of  chronic  pain  (Baliki  et  al.,  2012).  Functional  MRI  studies   have   also   shown   that   the   representation   of   pain   shifts   from   sensory   to  emotional   circuits   as   LBP   becomes   chronic   (Hashmi   et   al.,   2013).   The   psychosocial  factors  in  the  development  of  chronic  pain  are  important,  and  will  be  covered  in  more  detail  in  the  following  sections.      Immunological  mechanisms    Immunological   mechanisms   appear   to   play   a   role   in   the   development   of   many  chronic  pain  states.  Perhaps  the  best-­‐‑known  example  is  postherpetic  neuralgia.  In  this  condition,   the  Varicella  Zoster  Virus  (VZV),  which  resides   in   the  dorsal  root  ganglion,   reactivates,   and   the   infection  or   the   resulting   immunological   response  

Page 23: Health-related quality of life in patients with chronic pain

  23  

leads  to  damage   in  the  nerve  cells.  Clinical  presentation   includes  persisting  pain  and   altered   sensory   perception   in   the   respective   dermatome   area   (Kinchington  and  Goins,  2011).  Autoantibodies  against  voltage-­‐‑gated  potassium  channels  have  shown   to  associate  with  an   increased  excitability  of   the  nerves   involved   in  pain  signalling,  increasing  pain  sensitivity.  Prolonged  local  inflammation  is  a  significant  contributor  to  chronic  pain  in,  for  example,  rheumatoid  arthritis.  Recent  research  has  explored  the  role  of  inflammatory  mechanisms  in  the  CNS  in  the  development  of  chronic  pain.  A  higher  concentration  of  inflammatory  proteins  in  cerebrospinal  fluid  and  plasma  has  been  measured  in  patients  with  FM  than  in  healthy  controls  (Bäckryd  et  al.,  2017a).  Similarly,  patients  with  neuropathic  pain  had  higher  levels  of  several  inflammatory  chemokines  and  proteins  than  healthy  controls  (Bäckryd  et  al.,  2017b).  High  body  mass  index  (BMI)  is  associated  with  many  chronic  pain  conditions,  and  one  proposed  mechanism  is  the  systemic  low-­‐‑grade  inflammation  observed  in  those  with  high  BMI  (Oddy  et  al.,  2018).    The  role  of  the  central  nervous  system’s  glial  cells  (astrocytes,  microglia)  in  chronic  pain   has   also   been   studied.   These   cells   are   known   to,   for   example,   release  inflammatory   cytokines,   and   glial   activation   is   associated   with   pathological  inflammatory   changes   such   as   neuronal   hyperexcitability,   neurotoxicity   and  chronic   inflammation.   However,   the   role   of   glial   cells   can   also   be   protective,  releasing   anti-­‐‑inflammatory   molecules   or   clearing   out   debris   and   facilitating  recovery.  Glial  conditioning,  as  well  as  the  type  of  stimulus,  has  been  suspected  to  mediate   in  whether   the   response   of   these   support   cells   is   beneficial   or   harmful  (Milligan  and  Watkins,  2009).      

Psychosocial  factors  associated  with  chronic  pain    Although   the   pathogenesis   of   chronic   pain   may   vary   substantially,   and   not   all  pathophysiological  mechanisms   are   understood,  many   risk   factors   for   developing   a  chronic  pain  condition  have  been  identified.      The  term  ‘yellow  flags’  was  originally  invented  by  Kendall  et  al.  (Kendall  et  al.,  1997).  It  refers  to  the  psychological,  social  and  environmental  factors  that  raise  the  risk  for  increased  or  prolonged  disability  after  musculoskeletal  symptoms.  Originally,  the  term  referred  to  all  risk  factors  deemed  to  be  of  a  psychosocial  nature,  but  the  risk  factors  may  also  be  divided   into  psychological   and   social/environmental   factors   (Main   and  Burton,  2000).  Targeting   these  yellow  flags   in   interventions  seems  to  predict  better  outcomes  than  not  taking  them  into  account  when  directing  interventions  (Nicholas  et  al.,  2011).    In  their  review  article,  Blyth  et  al.  also  discuss  the  use  of  the  term  ‘psychosocial  risk  factors’  (Blyth  et  al.,  2007).  They  imply  that  the  current  use  of  this  term  in  the  literature  is   extensive   and   heterogeneous,   and   that   the   precise   factors   and   mechanisms   that  contribute  to  these  risks  are  not  very  consistent.  They  also  suggest  that  interventions  targeting  psychosocial  factors  are  not  systematic  across  studies,  and  that  social  aspects  

Page 24: Health-related quality of life in patients with chronic pain

  24  

have  perhaps  been  overlooked.  They  call  for  a  more  rigorous  definition  of  psychosocial  risk   factors,   so   that   testable   hypotheses   can   be   created,   and   the   factors   can   be  measured  more  accurately.      However,  a  plethora  of  research  has  underlined  the  significance  of  psychological  and  social  factors  in  chronic  pain.  In  general,  psychosocial  measures  predict  pain-­‐‑related  disability  or  impaired  quality  of  life  better  than  pain  intensity  (Edwards  et  al.,  2016;  Lamé  et  al.,  2005).  Depressive  symptoms,  as  well  as  catastrophizing,  are  associated  with   various   outcomes   of   pain   and   its   treatment.   A   variety   of   pathways,   from  cognitive   to   behavioural   to   neurophysiological,   seem   to  mediate   these   negative  effects   (Edwards   et   al.,   2011).   Psychosocial   factors   are   also   important   in   the  development  of  chronic  pain;  for  example,  after  a  motor  vehicle  collision,  psychological  factors  predict   a  new  onset   of   chronic  widespread  pain   (Wynne-­‐‑Jones   et   al.,   2006).  Psychosocial  factors  are  also  important  for  the  comprehensive  welfare  of  patients,  as  changes  in  pain  beliefs  and  coping  have  been  associated  with  concurrent  changes  in  their  functioning,  when  pain  intensity  levels  have  stayed  the  same  (Jensen  et  al.,  2007).      Fear-­‐‑avoidance  model    How  does  pain  become  chronic?  The   fear-­‐‑avoidance  model  describes   the  process   in  individuals  who,  after  the  onset  of  acute  pain,  develop  chronic  pain  via  a  vicious  cycle  of  disability  and  related  psychosocial  processes.  It  was  originally  presented  by  Vlaeyen  et  al.,  (1995),  and  has  since  been  reviewed  and  updated.  (Crombez  et  al.,  2012;  Leeuw  et  al.,  2007;  Vlaeyen  and  Linton,  2000).      The  starting  point  of  the  cycle  is  the  pain  experience  rather  than  an  attempt  to  specify  what  causes  the  pain  -­‐‑  a  pain  stimulus  is  only  one  possible  aetiology.  A  key  step  is  how  the   patient   interprets   the   pain.   The   experience   might   involve   a   disproportional  emotional  response,  such  as  fear.  Fear  in  turn  leads  to  avoidance  of  activity.  This  makes  sense  in  acute  pain,  but  in  prolonged  pain  the  fear  may  not  represent  a  real  danger  of  tissue  damage.  Because  avoidance  limits  the  accumulation  and  confrontation  of  new  experiences,   these   patients   may   overestimate   their   future   pain   and   its   negative  consequences.   In  this  vicious  cycle,  a  concept  of  hypervigilance  plays  a  role  -­‐‑  having  experienced  fearful  pain,  patients  scan  their  bodies  for  signals  of  pain,  automatically  filtering  out  information  other  than  that  which  is  pain-­‐‑related.  They  become  sensitive  to   future   signals   of   pain   or   its   possibility.   Reactive   disability,   depression   or   other  negative  affects  worsen  the  situation.        

Page 25: Health-related quality of life in patients with chronic pain

  25  

 The  fear-­‐‑avoidance  model  of  chronic  pain.  Image  adapted  from  (Vlaeyen  and  Linton,  2000).      Several  studies  have  proven  the  model's  validity,  and  it  has  become  popular  in  guiding  research  on  pain-­‐‑related  disability  and  pain  management.  Crombez  et  al.  reviewed  the  current  state  of  evidence  of  the  model,  and  listed  key  challenges  that  the  model  does  not  address  (Crombez  et  al.,  2012).  Summarizing  the  challenges,  the  model  defines  fear  and  avoidance  as  primarily  psychopathologic  processes,  although  these  emotions  are  normal   and  prevalent   responses   to  pain   in   a  healthy  population.   Second,   the  model  does   not   describe   how   individuals   might   try   to   maintain   their   functioning   despite  disabling  or  even  fearful  pain  experiences.  Third,  it  assumes  that  fear-­‐‑avoidance  is  the  only  motivation   for  an   individual’s  actions,  and   ignores  other  motivations  and  goals  that  they  may  have.  The  concepts  of  the  model,  as  well  as  its  limitations,  are  reviewed  later.    In  their  review,  Keefe  et  al.  grouped  the  psychosocial  factors  associated  with  chronic  pain  into  two  categories:  those  associated  with  increased  pain  and  related  disability,  and  those  associated  with  decreased  pain  and  related  disability  (Keefe  et  al.,  2004).  The   factors   associated  with   increased   pain   and   poor   adjustment   to   persistent   pain  were  emotional  distress  (depression  and  anxiety),  pain  catastrophizing,  and  fear  and  helplessness.   The   factors   associated   with   decreased   pain   and   better   adjustment   to  persistent   pain   were   self-­‐‑efficacy,   pain   coping   strategies,   readiness   to   change,   and  acceptance.        

Pain%stimulus

Pain%Experience

Fear%of%pain! priority( to(pain(control! pain(catastrophizing! Negative(affect,(harm(

representation

No%fear! priority( to(valued(life(

goals! positive(affect

Confrontation

Recovery

Avoidance

Interference

Negative%affect

Page 26: Health-related quality of life in patients with chronic pain

  26  

Depression  and  distress    Mood   disturbances   due   to   pain   are   perhaps   the   most   studied   and   measured  psychological   constructs   in   chronic   pain.   Depressive,   anxious   and   other   related  emotions  can  also  be  termed  ‘negative  affects’  (Edwards  et  al.,  2016).  It  is  well  known  that   emotional   distress   is   common   among   chronic   pain   patients   (e.g.   (Burke   et   al.,  2015).   Depression,   as  well   as   depressive   symptoms,   are   frequently   associated  with  pain  (see  previous  section,  and  e.g.  (Bair  et  al.,  2003)),  and  are  important  determinants  of  pain-­‐‑related  disability  (Tripp  et  al.,  2006).      Often   considered   a   consequence   of   chronic   pain,   these   negative   affects   may   also  precede   chronic  pain   (e.g.   Fillingim  et   al.,   2013).  Pain-­‐‑related  distress   is   sometimes  associated  with  transition  from  acute  to  chronic  pain  (Linton,  2000).  The  relationship  of   pain   with   depressive   and   anxiety   disorders   is   complex   and,   according   to   the  biopsychosocial  model  of  pain,  works  both  ways  –  one  does  not  necessarily  cause  the  other.   However,   although   depression   and   anxiety   are   associated  with   chronic   pain,  they  are  not  necessarily  a  direct  consequence  of   it  (Rudy  et  al.,  1988).  After  trauma,  anxiety   predicts   pain   better   than   pain   predicts   anxiety   (Castillo   et   al.,   2013).   In  longitudinal   studies   of   chronic   pain   and   mood   disorders,   most   anxiety   disorders  satisfying  the  diagnostic  criteria  have  been  already  present  before  the  onset  of  pain,  and  a  slight  majority  of  depressive  disorders  have  been  diagnosed  after  the  onset  of  pain  (Knaster  et  al.,  2012).    Extensive  evidence  shows  that  pain-­‐‑related  emotional  distress  predicts  (better   than  pain   intensity)   various   pain-­‐‑related   outcomes   such   as   physical   disability,   work  disability   and   health   care   costs   (Edwards   et   al.,   2016).   Pain-­‐‑related   anxiety   is  associated   with,   for   example,   maladaptive   pain   coping   mechanisms   such   as   the  avoidance  of  physical  activity,  and  those  with  high  anxiety  overpredict  the  amount  of  pain  they  will  experience  during  a  physical  examination  (Keefe  et  al.,  2004).  In  a  two-­‐‑year  prospective  study  of  patients  undergoing  back  surgery  (transforaminal   lumbar  interbody  fusion),  preoperative  depressive  symptoms  were  the  only  factor  predicting  return   to  work.  The  models  accounted   for   the  effect  of  pain   intensity,  disability  and  quality  of   life  pre-­‐‑  and  post-­‐‑operatively.  More  depressed  patients  were   less   likely  to  return  to  work  or  took  longer  to  return  to  work  (Parker  et  al.,  2015).  Of  tertiary  pain  clinic  patients,   those  who  fulfilled  the  criteria   for  depression  were  more   likely  to  be  unable  to  work  or  to  report  work  absence;  in  addition,  they  reported  higher  disability  (Rayner  et  al.,  2016).      The  fear  of  pain  is  closely  related  to  emotional  distress.  Conceptually  it  is  distinct  from  pain-­‐‑related  anxiety,  as  anxiety  is  targeted  towards  the  future,  whereas  fear  is  targeted  towards   something   present   and   concrete,   but   strongly   overlaps   with   pain-­‐‑related  anxiety.  Similarly  to  the  mentioned  negative  effects,  pain-­‐‑related  fear  predicts  higher  disability,  pain  chronicity  and  participation  avoidance  (Picavet  et  al.,  2002;  Swinkels-­‐‑Meewisse  et  al.,  2003).      Depressive   symptoms   can   be   measured   with   the   widely-­‐‑used   Beck   Depression  instrument   (BDI)   (Beck   et   al.,   1961,   1996).   A   commonly   used   pain-­‐‑related   anxiety  measurement   tool   is   the   Pain   Anxiety   Symptoms   Scale   (PASS)   questionnaire  

Page 27: Health-related quality of life in patients with chronic pain

  27  

(McCracken,  2013).  Another  questionnaire  used   to  measure  pain-­‐‑related   fear   is   the  Tampa  Scale  for  Kinesiophobia  (Neblett  et  al.,  2016).    Self-­‐‑efficacy    Self-­‐‑efficacy   refers   to   an   individual's   belief   in   their   ability   to   perform   and  work   to  achieve  desired  outcomes.  Self-­‐‑efficacy  is  the  determinant  of  how  we  think,  feel  and  act  in   difficult   and   stressful   situations   (Bandura,   1982;   Keefe   and   Somers,   2010).   For  people  in  chronic  pain,  high  self-­‐‑efficacy  means  that  they  can  perform  a  task,  and  have  confidence  in  their  ability  to  accomplish  this  task,  despite  their  chronic  pain  (Turk  et  al.,  2016).  A  closely  related  term  is  resilience,  which  is  defined  as  the  capacity  to  adapt  in  the  face  of  adversities  (Stewart  and  Yuen,  2011).    In   general,   greater   self-­‐‑efficacy   is   associated   with   lower   pain   intensity,   whereas  unpleasantness   and   functional   impairment   from   pain,   and   lower   self-­‐‑efficacy   are  associated  with  greater  pain  and  disability  ratings  in  several  chronic  pain  conditions  (Keefe  et  al.,  2004;  Turk  et  al.,  2016).  It  has  also  been  suggested  that  self-­‐‑efficacy  is  a  mediator  and  predictor  of  pain  intervention  outcomes  (Edwards  et  al.,  2016;  Turner  et  al.,   2007).  A   tool   for  measuring   self-­‐‑efficacy   in   all   chronic  pain   conditions  has  been  developed  and  validated  (Anderson  et  al.,  1995),  and  disease-­‐‑specific  instruments  also  exist  (Turk  et  al.,  2016).      Several  studies  show  that  self-­‐‑efficacy  mediates  the  association  between  chronic  pain  and   disability   (Arnstein   et   al.,   1999;   Costa   et   al.,   2011;   Edwards   et   al.,   2011).   The  mediating  effect  of  self-­‐‑efficacy  has  also  been  noted  in  the  association  between  change  in  pain  intensity  and  change  in  pain-­‐‑related  disability  (Costa  et  al.,  2011).  There  is  also  evidence   that   improvements   in   self-­‐‑efficacy   result   in   improvements   in   coping   skills  (Keefe  et  al.,  2004).      Pain  coping  strategies    Different  individuals  have  different  strategies  and  methods  for  dealing  with  persistent  pain,   and   these   are   of   varying   efficacy.   Coping   strategies   can   be   behavioural   (e.g.  relaxation)   or   cognitive   (e.g.   positive   thinking);   they   can   be   active   (information-­‐‑seeking,   engaging)   or   passive   (help-­‐‑seeking,  withdrawal).   Based  on   the   results   that  they  produce,  different  methods  can  be  seen  as  adaptive  (good  results)  or  maladaptive  (bad  results).  Different  coping  strategies  are  associated  with  pain  perception,  control  over   pain,   emotional   distress,   and   functional   disability   (Evers   et   al.,   2003;  Haythornthwaite   et   al.,   1998;   Jensen   et   al.,   2002).     These   coping   strategies   can   be  measured  using  various  structured  instruments,  some  of  which  have  been  outlined  in  two  reviews  (Keefe  et  al.,  2004;  Turk  et  al.,  2016).  Coping  strategies  are  often  also  the  focus  of  non-­‐‑pharmacological  pain  management  (Edwards  et  al.,  2016).  An  increase  in  beneficial  coping  mechanisms  has  shown  to  be  related  to  pain  management  outcome  (de  Rooij  et  al.,  2014).    Coping   strategies   are   associated   with   pain-­‐‑related   beliefs   and,   for   example,  catastrophizing  and  self-­‐‑efficacy.  An  example  of  this  is  how  patients  with  acute  LBP  and  

Page 28: Health-related quality of life in patients with chronic pain

  28  

high  levels  of  negative  affect  and  catastrophizing  are  more  likely  to  rest  in  bed  for  long  periods   and   become   physically   deconditioned,   and   are   the   least   likely   to   exercise  (Bousema  et  al.,  2007;  Verbunt  et  al.,  2008).   In  contrast,  protective   factors  (such  as  social   support)   are   associated   with   greater   engagement   in   physical   exercise   and  activity   (Stewart   and   Yuen,   2011).   Catastrophizing   is   also   associated   with   various  negative  cognitive  processes  related  to  pain  (Edwards  et  al.,  2016).      Acceptance    Acceptance  can  be  defined  as  the  ability  to  embrace  experiences  when  trying  to  deny  or  change  them  would  be   ineffective  or  harmful.   In  chronic  pain,   this  means  that  an  individual   accepts   a   certain   amount   of   pain   and,   instead   of   focusing   all   effort   on  abolishing  this  pain,  focuses  on  more  important  aspects  of  life.  In  other  words,  there  may  be  occasions  when  helpful  change  in  the  quality  of  a  patient’s  life  can  only  occur  when  some  aspects  of  the  pain  problem  are  accepted  (McCracken  et  al.,  2004a).  The  alternative   option   would   be   that   the   (perhaps   futile)   struggle   of   controlling   pain  becomes   so   central   that  other  aspects  of  one's   life   suffer.  Acceptance   is   also   closely  related  to  the  ability  to  pursue  a  meaningful  life  despite  chronic  pain.  The  broader  term  for  this  is  psychological  flexibility.  This  concept  and  its  relation  to  chronic  pain  has  been  further  reviewed  by  McCracken  and  colleagues  (McCracken  et  al.,  2004a;  Thompson  and  McCracken,  2011).  Several  studies  show  an  association  between  acceptance  and  related  factors  and  the  functioning  of  chronic  pain  patients  (Edwards  et  al.,  2011).      Several   treatment   methods   that   target   acceptance   and   related   constructs   have  emerged.   One   method   called   the   Acceptance   and   Commitment   Therapy   (ACT)   is   a  process-­‐‑oriented   intervention   which,   instead   of   actie   efforts   to   control   pain,  encourages  acceptance,  psychological  flexibility,  and  values-­‐‑based  actions  as  the  most  productive  response  to  chronic  pain  (McCracken  and  Vowles,  2014).  Another  method  is  known  as  mindfulness-­‐‑based  stress  reduction  (MBSR)  and  is  based  on  mindfulness  techniques.  These  treatment  methods  and  their  effectiveness  have  been  reviewed  by  Veefof  et  al.  (Veehof  et  al.,  2011).    The  most   frequently  used   instrument   for  measuring   acceptance   is   the  Chronic  Pain  Acceptance  Questionnaire  (McCracken  et  al.,  2004b;  Vowles  et  al.,  2008).    Catastrophizing    The  tendency  to  negatively  evaluate  one's  ability  to  deal  with  pain,  and  to  exaggerate  the  negative  consequences  of  pain,  is  described  as  pain  catastrophizing.  This  consists  of  cognitive  and  emotional  aspects  such  as  helplessness,  pessimism,  rumination  about  pain-­‐‑related  symptoms,  and  magnification  of  pain  reports  (Edwards  et  al.,  2011;  Turk  et  al.,  2016).  Catastrophizing  can  bias  perceptions  and  expectations,  and   lead   to   the  development  of  passive  coping  styles  (Sullivan  et  al.,  2001;  Turk  et  al.,  2016).  Sullivan  and  colleagues  defined  catastrophizing  as  a  response  to  persistent  pain,  designed  to  deal  with  negative  emotions  by  eliciting  proximity  to  and  support  from  others,  bringing  into  perspective  social  aspects  (Sullivan  et  al.,  2001).    

Page 29: Health-related quality of life in patients with chronic pain

  29  

 Catastrophizing   has   shown   to   be   associated   with   many   negative   consequences   of  chronic   pain   –   patients   who   catastrophize   have   higher   levels   of   disability   when  adjusted   for   other   pain-­‐‑related   variables   such   as   pain   intensity   (Martin   et   al.,  1996),  higher  rates  of  health  care  usage  (Gil  et  al.,  1992),  increased  use  of  analgesics  (Jacobsen  and  Butler,  1996),  and  they  take  longer  to  recover  from  surgery  (Kendell  et  al.,  2001).      Although  most  research  has  been  conducted  in  highly  selective  pain  populations  such  as   those   treated   in   pain   clinics,   there   is   also   population-­‐‑based   evidence   that   pain  catastrophizing   is   associated   with   various   aspects   of   impaired   general   health  (Severeijns  et  al.,  2002).      Catastrophizing  significantly  overlaps  with  other  behavioural  and  mood  disturbances  (such   as   anxiety,   depression   and   avoidance)   (Edwards   et   al.,   2011).   However,   it  appears  to  be  independently  related  to  low  general  health  and  negative  pain  outcomes  after  controlling  for  other  possible  explanatory  variables  (e.g.  pain  intensity,  variables  measuring   sociodemographic   status   and   condition   severity)   (Edwards   et   al.,   2011;  Severeijns  et  al.,  2002;  Turner  et  al.,  2002).      Concerning  causality,  catastrophizing  predicts  pain  onset  and  disability  (Jarvik  et  al.,  2005).  It  also  predicts  postoperative  pain,  poor  quality  of  life,  and  transition  to  chronic  pain   among   people   undergoing   surgery   (Khan   et   al.,   2011).   However,  most   studies  investigating  the  relationships  of  catastrophizing  (as  well  as  other  psychosocial  factors  in   chronic   pain)   are   cross-­‐‑sectional   in   nature.   Furthermore,   after   controlling   for  variables  measuring   depression   and   anxiety,   catastrophizing   remained   significantly  associated  with  various  outcomes  of  pain  and  its  management  (such  as  return  to  work  or  opioid  misuse)  (Edwards  et  al.,  2016).        

Social  aspects  of  chronic  pain    Early  life    The   psychological   and   social   factors   that   play   a   role   in   chronic   pain   are   similar   in  childhood   and   adulthood.   Psychosocial   rather   than   mechanical   factors   predispose  children  to  LBP.  Long-­‐‑term  prospective  studies  demonstrate  that  the  increased  risk  of  chronic  widespread  pain   in   adulthood   is   related   to   emotionally   traumatic   events   in  childhood  (such  as  being  raised  in  foster  care,  death  of  a  parent),  as  well  as  physically  traumatic  events  in  childhood  such  as  premature  birth,  very  low  birth  weight  (Jones  et  al.,  2009;  Littlejohn  et  al.,  2012),  and  hospitalization  for  a  motor  vehicle  accident  at  a  young  age  (Wynne-­‐‑Jones  et  al.,  2006).  In  a  meta-­‐‑analytic  review,  traumatic  events  were  associated  with  chronic  pain  syndromes  as  well  as  with  chronic  fatigue  syndrome  and  IBS   (Afari   et   al.,   2014).  The   type  of   psychological   trauma  was  not   significant   in   the  review.  The   existing   evidence   is   prospective   in  nature,   and   the   effects   reported   are  considerable.   It  has  also  been  concluded  that  post-­‐‑traumatic  stress  disorder  (PTSD)  symptoms   play   a   role   in   the   relationship   of   chronic   pain   and   traumatic   events  

Page 30: Health-related quality of life in patients with chronic pain

  30  

(Edwards   et   al.,   2016).   A   review   of   chronic   pain   and   PTSD   by   Brennstuhl   et   al.  suggested  that,  because  of  similar  symptoms,  chronic  pain  associated  with  PTSD  might  also  be  reactive  in  nature  (Brennstuhl  et  al.,  2015).        Social  relations    Having  more   social   support   is   associated   with   better   pain-­‐‑related   functioning,   and  better   outcomes   in   conditions   such   as   spinal   cord   injury,   multiple   sclerosis   and  amputation  (Jensen  et  al.,  2011).  Maternal  chronic  pain  is  associated  with  chronic  non-­‐‑specific   pain   and   chronic   multisite   pain   among   adolescents   and   young   adults,   an  association  which  is  even  stronger  if  both  parents  report  chronic  pain  (Hoftun  et  al.,  2013).  Family  structures  maybe  important  in  this  association  and  in  paediatric  chronic  pain  in  general  (Hoftun  et  al.,  2013;  Palermo  and  Holley,  2013),  underlining  the  social  aspects  of  adolescent  chronic  pain  in  particular.  Parental  catastrophizing  is  predictive  of  the  development  of  chronic  pain  and  related  disability  among  children  (Hechler  et  al.,  2011;  Noel  et  al.,  2015).      In  an  extensive  review  of  psychological  and  social  factors  in  chronic  pain,  Edwards  et  al.   reviewed  studies  assessing   the  role  of  significant  others   in  patients'  chronic  pain  conditions.   For   example,   avoidant   or   anxious   attachment   styles   were   linked   to  increased  pain  intensity  and  poorer  general  well-­‐‑being  (Edwards  et  al.,  2016).      Work-­‐‑related   factors   can   also   influence   the   course   of   chronic   pain.   In   acute   LBP  patients,   social   support  at  work   reduced   the  probability  of  developing   chronic  back  pain  (Melloh  et  al.,  2013a,  2013b).  Workplace  support  is  also  associated  with  reduced  depressive   symptoms   and   disability   in   arthritis   patients   during   follow-­‐‑up   (Li   et   al.,  2006).  Interestingly,  in  a  multinational  study  of  2825  patients,  Anema  et  al.  concluded  that   return   to   work   after   chronic   LBP   was   mainly   explained   by   differences   in   job  characteristics   and   social   disability   systems   rather   than   medical   interventions   or  patient  health  (Anema  et  al.,  2009).      Sociodemographic  factors    Chronic  pain  is  strongly  associated  with  sociodemographic  factors.  Housing  tenure  and  employment  status,  for  example,  are  associated  with  its  prevalence  (Elliott  et  al.,  1999).  Chronic   pain   is   more   common   among   manual   workers   and   the   unemployed   than  among   professional   workers   (Raftery   et   al.,   2011).   Low   socioeconomic   status   in  childhood  or  adolescence  created  a  risk  of  developing  musculoskeletal  pain  in  a  long-­‐‑term  follow-­‐‑up  (Huguet  et  al.,  2016).  Chronic  pain  is  more  common  in  less  educated  patients  (Eriksen  et  al.,  2003;  Saastamoinen  et  al.,  2005).          

Page 31: Health-related quality of life in patients with chronic pain

  31  

Epidemiology  of  chronic  pain    

Prevalence      Approximately  50%  of  us  have  experienced  an  episode  of  pain  lasting  at  least  one  day  within  the  past  month  (Macfarlane  et  al.,  2015).  Approximately  19%  of  the  European  population  feel  that  their  current  pain  has  lasted  for  over  six  months,  ranging  from  12%  (in  Spain)  to  30%  (in  Norway)  among  countries  (Breivik  et  al.,  2006).    Other  studies  have  reported  similar  results,  estimating  the  prevalence  of  severe  chronic  pain  to  be  around   10–20%   in   the   general   population   (Elliott   et   al.,   1999;   Eriksen   et   al.,   2003;  Fayaz   et   al.,   2016;   Gureje   et   al.,   1998;   Mäntyselkä   et   al.,   2003).   However,   these  prevalence  estimates  vary  according   to   the  population  studied  (Gureje  et  al.,  1998),  methodology  used  and  the  definition  of  chronic  pain  (Verhaak  et  al.,  1998).  With  less  strict  definitions,  higher  prevalence  estimates  have  been  reported  (Elliott  et  al.,  1999;  Fayaz  et  al.,  2016;  Mäntyselkä  et  al.,  2003;  Raftery  et  al.,  2011).      Females  appear   to   suffer   from  severe   chronic  pain  more   than  males.   In  a  European  population,   the   percentage   of   females   in   a   study   sample  was   52%,   but   the   ratio   of  females  to  those  suffering  from  severe  chronic  pain  was  65%  (Breivik  et  al.,  2006).  In  a  Danish  population,  16%  of  men  and  21%  of  women  reported  pain   that  had   lasted  over  six  months  (Eriksen  et  al.,  2003).  When  the  prevalence  estimate  was  higher  (35–50%),  no  gender  differences  were  reported  (Elliott  et  al.,  1999;  Raftery  et  al.,  2011).  However,   in   a  meta-­‐‑analysis   of   British   patients,   the   prevalence   of   chronic   pain  was  consistently  higher  among  females  (Fayaz  et  al.,  2016).  Data  from  both  developed  and  developing  countries  showed  chronic  pain  to  be  more  common  among  women  than  in  men  (Tsang  et  al.,  2008).    Studies   suggest   that   the   prevalence   of   chronic   pain   increases   consistently  with   age  (Fayaz  et  al.,  2016;  Mäntyselkä  et  al.,  2003;  Raftery  et  al.,  2011;  Saastamoinen  et  al.,  2005).  However,   some   studies  have   shown   that   the  prevalence  of   LBP  decreases   at  older   ages   (Dionne   et   al.,   2006),   and   it   has   been   suggested   that   the   differing  prevalences   in   relation   to   age  might   be   explained   by   the   type   and   location   of   pain  (Macfarlane,  2016).      Prevalence  of  chronic  pain  by  sites  and  conditions    Chronic  pain  may  be  present   in  every   location  of   the  body.   It  can  be  a  problem  of  a  specific  area,  such  as  an  amputated  limb  or  an  area  innervated  by  a  certain  nerve,  or  it  can  be  widespread,  felt  all  over  the  body.      Of   body   locations,   the   lower   back   is   the   most   common   pain   location.   The   mean  prevalence  of  LBP  is  around  12%,  and  one-­‐‑month  prevalence  23%  (Hoy  et  al.,  2012).  In   the  Dutch  general  population,   three  most   common  sites   for  musculoskeletal  pain  with  their  respective  point  prevalences  were  lower  back  (26.9  %),  shoulder  (20.9  %)  and  neck  (20.6  %)  (Picavet  and  Schouten,  2003).  In  the  Finnish  healthy  population,  the  prevalence  for  low  back  pain  during  last  30  days  was  41.4%  for  females  and  34.6%  

Page 32: Health-related quality of life in patients with chronic pain

  32  

for  males.  For  neck  pain,  the  respective  prevalences  were  41.2%  and  27.2%  (Koskinen  et  al.,  2012).        The  lower  back  is  also  the  most  common  site  of  chronic  pain  (Breivik  et  al.,  2006;  Hardt  et  al.,  2008).  In  a  study  of  European  and  Israeli  populations,  the  most  common  locations  after  the  back  were  the  knee  (16%),  the  head  (15%),  the  legs  (14%),  and  unspecified  joints  (10%)  (Breivik  et  al.,  2006).   In  addition   to  unspecific  back  pain,  arthritis  and  trauma  are  among  the  most  common  causes  of  chronic  pain  (Elliott  et  al.,  1999).      However,  chronic  pain  seldom  manifests  in  a  single  body  location.  In  a  study  of  Dutch  general  population,  most  patients  with  chronic  pain  complaints  reported  pain  in  more  than  one   location  of   the  body  (Picavet  and  Schouten,  2003).  Maixner  et  al.  describe  overlapping  chronic  pain  conditions  (one  of  them  being  lower  chronic  back  pain)  that  share   characteristics  and  have   similar   risk   factors  and  high  prevalence  of   comorbid  symptoms,   and   even   have   overlapping   definitions   (Maixner   et   al.,   2016).   Further,  having   one   chronic   regional   pain   increases   the   risk   for   subsequently   developing  another  (Smith  et  al.,  2004).  Croft  et  al.  argue  that  most  chronic  pain  conditions  are  inevitably  associated  with  each  other,  and  that  it  would  be  important  to  find  risk  factors  for  this  co-­‐‑occurrence  of  pain  conditions  (Croft  et  al.,  2007).      The  prevalence  of  chronic  widespread  pain  is  estimated  to  be  around  12%  (Mansfield  et  al.,  2016).  FM  is  a  chronic,  non-­‐‑inflammatory  pain  syndrome  that  is  characterized  by  widespread   musculoskeletal   pain   and   associated   symptoms   such   as   fatigue,   sleep  difficulties   and   depressive   symptoms.     Its   prevalence   is   estimated   to   be   1–5%,  depending  on  the  diagnostic  criteria  used  (Jones  et  al.,  2015;  Vincent  et  al.,  2013).  It  is  more   common   among   females   than   males,   and   other   risk   factors   include   physical  trauma,  stress,  infection,  and  genetic  factors  (Fitzcharles  et  al.,  2013).    

Chronic  pain,  health  and  other  diseases  and  symptoms    Chronic   pain   is   usually   a   symptom   of   an   underlying   disease   such   as   diabetes,  rheumatoid  arthritis  or  osteoarthritis.  Certain  other  syndromes  are  also  characterized  primarily  by  pain  complaints,  such  as  FM.      Psychiatric  comorbidity    Chronic  pain  and  psychological  symptoms  often  occur  together  and  can  significantly  overlap.  Depressive  symptoms  are  perhaps  the  most  common.  In  a  literature  review,  the  authors  stated  that  65%  of  patients  with  depression  experience  pain  complaints.  The  prevalence  of  depression  among  people  with   chronic  pain   conditions   can  vary  widely,  ranging  from  5%  to  85%  (depending  on  the  study  setting).  Depression  is  most  prevalent   in   pain,   psychiatric,   and   other   specialty   clinics,   and   less   prevalent   in  population-­‐‑based   or   primary   care   studies   (Bair   et   al.,   2003).   The   authors   further  concluded  that  the  presence  of  pain  negatively  affects  the  recognition  and  treatment  of  depression  (Bair  et  al.,  2003).  In  a  large  sample  of  patients  treated  in  a  specialized  pain  centre,  the  prevalence  of  depression  was  60.8%    (Rayner  et  al.,  2016).  In  a  study  using  the  Structured  Clinical  Interview  and  Statistical  Manual  of  Mental  Disorders,  75%  

Page 33: Health-related quality of life in patients with chronic pain

  33  

of   the   patients   treated   at   a   tertiary   pain   clinic   fulfilled   the   criteria   of   at   least   one  psychiatric  condition  (Knaster  et  al.,  2012).  The  prevalence  numbers  of  anxiety  and  depression  were  six  times  higher  than  those  of  a  corresponding  sample  of  the  general  population.    Data   from   both   developed   and   developing   countries   show   that   anxiety-­‐‑depression  spectrum  disorders  and  their  symptoms  are  associated  with  chronic  pain  (Tsang  et  al.,  2008).    Chronic  pain  states  (arthritis,  migraine  and  back  pain)  are  associated  with  an  increased  likelihood   of   depression,   panic   attacks,   and   generalized   anxiety   disorder,   also   after  adjusting   for   confounding   variables.   Many   studies   show   that   anxiety   disorders,  particularly   PTSD,   panic   disorder   ,   generalized   anxiety   disorder   (GAD)   and   social  anxiety   disorder   are  more   frequent   among   chronic   pain   patients   than   in   a   healthy  population.  For  example,  the  prevalence  of  any  anxiety  disorder  is  approximately  twice  as  high  as   in  the  general  population,  whereas  panic  disorder  and  PTSD  can  be  three  times   as  prevalent   among   those  with   chronic  pain   (McWilliams  et   al.,   2004).   In   the  study,  the  association  between  pain  states  and  anxiety  was  greater  than  that  between  pain  states  and  depression  (McWilliams  et  al.,  2004).    PTSD   patients   in   particular   commonly   have   complaints   of   pain   or   other   physical  symptoms  (Asmundson  and  Katz,  2009).  Asmundson  and  Katz  noted  in  their  review  that  more  research  efforts   should  be  made   to  clarify   the   temporal   relation  between  pain   and   anxiety.   In   a   study   of   tertiary   pain   clinic   patients,   the  majority   of   anxiety  disorders  had    already  been  present  before  the  onset  of  pain  (Knaster  et  al.,  2012).  The  temporal  relation  of  depression  was  different,  as  in  60%  of  patients,  the  onset  of  pain  preceded  depression  (Knaster  et  al.,  2012).      It   should   be   noted   that   psychological   constructs   and   processes   are   distinct   to  psychiatric   illness.   Here   we   covered   the   co-­‐‑prevalence   of   pain   and   psychiatric  conditions.   Psychological   constructs   and   symptoms   that   are   not   classified   as  psychiatric   conditions   are   also   important   in   chronic   pain,   and   are   addressed   in   the  previous  chapters.        Sleep    Chronic  pain  and  sleep  appear  to  have  a  reciprocal,  bidirectional  relation  (Finan  et  al.,  2013a).  It  is  easy  to  imagine  that  both  acute  and  chronic  pain  disrupt  sleep  (Chouchou  et   al.,   2014;   Finan   and   Smith,   2013;   Shaver,   2008).     Conversely,   sleep   deprivation  lowers   the   pain   threshold,   lowers   the   ability   to   cope  with   pain,   and   increases   pain  intensity   ratings   (Okifuji   and   Hare,   2011a,   2011b;   Onen   et   al.,   2005).   Longitudinal  population-­‐‑based   studies   and   experimental   studies   reviewed   by   Finan   et   al.   also  suggest  that  sleep  disturbances  predict  the  development  and  exacerbation  of  chronic  pain   (Finan   et   al.,   2013b).   The   authors   emphasize   that   psychological   factors   also  mediate   the   association  between   sleep   and   chronic   pain,   and   conclude   that   chronic  pain,   sleep   problems   and   depression   are   mutually   interacting   conditions,   each  increasing   the   risk   of   the   other   (Finan   et   al.,   2013b).   Furthermore,   patients   with  

Page 34: Health-related quality of life in patients with chronic pain

  34  

chronic  pain  who  have  sleep  problems  are  more  likely  to  have  anxious  and  depressive  symptoms  than  those  without  sleep  problems  (Turk  et  al.,  2016).      Other  conditions,  general  health  and  mortality    In  a  population-­‐‑based  study,  chronic  widespread  pain  was  associated  with  symptom-­‐‑based   conditions   such   as   chronic   fatigue,   IBS   and   psychiatric   disorders,   and   the  researchers  concluded  that  this  association  was  mediated  by  unmeasured  genetic  and  family  environmental  factors  (Kato  et  al.,  2006).    Chronic  pain  has  also  shown  to  be  related  to  poor  self-­‐‑rated  health  (Mäntyselkä  et  al.,  2003),   which   is   an   independent   predictor   of   morbidity   and   mortality.   Patients   in  severe  chronic  pain  also  seem  to  have  increased  mortality  (Torrance  et  al.,  2010).  In  a  large  cohort  study,  the  association  of  chronic  widespread  pain  and  mortality  was  clear,  and  adverse  lifestyle  factors  mostly  explained  the  excess  mortality  (Macfarlane  et  al.,  2017).  Other  studies  have  shown  that  patients  in  chronic  pain  have  higher  mortality  than  patients  with  cancers  or  cardiovascular  diseases  (Macfarlane  et  al.,  2001;  Smith  et  al.,  2014)    

The  consequences  of  chronic  pain    

Functioning  and  well-­‐‑being    To   suffer   from   chronic   pain   is   detrimental   to   one's   functioning,   both   physical   and  cognitive.  Conversely,   the  ability   to   function   in  daily   life  or   to  pursue  goals   is   a  key  aspect   of   good   health.   Extensive   evidence   shows   that   chronic   pain   is   related   to  disability,  health  problems  and  impaired  functioning  (Breivik  et  al.,  2006;  Gureje  et  al.,  1998;  Raftery  et  al.,  2011),  and  that  it  impairs  various  aspects  of  life  (Azevedo  et  al.,  2012;  Meyer-­‐‑Rosberg  et  al.,  2001;  Raftery  et  al.,  2011).  Patients  with  chronic  pain  have  a  low  level  of  life  satisfaction  (Boonstra  et  al.,  2013).  In  a  population-­‐‑based  survey,  the  majority   of   those   suffering   from   chronic   pain   reported   impaired   ability   to   sleep,  exercise  or  do  physical  work.  Social  activities  were  diminished  or  prevented  because  of  pain  in  27–49%  (Breivik  et  al.,  2006).      In   a   survey   of   people   with   neuropathic   pain,   participants   reported   a   mean   pain  interference  of  5  on  a  scale  of  0  to  10,  the  most  affected  areas  being  general  activity,  work,  sleep,  mood,  and  enjoyment  of  life  (McDermott  et  al.,  2006).  When  neuropathic  pain  patients  are  compared  with  non-­‐‑neuropathic  pain  patients,  they  appear  to  have  greater   impairment   in  psychological,  social  and  occupational   factors    (Langley  et  al.,  2013;  Meyer-­‐‑Rosberg  et  al.,  2001).    The  Global  Burden  of  Disease  Project  measures  the  global  impact  of  a  comprehensive  set   of   health   conditions.   Its   central   aim   is   to   also  measure  health   outcomes  outside  mortality.  As  measurement  units   it  uses,   for  example,  Disability-­‐‑Adjusted  Life  Years  (DALY),  Years  Lived  with  Disability   (YLD),   and  Years  of  Life  Lost  due   to  premature  mortality   (YLL).  The   idea  of  DALYs   is   similar   to   that  of  Quality-­‐‑Adjusted  Life  Years,  

Page 35: Health-related quality of life in patients with chronic pain

  35  

presented  later  in  this  section.  YLDs  measure  life  years  lived  with  a  disability:  five  years  lived  with  a  disease  burden  of  0.2  constitutes  1  YLD.  These  units  are  calculated  using  prespecified  preference  weights.  Chronic  pain  conditions  are  among  the  leading  causes  of  years  lived  with  disability  (YLD)  (Vos  et  al.,  2012):  LBP  is  the  leading  cause,  neck  pain  the  fourth,  musculoskeletal  disorders  the  sixth,  and  migraine  the  eighth.  LBP  was  globally  the  greatest  cause  of  YLDs,  and  a  sixth  of  DALYs,  which  also  take  into  account  YLLs  (i.e.,  life  expectancy).    

Health-­‐‑related  quality  of  life    Because   chronic   pain   impairs   functioning   in   everyday   life,   it   reduces   quality   of   life.  HRQoL  is  a  measure  of  overall  health  and  functioning  that  will  be  presented  later  in  more  detail.  Chronic  pain  is  consistently  detrimental  to  HRQoL,  measured  in  various  populations  and  using  many  different  measures  (Boonstra  et  al.,  2013;  Eriksen  et  al.,  2003;  Keeley  et  al.,  2008;  Lillegraven  et  al.,  2010;  Meyer-­‐‑Rosberg  et  al.,  2001;  Torrance  et  al.,  2014).  For  example,  the  patients  admitted  to  a  multidisciplinary  pain  centre  in  Norway  reported  similar  or  even  poorer  quality  of  life  than  end-­‐‑stage  cancer  patients  (Fredheim  et  al.,  2008).  The  mean  EQ-­‐‑5D  index  of  patients  suffering  from  neuropathic  pain  was   0.44   (McDermott   et   al.,   2006),   whereas   in   a   Finnish   sample   of   end-­‐‑stage  cancer   patients   in   palliative   care,   the   EQ-­‐‑5D   index   was   0.59.   As   pain-­‐‑related  psychosocial   factors   are   independently   and   strongly   associated   with   pain-­‐‑related  disability,  psychosocial  factors  are  also  associated  with  the  impaired  HRQoL  (Nicholl  et  al.,  2009).      

Societal  costs    Because  chronic  pain  causes  considerable  disability,  it  is  a  burden  to  society.  Chronic  pain  is  associated  with  considerably  elevated  societal  costs,  both  direct  and  indirect.  Breivik   et   al.   reviewed   studies   estimating   the   total   societal   costs   of   chronic   pain  (Breivik  et  al.,  2013),  .  The  review  estimated  that  the  total  cost  per  patient  per  year  was  approximately   5000–6000€,   total   societal   costs   being   €5.34   billion   in   Ireland,   €32  billion  in  Sweden,  €2.8  billion  in  Denmark,  and  $560-­‐‑635  billion  in   the   United   States.  Because   of  methodological   differences   in   obtaining   these   estimations,   the   numbers  differ  significantly  and  are  not  comparable.      Health  care  use    Pain  is  the  reason  for  40%  of  all  visits  to  a  primary  care  physician  in  Finland;  chronic  pain  is  estimated  to  be  the  reason  for  10%  of  these  visits.  (Mäntyselkä  et  al.,  2001).  Azevedo   et   al.   identified   depressed   mood,   pain-­‐‑related   disability   and  socioeconomic   determinants   as   the   main   drivers   of   increased   medical  consultations.  (Azevedo  et  al.,  2013).      In   a   Danish   population   sample,   twice   as  many   patients  with   chronic   pain   reported  having   used   various   health-­‐‑care   services   in   comparison   to   the   controls,   except   for  emergency  room  visits  and  on-­‐‑call  doctor  consultations,  in  which  case  the  difference  was  smaller.  Those  with  chronic  pain  made  approximately  25%  more  visits  to  health  

Page 36: Health-related quality of life in patients with chronic pain

  36  

care   than   controls   (Eriksen   et   al.,   2003).   In   another   population   sample,   higher  reported  pain  interference  in  daily  activities  was  associated  with  a  greater  number  of   general   practitioner   and   emergency   room   visits   and   more   frequent  hospitalizations  (Blyth  et  al.,  2004).  Hospitalization  is  the  single  greatest  contributor  to  direct  health  care  costs  of  patients  in  chronic  pain  (Raftery  et  al.,  2012).      Among  tertiary  pain  clinic  patients,  depression  was  associated  with  increased  health  care  use,  the  estimated  costs  being  £731  for  those  fulfilling  the  criteria  for  depression  and  £448  for  those  without  depression.  The  depressed  patients  also  reported  higher  rates  of    work  absences  or  inability  to  work  (Rayner  et  al.,  2016).    Indirect  costs    It  is  estimated  that  indirect  (i.e.  lost  productivity,  sick  leave,  disability  pension)  costs  account   for   approximately   half   of   the   total   costs   (Breivik   et   al.,   2013),   although   in  Denmark,   the   estimated   division   into   direct   and   indirect   costs   was   70%   and   30%,  respectively.  In  a  study  of  a  Swedish  population  in  2001,  13%  of  all  early  retirement  pensions   were   granted   for   back   problems   (Ekman   et   al.,   2005).   In   Finland,   spinal  disorders   account   for   €347   million   of   disability   pension   costs.   In   addition,   lost  productivity  is  estimated  to  be  six  times  greater  than  disability  pension  costs  (Asklöf  et  al.,  2016).    In  a  study  of  the  HRQoL  and  disease  burden  of  neuropathic  pain  patients,  half  of  the  patients  reported  reduced  employment  status  due  to  their  pain  (Meyer-­‐‑Rosberg  et  al.,  2001).    Interestingly,   in   a   telephone-­‐‑based   survey   in   15  European   countries   and   Israel,   the  mean  number  of  days  lost  from  work  due  to  pain  during  one  year  was  19.8  in  Finland,  clearly  above  the  European  mean  of  7.8  days  (Breivik  et  al.,  2006).  In  this  study,  other  measures  of  pain,  such  as  pain  intensity,  were  similar  in  Finland  and  other  European  countries.  The  possibility  of  confounding  factors,  such  as  differences  in  language  and  translation,  must  be  taken  into  account  concerning  this  result.      

Treatment  of  chronic  pain    Modern  medicine  has  introduced  various  effective  techniques  for  managing  acute  pain.  Non-­‐‑steroidal  anti-­‐‑inflammatory  drugs,  opioids,  local  anaesthetics  and  various  elegant  techniques   used   by   anaesthesiologists   enable   fairly   adequate  management   of   acute  pain.   Unfortunately,   the   treatment   of   chronic   pain   is   difficult,   and   to   a   large   extent  different  to  the  management  of  acute  pain.      Chronic  pain  patients  are  often  dissatisfied  with  their  treatment.  In  a  population-­‐‑based  study,   40%   of   those   classified   as   having   chronic   pain   were   not   satisfied   with   the  treatment   offered   to   them,   and   33%   were   not   satisfied   with   the   examinations  conducted  with  regard  to  the  pain  condition  (Eriksen  et  al.,  2003).  A  meta-­‐‑analysis  of  randomized,   placebo-­‐‑controlled   trials   for   non-­‐‑specific   back   pain   found   only   small  reductions  in  pain  intensity  (Machado  et  al.,  2009).    

Page 37: Health-related quality of life in patients with chronic pain

  37  

Multidisciplinary  pain  management      The  most  effective  form  of  treating  chronic  pain  according  to  current  knowledge  is  an  approach  known  as  multidisciplinary  pain  management  (MPM).  Its  foundations  lay  in  the  biopsychosocial  model  of  chronic  pain  –  if  pain  is  a  multidimensional  problem  with   problems   in   various   interacting   domains   of   well-­‐‑being,   its   treatment   should  encompass  all  these  aspects  in  a  co-­‐‑ordinated  manner.      The  first  multidisciplinary  pain  clinic  was  founded  by  the  renowned  pain  physician  and  anaesthesiologist,   John   Bonica,   at   the   University   of  Washington,  where   he   involved  many   different   professionals   in   the   management   of   patients’   pain.   Since   then,   the  concept  and  treatment  modalities  have  been  refined,  and  evidence  consistently  names  MPM  as  the  most  efficacious  treatment  of  chronic  pain  (Kamper  et  al.,  2015;  Scascighini  et  al.,  2008).    

Definition  and  organization  of  MPM      IASP   provides   guidelines   on   the   organization   of   MPM   (IASP,   2009).     In   a  multidisciplinary  pain  centre,  clinicians  from  various  disciplines,  including  physicians,  nurses,   mental   health   professionals   (e.g.,   clinical   psychologist,   psychiatrist),   and  physical  therapists  work  together  in  managing  the  patients’  pain.  All  the  clinicians  must  have  expertise  in  pain  management.  An  important  feature  is  that  these  clinicians  work  together   in   the   same   space   and   communicate   with   each   other   regularly   and  systematically.  The  care  should  be  goal  oriented  and  patient  centred,  and  the  different  people   participating   in   a   patient's   management   should   share   the   same   goal.  Multidisciplinary   pain   centres   should   be   able   to   treat   any   kind   of   pain,   be   it,   for  example,   cancer-­‐‑  or  non-­‐‑cancer-­‐‑related.  For   this   reason,   the  staff   should  encompass  people  with  broad  experience,  i.e.  various  medical  specialties  should  be  represented.        The   guidelines   define   a   multidisciplinary   pain   centre   and   a   multidisciplinary   pain  clinic.   They   are   equivalent   in   terms   of   pain   management   services,   but   in   a  multidisciplinary   pain   centre,   research   and   academic   teaching   activities   should   be  practiced.      In   practice,   there   are   many   options   for   providing   MPM.   In   the   literature,   the  composition   and   duration   of  multidisciplinary   programmes  may   vary   substantially.  The  authors  of  a  systematic  review  on  MPM  for  chronic  pain  (Scascighini  et  al.,  2008)  required   at   least   three   of   six   categories   of   therapy   (psychotherapy,   physiotherapy,  relaxation  techniques,  medical  treatment,  patient  education,  vocational  therapy)  to  be  included   in   a   programme   to   be   ranked   as  multidisciplinary.   A   Cochrane   review   on  multidisciplinary   rehabilitation   for   chronic   LBP   included   studies   in   which   the  intervention   involved   a   physical   component   and   one   or   both   of   a   psychological  component  or  a  social/work-­‐‑targeted  component  (Kamper  et  al.,  2015),  and  the  different   modalities   were   delivered   by   those   with   different   professional  backgrounds.    

Page 38: Health-related quality of life in patients with chronic pain

  38  

MPM   can   be   inpatient   or   outpatient.   In   a   systematic   review   on   MPM   for   the  management  of   chronic  pain,   Scascighini   et   al.   reported   that   five  of   the   included  27  studies   took  place   in  an   inpatient   setting,  and   four  of   them  compared   inpatient  and  outpatient  settings  (Scascighini  et  al.,  2008).  Earlier  reviews  on  the  multidisciplinary  management  of  chronic  LBP  have  reported  that  the  intensity  of  treatment  programmes  (i.e.,   the  number  of  hours  spent   in   treatment  per  week)  may  be  associated  with   the  outcomes,   but   more   recent   systematic   reviews   on   both   LBP   and   unspecified   pain  patients   have   concluded   that   treatment   intensity   is   not   related   to   its   outcomes  (Kamper  et  al.,  2015;  Scascighini  et  al.,  2008).      Treatment  modalities  and  roles  of  professionals      In   a  multidisciplinary   pain   clinic,   various   professionals   provide   different   treatment  modalities.  Because  a  multidisciplinary  pain  clinic  can  be  organized  in  diverse  ways,  the  following  is  only  one  option  for  the  professionals'  roles.  It  is  a  description  based  on  the  book  ‘Essentials  of  Pain  Management’  (Fikremariam  and  Serafini,  2011).      The  physician's   role   is   to  diagnose   the  pain  condition,   and   to  optimize   the  patient's  medication.   The   physician   is   also   responsible   for   planning   and   co-­‐‑ordinating   the  multidisciplinary   treatment   programme.   Usually,   several   different   specialities   are  represented   at   the   pain   centre,   including   anaesthesiology,   neurology,   psychiatry,  physiatry,  rehabilitation  medicine,  and  dentistry.    Psychologists  are  an  important  part  of  pain  management.  They  assess,  for  example,  the  patient's  cognitive  and  emotional  status  in  relation  to  pain,  and  they  may  guide  patients  to  better  adopt  pain-­‐‑coping  mechanisms.  Psychologists  also  often  assess  the  presence  of   possible   psychopathologies,   and   whether   a   patient   would   benefit   from   other  psychology-­‐‑based   interventions,   such  as   group-­‐‑based   rehabilitation  or  mindfulness-­‐‑based   approaches.   Cognitive-­‐‑behavioural   therapy,   and   interventions   that   include  training   and   suggestions   for   comfort   (such   as   relaxation   techniques)   have   been  proposed  as  effective  approaches  (Molton  et  al.,  2007).    Physiotherapists  may  provide   exercise   counselling   and  assessments  of   the  patient's  physical   functioning.   They   can   also   provide   various   physical   treatments,   such   as  Transcutaneous   Electrical   Nerve   Stimulation   (TENS)   and   guidance   in   using   these  machines,  and  acupuncture.    The  role  of  nurses  can  vary  substantially  depending  on  their  education  and  interaction  with  other  professionals.  Nurses  can,  for  example,  teach  pain  coping  skills,  and  help  in  practising  other  learned  skills.  They  can  also  be  the  contact  person  for  patients  outside  the  scheduled  visits.  The  patient  is  perhaps  in  contact  most  often  with  a  nurse  during  MPM.  Therefore,  nurses  also  represent  the  continuity  of  the  treatment  programme.      Social  workers  can  guide  patients  if  they  have  problems  with  the  social  support  system  because  of  their  pain.  They  may  help  the  patients  to,  for  example,  apply  for  the  right  benefit  and  to  find  the  best  rehabilitation  method  in  view  of  the  social  system.    

Page 39: Health-related quality of life in patients with chronic pain

  39  

The   authors   of   a   systematic   review   on   MPM   for   chronic   pain   listed   the   different  components   of   MPMs   used   in   MPM   programs   (Scascighini   et   al.,   2008).   Of   the  psychological  modalities,  cognitive  behavioural  therapy  (CBT)  was  the  most  common  intervention,  followed  by  operant-­‐‑behavioural  approaches  (OBT)  and  psychotherapy,  which   was   often   administered   in   groups.   Of   physical   modalities,   exercise   therapy,  aerobic   exercise,   muscle   stretching,   hydrotherapy   (or   swimming),   and   progressive  muscle  relaxation  were  the  most  common.  It  is  noteworthy  that  a  medical  doctor  was  part  of  the  team  in  only  eight  of  the  27  studies.  Patient  education  was  carried  out  in  16  of  the  27  studies.          

Outcome  measures  of  pain  management    How  can  we  measure  if  a  pain  management  method  is  effective?  The  experience  of  pain  is  entirely  subjective,  and  although  certain  physical  correlates  of  pain  exist,  a  person's  report   of   pain   is   the   gold   standard   for   its   measurement.   Pain   intensity   is   often  measured  on  a  numeric  rating  scale  (NRS),  in  which  a  person  is  asked  to  rate  their  pain  on  a  scale  of  0  (no  pain)  to  10  (worst  imaginable  pain).  A  similar  method  is  the  visual  analogue  scale  (VAS),  in  which  one  end  of  the  line  indicates  no  pain  and  the  other  the  worst  possible  pain.  The  patient  then  marks  the  line  in  relation  to  the  end  points.  In  the  Verbal  Rating  Scale  (VRS),  the  patient  is  asked  to  indicate  pain  intensity  as,  for  example,  none,  mild,  moderate,  or  severe.        Most  studies  use  reduction  in  pain   intensity  as  the   indicator  of  successful   treatment  outcome.  In  addition  to  the  absolute  reduction  in  pain  intensity,  it  is  common  to  report  the  relative  reduction  of  pain  intensity  in  percentages.  For  example,  reduction  from  6  to  3  is  an  absolute  reduction  of  3  and  a  relative  reduction  of  50%.  When  using  an  11-­‐‑point  (0–10)  NRS  in  a  large,  heterogeneous  sample  of  chronic  pain  patients,  Farrar  et  al.  concluded  that  the  minimum  clinically  important  reduction  in  pain  intensity  was  an  absolute  reduction  of  two  points  or  a  relative  reduction  of  30%  (Farrar  et  al.,  2001).  Several  studies  have  also  reported  the  proportion  of  patients  achieving  50%  reduction  in  pain  intensity  (Dworkin  et  al.,  2005).      The  primary  aim  of  all  types  of  pain  management  is  to  reduce  pain-­‐‑related  disability.  As   chronic   pain   cannot   always   be   completely   abolished,   MPM   aims   to   restore   a  patient's   functioning   rather   than   primarily   remove   pain.   Due   to   this,   evidence   and  decisions  on  chronic  pain  management  should  not  only  be  based  on  reductions  of  pain  intensity.  Moreover,  many  clinical  trials  have  failed  to  show  meaningful  pain  reduction  when  studying  supposedly  effective  analgesic  medications.  This  has  raised  concerns  as  to  whether  pain  intensity  is  the  best  outcome  for  assessment  in  chronic  pain  trials,  and  as  to  whether  the  validity  of  pain  intensity  assessment  could  be  improved  (Dworkin  et  al.,  2015).    The   comprehensive   assessment   of   chronic   pain   should   include   all   the   different,  clinically  relevant  domains  of  chronic  pain  in  individuals.  Reliable,  valid  assessment  is  also  important  for  the  accurate  classification  of  chronic  pain  conditions.  Fillingim  et  al.  recommend   assessing   four   key   components   in   all   patients:   pain   intensity,   other  

Page 40: Health-related quality of life in patients with chronic pain

  40  

perceptual  qualities  of  pain,  bodily  distribution  of  pain,  and  the  temporal  features  of  pain.  Assessment  should  also  be  combined  with  evaluation  of  other  important  domains,  including  physical  and  psychosocial  functioning.  Whenever  possible,  pain  assessment  should  also  help  to  identify  the  pathophysiological  mechanisms  responsible  for  chronic  pain   conditions.   These   assessments   may   include   techniques   such   as   quantitative  sensory   testing   (QST)   for   assessing   abnormalities   in   the   somatosensory   pathway.  Emerging   assessments   are   outlined   in   a   review   by   Fillingim   et   al.   (Fillingim   et   al.,  2016).    The   Initiative  on  Methods,  Measurement,   and  Pain  Assessment   in  Clinical  Trials  (IMMPACT)  has  published  recommendations  on   the  outcomes   to  be  assessed   in  every  clinical  trial  of  chronic  pain  treatment  (Turk  et  al.,  2003).  The  core  outcome  domains   are   (1)   pain,   (2)   physical   functioning,   (3)   emotional   functioning,   (4)  participant  ratings  of  improvement  and  satisfaction  with  treatment,  (5)  symptoms  and  adverse   events,   and   (6)   participant   disposition.   The   IMMPACT   group   has   also  published  a   recommendation  on  which  measures   to  use   in  assessing   these  domains  (Dworkin  et  al.,  2005).    Concerning   physical   functioning,   the   IMMPACT   group   authors   recommend   using   a  generic  measure  of  the  HRQoL.  (Dworkin  et  al.,  2005)  This  is  to  obtain  comparable  data  across  all  disorders,  and  to  permit  cost-­‐‑utility  analyses.  The  authors  recommend  using  the   SF-­‐‑36   as   a   generic  measure   of  HRQoL   and  physical   functioning   (Dworkin   et   al.,  2005).     The   reason   for   this   recommendation   is   the   amount   of   pre-­‐‑existing   data  available   on   SF-­‐‑36   that   should   permit   comparison   among   different   disorders   and  treatments.   However,   the   authors   note   that   as   data   from   other   HRQoL   measures  accumulate,  other  measures  may  offer  improvements  on  the  SF-­‐‑36,  and  may  replace  it.        

Evidence  of  multidisciplinary  pain  management    MPM   is   the  best  known  approach   to  managing  chronic  pain,  as   suggested  by  recent  systematic   reviews     (Kamper  et  al.,  2015;  Karjalainen  et  al.,  1999;  Scascighini  et  al.,  2008).  However,  these  reviews  have  all  noted  the  relative  lack  of  studies  with  good-­‐‑quality  design.  MPM  programmes  have  also  been  concluded  as  being  cost-­‐‑effective  in  comparison  to  other  forms  of  treatment  (Turk,  2002).  However,  certain  acknowledged  problems  have  prevented  many  conclusions  on  the  effectiveness  of  pain  management.    The  outcomes  of  MPM  vary  greatly  –  some  patients  benefit  substantially  but  others  not   at   all,   or   their   condition  may   even   deteriorate   despite   treatment.   A   similar  pattern   has   been   observed   in   observational   studies   (Boonstra   et   al.,   2015;  Heiskanen  et  al.,  2012)  as  well  as  in  RCTs  of  pain  medication  (Moore  et  al.,  2014).        All  the  systematic  reviews  on  MPM  have  noted  the  heterogeneity  of  the  outcomes  used.  In   addition,   the   relative   lack   of   studies   with   good-­‐‑quality   design   prevents   the  comparison   of   different   treatment   modalities   in   the   reviews.   Scascighini   et   al.  recommend   stronger   observance   of   methodological   guidelines   and   the   use   of  internationally  established  outcome  measures  in  order  to  combat  this  problem  (Flor  et  

Page 41: Health-related quality of life in patients with chronic pain

  41  

al.,   1992;   Kamper   et   al.,   2015;   Karjalainen   et   al.,   1999;   Scascighini   et   al.,   2008;  Waterschoot  et  al.,  2014).      Deckert   et   al.   conducted   a   systematic   review   of   the   different   outcomes   reported   in  multimodal   (multidisciplinary)   pain   therapy   studies.   As   in   the   other   systematic  reviews,   they   report   that   studies   of   MPM   have   used   extensively   many   different  outcome  measures.  This  limits  comparability  with  interventions  from  other  trials.  The  authors  also  noted  the  lack  of  recommendations  for  outcome  domains  that  should  be  included   in   the   clinical   trials   of  MPM.   As   patients  with   chronic   pain,   as  well   as   the  available   treatment  modalities,   are   very   diverse,   the   authors   raised   the   question   of  whether  the  IMMPACT  recommendations  might  not  be  relevant  or  specific  enough  for  the  chronic  pain  population   in  the  MPM  setting.  (Deckert  et  al.,  2016).  Kaiser  et  al.  have  recently  published  a  consensus  statement  on  a  core  outcome  set  to  be  measured  in  MPM  trials.  They  rigorously  reviewed  the  MPM  outcomes,  recruited  an  expert  panel,  and  defined  the  domains  that  should  be  assessed  in  MPM  trials  (Kaiser  et  al.,  2018).  The   core   outcome   domains   recommended   are:   pain   intensity,   pain   frequency,  physical  activity,  emotional  well-­‐‑being,  satisfaction  with  social  roles  and  activities,  productivity  (paid  and  unpaid,  at  home  and  at  work,   inclusive  presenteeism  and  absenteeism),  HRQoL,  and  the  patient's  perception  of  treatment  goal  achievement.      

Health-­‐‑related  Quality  of  Life    Ideally,   treatment  outcome  or  disease  severity  are   things   that  can  be  measured  and  quantified.   In   clinical   practice,   a   valuable   indicator   for   decision-­‐‑making   is   how   the  patient  is  feeling,  but  in  research,  we  should  be  able  to  produce  objective,  reproducible  indicators   of   treatment   success   or   failure.  Widely   used   outcomes   are,   for   example,  mortality  in  a  given  follow-­‐‑up  time,  the  size  of  a  tumour,  or  the  amount  of  cholesterol  in  the  blood.  These  objective  measures  are  important,  but  have  certain  limitations:  they  are   often   rather   specific   to   certain   diseases,   some   markers   known   as   surrogate  outcomes  can  only  vaguely  be  related  to  the  more   important  outcome  (for  example,  improvement  in  progression-­‐‑free  survival  does  not  always  mean  an  improvement  in  overall  survival  or  quality  of  life),  and  biological  measurements  do  not  encompass  the  patient's   own   perception   of   their   health.   As   a   further   example,   mortality   is   not   a  sufficient  outcome  indicator  in  many  diseases  that  are  not  directly  fatal,  and  it  tells  us  nothing  of  what  happens  before  death.          

Definition  and  aims  of  the  measurement      HRQoL  measurement  aims  to  capture  the  overall,  comprehensive  health  of  a  patient  (Stanquet  et  al.,  1998).    Many  definitions  exist,    but  they  all  agree  that  HRQoL  describes  the  comprehensive  effect  of  a  disease  or  its  consequent  treatment  on  a  patient  (Cella,  1995;  Guyatt  et  al.,  1993)  (ISOQOL,  n.d.).      The   World   Health   Organization   (WHO)   defines   health   as   the   absence   of   physical,  mental   and   social   problems.  HRQoL   aims   to   capture   and   quantify   all   these   aspects.  

Page 42: Health-related quality of life in patients with chronic pain

  42  

However,  a  HRQoL  instrument  used  to  study  health  care  outcomes  should  be  restricted  to  describing  health  –  hence  the  name  health-­‐‑related  quality  of  life.  Quality  of  life  itself  is  a  broader  concept  that  encompasses,  for  example,  social  roles  and  economic  aspects,  but  as  health  care  interventions  cannot  directly  influence  these,  they  are  excluded  from  HRQoL  measurement.      Patients  are  the  best  judges  of  their  own  health.  Health  is  subjective,  and  no  outsider  can   estimate   the   different   aspects   of   a   person’s   health,   or   the   value   one   gives   to  different  aspects  of  health.  HRQoL   is  also   subjective,   and  should  be   reported  by   the  patients.  Sometimes  patients  are  unable  to  give  their  assessment  due  to,  for  example,  being  unconscious,  and  in  such  cases,  we  must  settle  for  peers’  assessments.  In  practice,  HRQoL   is   measured   using   questionnaires,   of   which   there   are   many.   These  questionnaires  are  referred  to  as  HRQoL  instruments.    HRQoL  instruments  may  be  disease  specific  or  generic.  As  the  name  suggests,  a  disease-­‐‑specific  instrument  is  intended  to  be  used  with  patients  suffering  from  the  disease  for  which  the  instrument  was  developed.  Generic  instruments  can  be  used  with  all  patient  groups,  and  the  results  are  intended  to  be  comparable  across  all  populations.  As  HRQoL  aims  to  encompass  the  full  health  state  of  patients,  generic  instruments  are  preferred.  In  addition,  only  generic  instruments  can  be  used  in  cost-­‐‑utility  analyses.      Depending  on  the  HRQoL  instrument  used,  HRQoL  can  be  represented  as  a  profile  of  the  different  dimensions  of  health,  as  a  single  index  score,  or  as  both.  Instruments  that  produce  the  health  utility  index  are  referred  to  as  single  index  instruments.      HRQoL  is  often  reported  as  a  health  utility  index,  on  a  scale  in  which  1  represents  full  health  and  0  represents  death.  This  index  represents  the  value  of  remaining  life  in  that  health  state.  In  other  words,  one  year  in  health  of  0.9  is  better  than  one  year  in  health  of  0.4.  The  index  is  intended  to  also  reflect  the  exchange  rate  of  quality  and  length  of  life  –  two  years  in  health  of  0.5  are  equal  to  one  year  in  full  health  of  1.  This  utility  index,  often  referred  to  as  the  HRQoL  score,  is  used  in  the  calculation  of  quality-­‐‑adjusted  life  years  (QALY),  which  are  described  later.        

Theory  of  measuring  HRQoL    Most  often,  HRQoL  is  measured  using  a  structured  questionnaire.  The  simplest  way  is  numeric  ratings  or  visual  analogue  scales  (VAS);  asking  patients  to  rate  their  overall  health.  This  kind  of  VAS  is  included  in  the  EQ-­‐‑5D  instrument  as  a  reference  (EuroQoL  Group,  1990).  However,  due  to  several  limitations,  VAS  or  NRS  alone  do  not  produce  a  valid  estimate  of  HRQoL  (Torrance  et  al.,  2001).  They  are  mainly  used  as  a  reference  or  in   the   valuation   process   of   the   health   states   described   by   HRQoL   instruments  (described  later).    A  questionnaire  tool  used  to  measure  HRQoL  is  often  referred  to  as  an  instrument.  Most  HRQoL  measures  include  a  descriptive  system  and  a  valuation  system.      

Page 43: Health-related quality of life in patients with chronic pain

  43  

The  descriptive  system  aims  to  encompass  all  the  relevant  aspects  of  health.  It  consists  of  several  dimensions  of  health,  and  each  dimension  contains   levels  of  severity.  The  dimensions  and  their  content  should  be  restricted  to  those  whom  the  treatment  can  affect,  as  HRQoL  is  used  to  measure  the  effect  of  healthcare  interventions.  In  practice,  the  descriptive  system  is  a  questionnaire  that  patients  fill  in.  No  consensus  exists  on  which   or   how  many   dimensions   should   be   included   in   an   HRQoL   instrument,   and  different  instruments  have  significantly  differing  descriptive  systems  (Brooks,  1996;  Hawthorne  et   al.,   2001;  Moock  and  Kohlmann,  2008;   Sintonen,  1994;  Ware  and  Sherbourne,  1992).      The  valuation  system  of  an  instrument  is  a  scoring  algorithm,  or  often  a  set  of  many,  used  to  calculate  scores  for  the  health  states  (the  responses  to  the  descriptive  system)  that  represent  population  preferences.  The  score  thus  reflects  how  good  or  bad  a  health  state  is,  according  to  population  preferences,  in  relation  to  death  and  full  health.  HRQoL  instruments  typically  use  an   indirect  valuation  method  of  health  states;   the  patients  who  fill  in  an  HRQoL  questionnaire  do  not  value  their  health  states  themselves.  Instead,  the  instrument  contains  pre-­‐‑defined  valuation  for  the  health  states  that  were  elicited  from  healthy  subjects  when   the   instrument  was  developed.  The  patients’   scores  are  then  calculated  using  these  pre-­‐‑defined  values,  i.e.  preference  weights.  The  following  chapter  describes  different  valuation  methods.      Valuation  of  health  utilities      Different  methods  exist  for  calculating  preference  weights.  The  valuation  is  often  done  on  healthy  subjects.  It  can  be  approached  with  either  a  direct  or  an  indirect  method.  In  the  direct  method,  the  health  states  are  described,  the  participants  imagine  themselves  in  the  health  state,  and  then  value  the  health  state  with  techniques  described  to  them  shortly.  In  the  indirect  method,  the  preference  weights  are  already  calculated  for  the  health  states,  and  the  patient's  responses  are  scored  on  the  basis  of  these  preference  weights.  Direct  valuation  methods  have  shown  to  usually  produce  higher  health  ratings  than  indirect  methods  (Arnold  et  al.,  2009)    Commonly  used  direct  methods  for  health  utility  calculation  are  Time  Trade-­‐‑Off  (TTO),  Standard  Gamble  (SG),  VAS,  Person  Trade-­‐‑Off  (PTO),  Magnitude  Estimation  (MG)  and  Willingness-­‐‑to  Pay  (WTP)  (Green  et  al.,  2000;  Krabbe  et  al.,  1997).  SG,  TTO  and  VAS  are  probably  the  most  often  used.      In   TTO,   the   subjects   imagine   themselves   in   the   described   health   state   with   two  possibilities:   n   (defined   number,   e.g.   10)   years   in   the   said   health   state   followed   by  death,  or  x  (<  10)  years  in  full  health  followed  by  death.  X  is  then  varied  until  the  two  options  are  equally  appealing.  Utilities  can  then  be  calculated  as  x/n,  for  example  7/10  =  0.7.      In   SG,   the   respondent   imagines   living   in   a   carefully   described,   compromised   health  state  for  a  defined  number  of  years.  The  respondent  then  faces  a  treatment  option  with  a  probability  p  of  full  recovery,  or  probability  1-­‐‑p  of  death.  The  p  is  varied  until  both  

Page 44: Health-related quality of life in patients with chronic pain

  44  

options   are   equally   appealing.   The  p   is   then   interpreted   as   the   utility   index   for   the  described  health  state.  The  concept  of  probability  is  both  a  strength  and  a  limitation  of  this  method,  as  it  mimics  a  real-­‐‑world  situation  involving  uncertainty,  and  respondents  may  have  a  varying  idea  of  the  concept  of  probability  (Guinness,  2011).    VAS   is  perhaps   the  simplest  method   for  health  state  valuation   -­‐‑  patients  value   their  health  state  on  a  visual  analogue  scale,  on  which  one  end  indicates  death  and  the  other  full   health.   Despite   its   simplicity,   it   has   certain   limitations,   and   generally   produces  lower  utility  values  than  the  other  methods  (Stiggelbout  et  al.,  1996;  Torrance  et  al.,  2001).    The  choice  of  valuation  method  affects  HRQoL  results.  In  several  hypothetical  health  states,   utility   scores   for   equivalent   states   can   vary   substantially,   depending   on   the  measure  used  (Kopec  and  Willison,  2003).    Some  valuation  methods,  most  notably  the  commonly  used  method  for  EQ-­‐‑5D,  allow  health  utility  scores  below  zero,  in  which  case  the  health  state  is  interpreted  as  worse  than  death.        In  practice,  when  calculating  the  preference  weights  for  instruments,  not  all  possible  health  states  defined  by  the  instrument  are  valued.  It  is  common  to  value  only  some  of  the  health  states,  and  then  extrapolate  the  preference  weights  to  other  health  states  using  statistical  methods,  for  example,  the  linear  regression  model  (Dolan,  1997).        Minimum  clinically  important  change    The  minimum   clinically   important   change   (MIC),   or  minimum   important   difference  (MID)   describes   the  magnitude   of   change   in   the   HRQoL   score   that   the   patient   can  perceive  as  a  change  for  better  (or  worse).  It  is  often  given  as  a  cut-­‐‑off  value  above  (or  below)  which  the  change  is  noticeable.  For  example,  the  MID  for  improvement  might  be   +0.015,   which  means   that   the   HRQoL   is   not   considered   to   have   changed   if   the  hypothetical  HRQoL  score  change  is  between  0  and  0.0149,  and  changes  above  0.015  are  considered  improvements.    Two  types  of  methods  are  described  to  obtain  MID  estimates:  one  anchor  based  and  the   other   distribution   based.   Distribution-­‐‑based   measures   are   effect   size   (ES),  standardized  response  mean  (SRM)  and  standard  error  of  mean  (SEM).    The   terminology  used   in   the   literature   is   somewhat  heterogenous   (see   for   example  (Alanne  et  al.,  2015;  de  Vet  and  Terwee,  2010)).  For  example,  in  their  response  letter,  de   Vet   and   Terwee   suggest   that   an   anchor-­‐‑based  MID   is   a   different   concept   to   the  distribution-­‐‑based  minimal   detectable   difference   (de   Vet   and   Terwee,   2010).   They  argue  that  a  minimal  detectable  difference  only  shows  the  statistical  significance  of  the  difference   between   two   groups   of   measurement,   and   that   minimum   clinically  important  differences  should  be  assessed  using  anchor-­‐‑based  methods.  Revicki  et  al.  also  consider  the  anchor-­‐‑based  method  to  be  more  appropriate  than  the  distribution-­‐‑based  method  for  estimating  the  MID  (Revicki  et  al.,  2008).  

Page 45: Health-related quality of life in patients with chronic pain

  45  

Quality-­‐‑adjusted  Life  Years    Generic  HRQoL  measurement  is  the  requirement  for  calculating  quality-­‐‑adjusted  life  years.   When   the   length   of   life   is   multiplied   by   the   HRQoL   utility   index,   where   0  represents   death   and   1   full   health,   the   product   is   called   quality-­‐‑adjusted   life   years  (QALYs).  The  unit  is  1  QALY,  which  represents  one  year  lived  in  full  health.  We  can  then  compare,  for  example,  two  intervention  groups,  and  calculate  the  differences  between  the  QALYs  of  the  treatments.  A  common  measure  used  in  cost-­‐‑utility  analyses  is  cost  per   QALY   gained,   in   which   the   price   difference   between   two   interventions   are  compared  to  the  differences  between  QALYs.          

Different  HRQoL  Measures    HRQoL  instruments  can  be  generic  or  disease-­‐‑specific.  Generic  instruments  are  those  that  can  be  used  in  all  patient  populations,  and  disease-­‐‑specific  are  only  applicable  to  those  with  a  certain  diagnosis.  Disease-­‐‑specific  instruments  are  more  sensitive  to  small  but   possibly   clinically   important   aspects   of   the   disease   in   question,   and   may  discriminate  patients  better,  whereas  generic  HRQoL  instruments  are  not  as  sensitive,  and   may   lack   discriminatory   power   in   small   but   important   differences   in   certain  conditions.   Disease-­‐‑specific   instruments   are   well   suited   to,   for   example,   assist   in  clinical   decision-­‐‑making   or   compare   different   treatments   of   the   same   condition.  (Drummond,  2015)    However,  disease-­‐‑specific  instruments  cannot  be  used  in  cost-­‐‑utility  analyses,  or  in  the  comparison  of  different  patient  populations  because  they  do  not  produce  comparable  data,  as  they  are  only  valid  in  the  condition  for  which  they  are  designed.  In  addition,  most  do  not  actually  produce  any  health  utility  measurements,  i.e.,  they  do  not  value  the  health  states  in  relation  to  death.  Examples  of  the  disease-­‐‑specific  measurements  of  general  health  used  in  chronic  pain  states  are  the  Western  Ontario  and  McMaster  Universities  Osteoarthritis  Index  (WOMAC)  used  for  osteoarthritis  (McConnell  et  al.,  2001),  and  the  Roland  and  Morris  Back  Pain  Disability  Scale  used  for  back  pain  (Roland  and   Morris,   1983).   The   Brief   Pain   Inventory   (BPI)   is   a   compact   questionnaire  measuring  pain  intensity  and  disability  caused  by  pain.  It  was  originally  developed  for  cancer-­‐‑related  pain,  but  has  also  been  validated  for  non-­‐‑cancer-­‐‑related  pain  (Tan  et  al.,  2004).    

Generic  instruments    

EQ-­‐‑5D    Developed   by   the   EuroQoL   group,   the   EuroQoL   5   Dimensions   Questionnaire   is  probably  the  most  internationally  used  HRQoL  instrument  (Räsänen  et  al.,  2006).  Its  properties  have  been  well   studied   in  various  patient  populations   (Payakachat  et  al.,  2015).   Originally,   the   EQ-­‐‑5D  was   intended   to   be   a   very   simple   HRQoL   instrument:  

Page 46: Health-related quality of life in patients with chronic pain

  46  

interestingly   it   was   not   intended   as   a   standalone   HRQoL   measure,   but   more   of   a  reference  to  complement  existing  HRQoL  instruments    (Brooks,  1996).    Its  descriptive   system  comprises   five  dimensions  of  health:  motility,   self-­‐‑care,  usual  activities,  pain  or  discomfort,  and  anxiety  or  depression.  In  the  classic  EQ-­‐‑5D-­‐‑3L,  the  dimensions  are  divided  into  three  levels  of  severity:  no  problems,  some  problems,  and  severe   problems.   It   can   describe   35   =   243   health   states   (Rabin   et   al.,   2014).   The  questionnaire  also  includes  a  VAS  with  endpoints  of  ‘the  worst  health  you  can  imagine’  and  ‘the  best  health  you  can  imagine’.  The  respondent  rates  their  health  on  the  scale  in  relation  to  the  endpoints.    In  2009,  the  EuroQoL  group  published  a  five-­‐‑level  version  of  the  descriptive  system  of  the  EQ-­‐‑5D  to  improve  the  instrument's  sensitivity  and  to  reduce  the  ceiling  effect.  The  dimensions   remained   the   same,   but   they   now   include   five   levels   of   severity:   no  problems,   slight   problems,   moderate   problems,   severe   problems,   and   extreme  problems  (Feng  et  al.,  2017;  van  Hout  et  al.,  2012).      Several  valuation  algorithms  exist  for  the  EQ-­‐‑5D-­‐‑3L.  The  most  commonly  used  is  based  on   the   TTO  method,   created  with   a   sample   of   the   general   population   of   the  United  Kingdom     (Brooks,   1996;   MVH   Group,   1995).     This   produces   health   utility   scores  ranging  from  -­‐‑0.594  to  1,  i.e.,  it  allows  health  states  worse  than  death  (2007).    In  the  valuation  process,  43  of  the  243  health  states  were  valued  using  the  TTO  method,  and  these  utilities  were  used  in  a  regression  model  to  calculate  utility  scores  for  the  other  health   states.   The   regression  model   includes   a   constant   for   any   non-­‐‑perfect   health  state,  -­‐‑0.081,  which  is  added  if  problems  occur  in  any  of  the  dimensions.  The  model  also  includes  another  term  called  N3  =  -­‐‑0.269,  which  is  added  if  any  dimension  is  at  level  three,   i.e.   if   severe   problems   occur   in   any   of   the   dimensions.   This   means   that   the  absolute  score  differences  between  health  states  can  be  substantial.  No  scores  between  0.888  and  0.999  can  be  obtained.    No  consensus  exists  on  the  MID  of  the  EQ-­‐‑5D  score.  Some  estimations  have  been  based  on  longitudinal  studies  -­‐‑  a  review  of  these  MIDs  estimate  the  mean  MID  to  be  0.074,  with   a   range   of   0.011   to   0.140  when   using   the   anchor-­‐‑based  method   (Walters   and  Brazier,  2005).      Different  value  sets    The   EQ-­‐‑5D-­‐‑3L   has   several   other   valuation  methods,   such   as   a   VAS-­‐‑based   valuation  system.   In   comparison   to   the   TTO-­‐‑based  method,   the   VAS-­‐‑based  method   produces  lower  values  in  relatively  better  health  states,  and  higher  values  in  worse  health  states  (Brazier  et  al.,  1999).  For  economic  studies  and  for  QALY  calculation,  the  TTO-­‐‑based  valuation  system  of   the  EQ-­‐‑5D  (Rabin  and  de  Charro,  2001)   is  recommended.  Many  countries  have  their  own  value  sets  for  the  EQ-­‐‑5D-­‐‑3L,  which  are  based  on  either  TTO,  VAS   or   both  methods   combined   (2007).   For   economic   studies,   the   EuroQoL   group  recommends   choosing   a   TTO-­‐‑based   value   set   either   from   the   country   in  which   the  research   is   being   conducted,   or   a   value   set   from   a   country   that   most   closely  approximates  this  (the  EuroQoL  Group,  2017).  

Page 47: Health-related quality of life in patients with chronic pain

  47  

 A  value  set  for  the  EQ-­‐‑5D-­‐‑5L  has  been  published  (Devlin  et  al.,  2017),  but  the  National  Institute   for   Health   and   Care   Excellence   (NICE)   of   the   United   Kingdom   still  recommends  the  value  set  for  the  EQ-­‐‑5D-­‐‑3L,  until  further  research  is  conducted  on  the  differences  and  on  the  impact  of  adopting  the  new  value  set.  If  data  are  collected  using  the   EQ-­‐‑5D-­‐‑5L,   NICE   recommends   converting   the   results   to   EQ-­‐‑5D-­‐‑3L   by   using   the  mapping  algorithm  developed  by  van  Hout  et  al.  in  2012  (van  Hout  et  al.,  2012).  These  recommendations   were   provided   in   a   NICE   policy   statement   given   in   August  2017(National  Institute  for  Health  and  Care  Excellence,  2017).  This  statement  is  to  be  reviewed  in  August  2018.        

15D    The  15-­‐‑Dimensional  HRQoL  instrument  was  developed  in  Finland  by  Harri  Sintonen  and  Markku  Pekurinen.  Their  aim  was  to  create  an  instrument  that  can  be  used  as  both  a   profile   and   a   single   utility   index   measure   (Sintonen,   2001).   In   other   words,   it  produces  weighed  utility  indices  for  both  individual  dimensions  and  the  whole  health  state.      Descriptive  system    The  descriptive  system  of  the  15D  consists  of  15  dimensions:  motility,  vision,  hearing,  breathing,   sleeping,   eating,   speech,   excretion,   usual   activities,   mental   function,  discomfort   and   symptoms,   depression,   distress,   vitality,   and   sexual   activity.   The  conceptual  basis   for  these  dimensions  is  the  WHO's  definition  of  health  as  a  state  of  complete  physical,  mental  and  social  well-­‐‑being  (World  Health  Organization,  1948).  Each   dimension   contains   five   levels   of   severity:   no,   slight,   considerable,   severe,   or  unbearable  problems  in  the  dimension.  The  patient  chooses  the  level  of  severity  that  best  describes  their  current  health  state.  In  theory,  The  instrument  defines  515  health  states,  i.e.  possible  combinations  from  the  questionnaire.    One   property   of   the   descriptive   system   is   its   ability   to   predict   a   small   number   of  missing  answers.  If  a  patient  has  left  three  or  less  of  the  15  dimensions  unanswered,  the  missing  dimensions  can  be  reliably  predicted  using  linear  regression  methods,  and  the  patient’s  age,  gender,  and  other  dimensions  as  predictors  (Sintonen,  1994).        Valuation  system    The   valuation   system   was   created   by   applying   the   multiattribute   utility   theory  (Sintonen,  1995).  The  multiattribute  utility  functions  are  used  in  decision  making  in  situations,   where   there   are   many   attributes   (e.g.,   the   dimensions   of   health)   and  uncertainty  (e.g.,   the  probability  of  death)  affecting  the  decision.  The  valuation  here  was  carried  out  in  several  representative  samples  of  the  Finnish  general  population  in  a   three-­‐‑stage   procedure.   Stages   one   and   two   aimed   at   establishing   the   relative  importance  of  the  dimensions  for  health,  by  using  the  magnitude  estimation  method.  

Page 48: Health-related quality of life in patients with chronic pain

  48  

The  ratio  scale  nature  of  the  valuation  was  emphasized  using  arrows  and  wording;  For  example,  the  arrow  pointing  to  90  on  a  scale  of    0  to  100  scale  reads:  "9/10  as  important  as   the   most   important   attribute   (90%   of   the   importance   of   the   most   important  attribute)".  The  participants  rated  the  relative   importance  of   the  "best"   levels  of   the  dimensions   for   health,   as  well   as   the   relative   importance   of   the   "worst",   or   bottom  levels  of  the  dimensions.  The  importance  weights  were  rescaled  so  that  they  sum  up  to  1.   The   importance   weights   were   estimated   for   the   intermediate   levels   of   the  dimensions  based  on  distances  between  the  level  values  within  the  dimensions.    These  within-­‐‑dimension  level  values  were  elicited  as  the  third  stage  by  using  a  similar  0-­‐‑100  ratio  scale  and  placing  the  most  desirable   level  at  100,   then  dividing  the  average  by  100.  These  within-­‐‑dimension  desirability  level  values  were  further  rescaled  to  a  scale  of  0-­‐‑1  so  that  the  best  level  obtains  a  value  of  1  and  being  dead  =  0.    The  15D  score,  representing  overall  HRQoL,   is  calculated  by  multiplying   the  within-­‐‑dimension   level  values  by  the  importance  weights  of  the  levels  of  the  dimensions.  This  results  in  a  0-­‐‑1  scale,  were  1=no  problems  on  any  dimension  (“full  health”)  and  0=being  dead.    The  MIC  for  the  15D  score  has  been  established  as  0.015  (Alanne  et  al.,  2015).  This  was  estimated  among  4903  hospital  patients  with  16  different  disease  entities  (including  chronic  pain  patients)  using   the  anchor-­‐‑based  method,   and  a   five-­‐‑point  Likert   scale  with  overall  health  change  as  the  anchor.    

SF-­‐‑6D  and  SF-­‐‑36    The   36-­‐‑Item   Short   Form   Health   Survey,   the   SF-­‐‑36,   was   developed   by   the   RAND  Corporation.  It  was  originally  published  as  the  result  of  the  Medical  Outcomes  Study,  a  large-­‐‑scale   study   on   treatment   outcomes   and   their   measurement   in   different  organizations   of   the   United   States   health   care   (see  https://www.rand.org/health/surveys_tools/mos/bibliography.html   for   the  bibliography   of   publications).   The   objective   was   to   create   a   comprehensive,  psychometrically   robust   general   health   survey   that   would   be   short   enough   to   be  practical  in  various  study  situations.    The   SF-­‐‑36   consists   of   36   items   that   cover   eight   dimensions   of   health   (physical  functioning,   bodily   pain,   role   limitations   due   to   physical   health   problems,   role  limitations   due   to   personal   or   emotional   problems,   emotional  well-­‐‑being,   social  functioning,   energy/fatigue,   and   general   health   perceptions).   The   questionnaire  also  contains  a  five-­‐‑point  Likert-­‐‑type  question  on  general  health.  For  each  dimension,  the  scores  of  the  responses  are  transformed  on  a  scale  from  0  to  100,  which  reflect  the  well-­‐‑being   in   the   said   dimension.   The   SF-­‐‑36   does   not   produce   single   index   utility  scores,   and   the   dimension   summary   scores   do   not   reflect   population   preferences  (McHorney   et   al.,   1993;  Ware   and   Sherbourne,   1992).   The   SF-­‐‑12   is   a   shortened  version  of  the  SF-­‐‑36.  It  produces  the  physical  and  mental  component  summary  scales  of  the  SF-­‐‑36  (Ware  et  al.,  1996).    To   calculate   a   health   utility   score,   i.e.,   the   HRQoL   index   score,   Brazier   et   al.  developed  an  algorithm  to  be  used  with  the  SF-­‐‑36  (Brazier  et  al.,  1998).  This  takes  12  of  the  36  items  to  form  six  subscales:  physical  function,  role  limitation,  social  

Page 49: Health-related quality of life in patients with chronic pain

  49  

function,  bodily  pain,  mental  health  and  vitality.  The  preference  weights  of  the  SF-­‐‑6D  were  elicited  using  the  standard  gamble  (SG)  method.  The  algorithm  produces  utility  scores  ranging  from  0.29  to  1.  A  similar  algorithm  has  also  been  produced  to  be  used  with  the  SF-­‐‑12  (Brazier  and  Roberts,  2004).    Other  measures    The   Assessment   of   Quality   of   Life   (AQoL)-­‐‑8D   instrument   describes   eight  dimensions   of   health:   independent   living,   happiness,   mental   health,   coping,  relationships,  self-­‐‑worth,  pain,  and  senses.  Preference  weights  are  derived  using  the   TTO   method.   The   Canadian   Health   Utility   Index   (HUI   3)   describes   seven  dimensions:  vision,  hearing,  speech,  ambulation,  dexterity,  emotion,  cognition,  and  pain.  The  preference  weights  are  obtained  using  a  combination  of  the  VAS  and  TTO  methods,   and   the  utility   score   can   range   from   -­‐‑0.31   to  1.   Further  description  of  these   and  other  measures   are   given   in,   for   example,   a   comparison   study  of   five  multi-­‐‑attribute  utility  instruments  (Hawthorne  et  al.,  2001).  

 Properties  of  HRQoL  instruments    If   we   want   to   measure   a   patient's   temperature,   a   device   that   tells   us   the   room  temperature  or  the  patient's  blood  pressure  is  useless.  'Validity'  refers  to  the  extent  to  which   a  measurement   captures  what   it   aims   to  measure.   The   concept   of   validity   is  important  in  every  clinical  measurement,  be  it  physical,  chemical  or  psychological  in  nature.    Several  aspects  of  validity  can  be  differentiated.  In  his  working  paper  describing  the  15D,  Sintonen  defines  the  different  aspects  of  validity  and  other  properties  of  HRQoL  instruments  (Sintonen,  1994).  In  their  review  on  generic,  single-­‐‑index  score-­‐‑producing  HRQoL   instruments,   i.e.,   multi-­‐‑attribute   utility   instruments,   Richardson   et   al.  summarize  the  properties  that  should  be  assessed  by  the  different  HRQoL  instruments  (Richardson  et  al.,  2011).    Content  validity  refers  to  the  extent  to  which  a  measure  captures  the  important  aspects  of  the  measured  condition  and  its  treatment.  In  the  case  of  HRQoL  instruments,  their  aim   is   to  measure   overall   health   and   functioning,   so   they   should   encompass   all   the  relevant  aspects  of  health.  On  the  other  hand,  a  measure  should  not  contain  items  that  are   irrelevant   to   the   measured   phenomenon.   In   practice,   content   validity   is   often  assessed   by,   for   example,   an   expert   panel,   when   developing   the   instrument.   One  example   of   content   invalidity   is   the   'ceiling   effect':   if   one   instrument   produces   an  HRQoL  score  of  1  (full  health)  but  the  patient  group  feels  that  the  disease  impairs  their  health,   the   instrument   can   be   concluded   as   insensitive,   because   it   lacks   some  components  that  are  meaningful  for  health.      Construct  validity  refers  to  the  extent  to  which  the  instrument  measures  what  it  was  intended   to.   For   example,   an  HRQoL   instrument   should  measure  overall   health,  not  

Page 50: Health-related quality of life in patients with chronic pain

  50  

only   one   aspect   of   health   such   as   depression,   or   socioeconomic   position.   Construct  validity  can  be  further  divided  into  the  following:  

•   Convergent  validity:  correlation  with  other  measures  expected  to  correlate  with  the  construct  

•   Discriminant   validity:   non-­‐‑correlation   with   measures   of   different  constructs,  such  as  HRQoL  and  blood  pressure  

•   Discriminative   validity:   ability   to   discriminate   between   different   groups  (patients,  healthy  population).  

 In   practice,  most   studies   assessing   the   validity   of   an   instrument   evaluate   construct  validity  and  convergent  validity.  This  is  done  by  comparing  the  instrument  of  interest  with   another   instrument   known   to   be   valid.   Bland   and   Altman   present   statistical  methods  for  such  a  comparison  (Bland  and  Altman,  1986).  Most  studies  assessing  an  HRQoL   instrument's   validity   in   a   certain   group   of   patients   have   assessed   construct  validity.   It   should   be   noted   that   proving   only   construct   validity   is   not   enough   to  conclude  that  an  HRQoL  instrument  is  valid  (Richardson  et  al.,  2011).    Criterion  validity  is  a  similar  term  to  construct  validity.  It  describes  the  extent  to  which  an  instrument  behaves  as  expected,  judged  by  external  criteria.  This  criteria  may  be,  for  example,  a  'gold  standard'  measure.  Predictive  validity  means  the  ability  to  predict  the  measure  in  question  using  the  defined  criteria,  or  vice  versa.      In   addition   to   validity,   several   other   properties   of   HRQoL   instruments   should   be  considered  when  estimating  their  performance.  These  are  briefly  outlined  next.    Feasibility   means   how   easy   an   instrument   is   to   fill   in.   Reliability   indicates   the  repeatability  of  measurements  in  the  same  population,  with  minimal  random  error.  It  is  assessed  using  a  test-­‐‑retest  method,  and  evaluates  whether  the  repeated  measures  differ.   Sensitivity   means   the   ability   to   detect   significant   differences   in   health,   and  responsiveness  to  change  means  the  ability  to  detect  changes  over  time.      

Comparison  of  different  HRQoL  measures    The  various  HRQoL   instruments  differ   from  each  other   in   terms  of   their  descriptive  systems,  valuation  systems  and  combination  of  algorithms  (additive  or  multiplicative)  used.  Most  instruments  also  have  different  ranges  of  scores.  Many  studies  have  been  carried  out  to  compare  different  HRQoL  instruments  (Hawthorne  et  al.,  2001;  Moock  and  Kohlmann,   2008;   Richardson   et   al.,   2011,   2016).   In   summary,   instruments   can  produce  significantly  differing  HRQoL  scores  in  the  same  patient  populations.      In  their  review  on  multi-­‐‑attribute  utility  (MAU)  instruments,  Richardson  et  al.  discuss  the   substantial   differences   between   the   HRQoL   scores   produced   by   different  instruments.   Although   the   valuation  methods   (TTO,   SG,   VAS)   are   different   in   every  instrument,  the  methods  themselves  correlate  with  each  other  to  such  an  extent  that  the  different  valuation  methods  are  not  sufficient  to  explain  the  observed  differences  in  the  HRQoL  scores.  The  authors  conclude  that  the  differences  observed  in  the  HRQoL  scores  produced  by  different  instruments  in  the  same  patient  populations  are  largely  

Page 51: Health-related quality of life in patients with chronic pain

  51  

due  to  the  different  descriptive  systems  (Richardson  et  al.,  2011).  In  a  later  review,  the  authors   conclude   that   different   HRQoL   instruments   indeed   measure   different  constructs,  and  that  the  results  are  not  directly  comparable  (Richardson  et  al.,  2015).      

Use  of  HRQoL  instruments  in  chronic  pain  patients    HRQoL  is  recommended  as  a  key  outcome  indicator  of  pain  management  by  both  the  IMMPACT  guidelines   for  clinical   trials  on  pain  management,  and   the  recent  VAPAIN  consensus  statement  on  outcomes  for  MPM  (Dworkin  et  al.,  2005;  Kaiser  et  al.,  2018).  In  a  review  of  RCTs  on  MPM,  37%  of  the  included  studies  used  HRQoL  as  an  outcome  measure  (Scascighini  et  al.,  2008).  In  another  systematic  review  on  outcomes  used  for  assessing  MPM,  HRQoL  was  measured  in  21%  of  the  included  studies  (Deckert  et  al.,  2016).  The  reviews  did  not  report  the  instruments  used  to  measure  HRQoL.      Different  HRQoL  instruments  have  produced  differing  results  in  chronic  pain  patients.  Lillegraven  et  al.  compared  15D,  EQ-­‐‑5D  and  SF-­‐‑6D  among  rheumatoid  arthritis  patients  and  found  the  scores  to  differ  significantly.  The  agreement  was  moderate  between  SF-­‐‑6D   and   15D,   but   poor   between   EQ-­‐‑5D   and   15D/SF-­‐‑6D.   The   differences   were  most  pronounced  among  patients  with  severe  disabilities  (Lillegraven  et  al.,  2010).    In  a  population  sample  with  chronic  pain,  Torrance  et  al.  similarly  concluded  that  the  SF-­‐‑6D  and  EQ-­‐‑5D  produced  notably  different  scores.  They  also  noted  that  the  patients  who  obtained  worse-­‐‑than-­‐‑death  scores  in  EQ-­‐‑5D  were  not  clustered  at  the  lower  end  of  SF-­‐‑6D;  i.e.,  there  was  no  floor  effect  (Torrance  et  al.,  2014).  These  results  have  incited  a  discussion  on  the  use  of  different  HRQoL  instruments  in    patients  with  chronic  pain.  Also,  as  Schofield  notes,  the  validity  of  HRQoL  instruments  has  not  been  studied  among  chronic  pain  populations  (Schofield,  2014).  

Aims  of  the  study    The  literature  review  thus  identified  the  following  problems  in  assessing  the  treatment  outcomes  of  MPM.      MPM  is  effective,  but  we  do  not  know  what  makes  it  superior  to  other  approaches.  We  also   do   not   know   which   patients   benefit   from   MPM   or   its   components.   The  heterogeneity  of  study  designs  and  their  outcomes  prevents  the  comparison  of  these  different  studies.  This  could  be  overcome  by  standardizing  the  outcomes  used  in  these  studies.    HRQoL  is  recommended  as  an  important  outcome  measure  in  all  pain  interventions,  including  MPM.  However,  different  instruments  produce  differing  HRQoL  results  and  there  is  no  consensus  on  which  instrument  should  be  to  used  to  measure  chronic  pain.  Moreover,   some   reviews   of   HRQoL   instruments   indicate   that   other   HRQoL  instruments,  the  15D  in  particular,  should  be  used  instead  of  the  EQ-­‐‑5D  (Richardson  et  al.,  2016).  

Page 52: Health-related quality of life in patients with chronic pain

  52  

 The  aims  of  this  thesis  were  the  following:    

1.   To  study  the  validity  of  two  HRQoL  instruments,  the  EQ-­‐‑5D  and  the  15D,  in  patients  with  chronic  pain.    

2.   To  assess  the  impact  of  chronic  pain  on  HRQoL  by  comparing  the  HRQoL  of  chronic  pain  patients  with  that  of  a  general  population  sample.    

3.   To  investigate  which  aspects  of  chronic  pain  are  most  significant  for  overall  quality  of  life.  

4.   To  use  an  HRQoL  instrument  to  assess  the  prognosis  of  patients  treated  at  a  multidisciplinary  pain  clinic.  

5.   To   identify   potential   patient   background   variables   associated   with   the  HRQoL  changes  after  MPM.  

 I   hypothesized   that   both   instruments   would   show   validity,   but,   based   on   previous  comparisons  and  certain  properties  of  the  EQ-­‐‑5D,  that  the  15D  would  appear  superior  to  the  EQ-­‐‑5D.  Because  disability  from  chronic  pain  is  linked  to  psychosocial  burden  and  symptoms,   I   expected   the   HRQoL   of   the   patients   in   chronic   pain   to   be   impaired,  comparable   to  e.g.   those  with  depression.   I   expected   to   see   improvement  of  HRQoL  after   MPM,   and   that   variables   measuring   the   pain-­‐‑related   burden   (such   as   pain  intensity  or  pain-­‐‑related  distress)  would  be  associated  with  the  treatment  outcome.    

Materials  and  methods    

Participants    The  population  of  Study  I  consisted  of  the  first  391  patients  who  participated  in  the  Chronic  pain  and  life-­‐‑style  factors  ‘KROKIETA’  study.  KROKIETA  is  a  multicentre  study  of  several  secondary  or  tertiary  pain  management  centres   in  Finland,  which  aims  to  analyse   the   connections   between   chronic   non-­‐‑cancer   pain,   lifestyle   factors,  socioeconomic   and   psychological   properties,   and   metabolic   and   other   biochemical  markers.  The  inclusion  criteria  for  the  KROKIETA  study  were  an  age  of  18–75  years,  no  active  cancer,  and  the  ability  to  answer  the  questions  independently  in  Finnish.    The  patients  for  Study  I  were  recruited  between  September  2013  and  June  2016  from  three  multidisciplinary   pain   clinics   (Turku   University   Hospital,   Southern   Karelia   Central  Hospital  and  Helsinki  University  Hospital,  where  the  recruitment  for  KROKIETA  study  was  carried  out  after  recruitment  for  Studies  II  and  III  of  this  present  thesis),  and  three  tertiary  facial  pain  centres  (Kuopio  University  Hospital,  Turku  University  Hospital  and  Tampere  University  Hospital).  Those  who  participated  gave  their  written  consent.    The   study   population   for   Studies   II   and   III   were   1528   patients   referred   to   the  Multidisciplinary   Pain   Clinic   of   the   Helsinki   University   Hospital   during   2004–2012.  Patients  with  active  cancer  were  excluded.  Some  patients  attended  multiple  treatment  episodes  during  follow-­‐‑up,  and  patients  attending  a  second  treatment  period  during  2004–2012  were  excluded.  All  admitted  patients  were  sent  a  letter  of  invitation,  and  

Page 53: Health-related quality of life in patients with chronic pain

  53  

those  agreeing  to  participate  gave  their  written  consent.      Admission  to  tertiary  pain  clinics  is  based  on  referral  from  primary  health  care  centres  or  the  private  sector.  The  patients  in  multidisciplinary  pain  clinics  represent  the  most  challenging  group  of  chronic  pain  patients.  They  have  often  undergone  several  failed  treatment  attempts  in  primary  health  care.      Studies  II  and  III  were  approved  by  the  surgical  ethics  committee  of  the  Helsinki  and  Uusimaa   Hospital   District   (decision   no.   182/13/03/02/2009).   The   study   was  registered   at   the   Helsinki   and   Uusimaa   Hospital   District   Clinical   Trials   Registry,   as  number  HUS2071.  Study  I  was  approved  by  the  co-­‐‑ordinating  ethics  committee  of  the  Helsinki  and  Uusimaa  Hospital  District  (decision  no.  29/13/03/00/2012).      Multidisciplinary  pain  management    The   aim   of   MPM   is   to   improve   patients'   physical,   psychological,   work,   and   social  functions,  even  if  their  pain  cannot  be  completely  eliminated.      The   treatment   episode   at   the   Pain   Clinic   of   the   Helsinki   University   Hospital   is  individually   tailored   for   each   patient,   and   implemented   as   outpatient   care.   At   the  beginning  of  an  MPM  episode,  patients  attend  a  diagnostic  evaluation,  on  the  basis  of  which   the   subsequent   rehabilitation   episode   is   planned.   The   staff   of   the  Pain  Clinic  consists  of  physicians,  psychologists,   a  physiotherapist,   a   social  worker,  and  nurses.  Medical   specialties   include   anaesthesiology,   neurology,   rehabilitation   medicine,  psychiatry,   general   medicine,   and   dentistry.   Treatment   modalities   include  pharmacological   interventions,   local   analgesia,   spinal   cord   stimulation,  physiotherapeutic   counselling   (including   exercise   programmes   and   transcutaneous  electronic  nerve  stimulation),  psychological  counselling  (including  pain  management  strategies   such   as   relaxation   and   cognitive-­‐‑behavioural   methods),   supportive  psychological   therapy,   group-­‐‑based   pain   management   programmes,   and  socioeconomic   counselling.   In   addition,   each   patient   meets   a   nurse   several   times  during   their   treatment   episode.   The   treatment   period   is   discontinued  when   a   good  treatment  outcome  (defined  in  the  initial  diagnostic  evaluation)  is  achieved,  or  when  the  physician  concludes  that  the  Pain  Clinic  has  no  further  treatment  modalities  to  offer  the  patient  that  would  benefit  them,  or  if  the  patient  lacks  motivation.  Most  patients  are   referred   for   multidisciplinary   evaluation,   but   a   small   number   are   referred   to  receive  only  one  specific  treatment  modality.          

Page 54: Health-related quality of life in patients with chronic pain

  54  

Measures    

Health-­‐‑related  Quality  of  Life  Instruments    Studies  II  &  III  used  the  15D  instrument  to  measure  HRQoL.  Study  I  used  the  EQ-­‐‑5D  in  parallel   to   the   15D.   These   instruments   are   described   in   detail   in   the   review   of   the  literature  section.  In  addition  to  the  HRQoL  instruments,  Study  I  included  a  five-­‐‑item  Likert   scale  question  about   the   level  of  general  health,  which  asked  patients   to   rate  their  current  overall  health  as  excellent,  good,  average,  rather  poor,  or  very  poor.  This  question   is   routinely   used   with   the   SF-­‐‑36   instrument   as   a   reference   (Ware   and  Sherbourne,  1992).    As  part  of  the  EQ-­‐‑5D,  patients  also  ranked  their  overall  health  on  a  100mm  visual  analogue  scale.    

Socioeconomic  background    For  Studies  II  and  III,  the  socioeconomic  background  variables  were  extracted  from  the  Clinical   Pain   Questionnaire,   which   is   described   in   the   next   chapter.   In   Study   I,   the  questions   measuring   socioeconomic   background   were   based   on   the   questionnaire  used  in  the  FINRISKI  epidemiological  studies  in  Finland  (Borodulin  et  al.,  2015),  and  the   questionnaire   was   edited   to   include   questions   concerning   the   history   of   pain  symptoms.   The   variables   extracted   for   Study   I   were   age,   gender,   education   years,  working  or  not  working,  smoking  status,  and  leisure  time  physical  activity.      

Clinical  pain  questionnaire    The  Clinical  Pain  Questionnaire   is  used  routinely   in  clinical  practice  and  research   in  Finland.   It   contains   questions   on   socioeconomic   background;   the   history   of   pain  symptoms;   the  nature   of   the  pain,   i.e.,   intensity;   interference   in  daily   activities,   and  expectations  concerning  treatment.      The  questions  in  Studies  II  and  III  elicited  information  on  the  following:  education  and  employment  status;  living  alone  or  cohabiting;  constant  or  intermittent  pain;  single  or  several   types  of   pain;   pain  duration  of  more   than  or   less   than   three   years.   The   last  question   concerning   the   duration   of   pain   symptoms   was   dichotomized   from   the  question  ‘How  long  have  you  felt  the  pain  as  it  feels  now?’  The  cut-­‐‑off  point  of  three  years  was  based  on  previous  findings  by  Dunn  et  al.  that  LBP  lasting  over  three  years  is  an  independent  predictor  of  prognosis  (Dunn  and  Croft,  2006).    The   severity   of   pain   was   assessed   by   continuous   measurements   of   current   pain  intensity,  pain-­‐‑related  distress  and  the  impact  of  pain  on  daily  activities.  Pain  intensity  and  pain-­‐‑related  distress  were  measured  using  a  VAS  from  0  to  100  mm,  where  0  refers  to  no  pain  and  100  to  the  worst  imaginable  pain  intensity  or  distress  from  pain.      The  impact  of  pain  on  daily  activities  was  measured  using  the  sum  score  of  the  question  ‘How  much  does  your  pain  affect   the   following  activities?’,   followed  by  18  activities  with  the  response  options  ‘not  at  all,’  ‘moderately,’  and  ‘much’.  The  respective  choices  

Page 55: Health-related quality of life in patients with chronic pain

  55  

were  scored  as  0,  1,  or  2  points.  To  set  the  sum  score  to  the  same  scale  as  the  two  VAS  scores,  it  was  represented  as  a  percentage  of  the  maximum  score.      To  eliminate   the   confounding  effect  of  missing  answers   to   single   activities,   the   sum  score  was  represented  as  a  percentage  of  an  individual  patient’s  theoretical  maximum  sum  score.  In  other  words,  we  used  personal  mean  imputation  to  predict  the  missing  answers  to  the  question  if  the  patient  had  answered  at  least  five  of  the  18  activities.  (e.g.,  if  a  patient  had  answered  ‘moderately’  to  17  activities  and  left  1  activity  blank,  the  patient  would  have  a  score  of  17  out  of  34,  and  the  impact  percentage  would  be  50%).      

Symptom-­‐‑specific  measures      Study  I  used  the  following  measures  in  parallel  with  the  HRQoL  measures  in  order  to  compare   the   instruments’   association   with   different   symptoms   and   to   assess   their  validity.    The  Brief  Pain  Inventory  (BPI)  is  used  to  quickly  and  easily  assess  the  severity  of  pain.  It   can   be   divided   into   two   subscales   –   pain   intensity   and   pain   interference   in   daily  functioning.   It   consists   of   numeric   rating   scales   (NRS)   from   0   to   10,   on   which   the  patient  rates  the  pain  intensity  and  its  interference  in  seven  daily  activities.  Originally  developed  to  assess  cancer-­‐‑related  pain,  it  has  shown  to  also  be  valid  in  assessing  non-­‐‑cancer  pain  (Tan  et  al.,  2004),  and   is  extensively  used   in  pain  research  and  clinical  practice.  A  longer  form  of  the  questionnaire  exists,  but  most  studies,  like  the  present  one,  have  used  the  short  form.  We  used  the  sum  score  of  the  two  subscales,  intensity  and  interference,  in  which  a  higher  score  indicates  more  intense  or  interfering  pain.    The  Chronic  Pain  Acceptance  Questionnaire  (CPAQ)  measures  how  much  the  patient  can  pursue  personally  relevant  goals  and  participate  in  personally  important  activities,  despite  a  chronic  pain  condition  (McCracken  et  al.,  2004b;  Vowles  et  al.,  2008).  It  can  be  divided  into  two  subscales,  Activity  Engagement  and  Pain  Willingness.  It  consists  of  20  statements  which  patient  rates  from  0  to  6,  according  to  how  much  the  statement  reflects   their   views.   The   points   are   then   calculated,   and   in   certain   statements   the  negative  of   the   rating   is  used   (e.g.   -­‐‑4   instead  of  4).  A  higher   score   indicates  greater  acceptance.      The  Beck  Depression  Inventory  (BDI)   is  one  of  the  most  widely  used  measures  for  assessing   the   severity   of   depressive   symptoms.   It   consists   of   21   multiple   choice  questions   that   are   scored   according   to   the   severity   of   symptoms.   A   higher   score  indicates   greater   depressive   symptoms,   and   cut-­‐‑off   values   exist   for   classifying   the  depression  as  minimal,  mild,  moderate,  or  severe  (Beck  et  al.,  1996).      The  Pain  Anxiety  Symptoms  Scale  (PASS)  is  used  to  analyse  pain-­‐‑related  anxiety,  fear,  avoidance   behaviour,   and   negative   beliefs.   Based   on   the   fear-­‐‑avoidance   theory   of  chronic   pain,   these   negative   emotions   have   been   hypothesized   as   facilitating   the  development  of  a  chronic  pain  condition.  In  the  present  study,  we  used  the  shortened,  20-­‐‑item  PASS-­‐‑20  form.  Four  subscales  (avoidance  behaviour,  cognitive  anxiety,   fear,  

Page 56: Health-related quality of life in patients with chronic pain

  56  

and  physiological  anxiety)  can  be  calculated  from  the  measure,  but  we  used  the  total  sum  score  in  the  present  study.  (McCracken,  2013)    The  Basic  Nordic  Sleeping  Questionnaire  (BNSQ)  was  used  to  assess  the  severity  of  sleep  problems  (Partinen  and  Gislason,  1995).  The  measure  is  mainly  used  in  clinical  practice  to  aid  the  clinician,  and  does  not  include  an  established  scoring  system  used  in  research.   Thus,  we   selected   the   five  most   relevant   five-­‐‑point   Likert   scale   questions  concerning   the   severity   of   difficulty   falling   asleep,   waking   up   during   the   night,  tiredness  in  the  morning,  tiredness  in  the  evening,  and  the  use  of  sleep  medication.  The  selection  of  the  four  questions  was  based  on  the  ICD-­‐‑10  criteria  for  insomnia.  Based  on  clinical   judgment,  we  decided  to   include   the  use  of  sleep  medication.  The   individual  questions  were  scored  from  0  to  4  to  indicate  increasing  severity,  and  the  sum  score  of  the   five  questions  was  used  as  a   single   index  value.  As  a  preliminary  assessment  of  validity,  we  calculated  Spearman's  correlation  coefficient  for  this  BNSQ  index  with  the  sleep  dimension  of  the  15D.        

Characteristics   of   multidisciplinary   pain   management  programme    Because   the  MPM   episode  was   individually   tailored   for   each   patient,  we  wanted   to  analyse   the   structure  of   the  patients'   treatment.  We  extracted   the   treatment  details  from  the  electronic  hospital  databases,  in  which  each  visit  is  coded  as  a  separate  entry  that  contains  the  date,  primary  diagnosis  and  code  of  the  treatment  personnel  seen.  For  each   patient,   we   extracted   the   number   of   visits   to   each   different   discipline:   pain  specialist   physician,   physiotherapist,   psychologist,   social   worker,   or   group-­‐‑based  therapy.  We  included  only  the  visits  that  had  occurred  during  the  15D  follow-­‐‑up  (the  12  months  following  the  first  visit  to  pain  clinic),  during  which  virtually  all  treatment  episodes  would  have  finished.      Visits   to   a  pain   specialist  nurse  were  not   consistently   recorded   in   the  databases,   as  every   patient   meets   a   pain   specialist   nurse   several   times   during   their   treatment  episode,   often   on   the   same   day   as   they   visit   the   Pain   Clinic   for   other   treatment  modalities.   Thus,   we   did   not   include   the   visits   to   the   pain   specialist   nurse   in   the  treatment-­‐‑related  variables,  but  assumed  that  each  patient  would  have  received  this  modality  of  treatment.    Some  patients  are  referred  to  the  Pain  Clinic  to  receive  only  some  specific  treatment  modality,   for   example   local   analgesia   or   group-­‐‑based   rehabilitation.   These   patients  include,  for  example,  those  who  have  attended  an  MPM  episode  before  and  now  only  need   some   certain  modality,   or   those  who   are   treated   by   a   pain   specialist  working  outside  the  Helsinki  University  Hospital's  Pain  Clinic.  We  assumed  that  these  patients  did  not   represent   the  MPM  strategy  of   the  Pain  Clinic.  We   excluded   those  who  had  received   only   one   type   of   treatment   and   had   made   no   initial   evaluation   visit   to   a  physician  during  the  treatment  episode.        

Page 57: Health-related quality of life in patients with chronic pain

  57  

Study  setting    

Study  I    A   total   of   391   patients   filled   in   the   two   HRQoL   instruments,   the   socioeconomic  background  questionnaire  and  the  symptom-­‐‑specific  questionnaire  described  above.  The  forms  were  administered  at  baseline,  before  the  patients  embarked  on  their  MPM  episode.      The  HRQoL  results  were  compared  with  each  other  and  with  the  level  of  general  health.  We   analysed   the   association   of   the   HRQoL   instruments   with   the   symptom-­‐‑specific  questionnaires,    and  compared  the  strengths  of  these  associations  with  the  15D  and  the  EQ-­‐‑5D.    

Study  II  &  III    The  aim  of  Study  II  was  to  describe  the  HRQoL  in  severe  chronic  pain,  and  to  compare  it  with  that  of  a  general  population  sample.  Study  II  used  the  baseline  data  from  1528  patients   at   baseline,   i.e.   the   data   before   the   start   of   multidisciplinary   treatment  patients.   The   patients   filled   in   the   15D   questionnaire   and   the   clinical   pain  questionnaire  at  the  beginning  of  the  MPM  episode.      We  also  used  the  15D  data  from  the  general  population  sample,  adjusted  to  match  the  pain  patients  in  terms  of  age  and  gender.  The  data  for  the  general  population  came  from  the  National  Health  2011  survey,  representing  the  Finnish  general  population  aged  18  years  and  older  (Koskinen  et  al.,  2012).  A  sub-­‐‑sample  of  this  population  was  formed,  whose   age   and   gender   distributions   were   similar   to   those   of   the   chronic   pain  population,   and   we   compared   the   respective   15D   scores   and   profiles.   Next,   we  compared   the   15D   results   of   the   chronic   pain   patients   to   the   Clinical   Pain  Questionnaire  results.      The  aim  of  Study  III  was  to  describe  the  changes  in  HRQoL  after  MPM,  and  to  identify  the  variables  predicting  the  treatment  outcome.  The  patients  filled  in  the  clinical  pain  questionnaire   and   the   15D   instrument   at   baseline,   and   the   15D   follow-­‐‑up   was  administered  at  six  and  12  months  after  the  start  of  treatment.    The  15D  score  change  at  12  months  was  chosen  as  the  primary  outcome  variable.  We  described  the  changes  in  the  15D  score  and  profile,  and  analysed  the  association  of  the  background  and  treatment-­‐‑related  variables  with  the  15D  score  change.      The  variables  used  in  the  studies  are  listed  in  the  following  table.      

Page 58: Health-related quality of life in patients with chronic pain

  58  

   Study  I   Study  II   Study  III  HRQoL  instruments   HRQoL  instruments   HRQoL  instruments  

EQ-­‐‑5D   15D   15D  (change  in  12  months)  15D    

Background  variables   Background  variables   Background  variables  

Age  and  gender   Age  and  gender   Age  and  gender  Multiple  pain  sites   Education,  categories   Education,  post-­‐‑secondary  Smoking   Living  alone  /  cohabiting   Employment  status  Education  years   Employment  status   Single/several  pain  types  

Employment  status   Single  /  several  pain  types   Pain   duration   less/more  than  3  years  

  Pain   duration   less/more  than  3  years  

Constant  /  Intermittent  pain  

  Constant   /   Intermittent  pain    

Pain-­‐‑   and   symptom-­‐‑specific  measures  

Variables   of   symtom  burden  

Variables   of   symptom  burden  

BPI,  intensity   Current  pain  intensity  VAS   Current  pain  intensity  VAS  

BPI,  interference   Pain-­‐‑related  distress  VAS   Pain-­‐‑related  distress  VAS  

BDI   The  impact  of  pain  on  daily  activities  

The   impact  of  pain  on  daily  activities  

CPAQ      

PASS     Treatment-­‐‑related  variables  

BNSQ     Duration   of   the   MPM  episode  in  weeks  

    Number  of  total  visits  Other  measures  of  health     Number  of  doctor  

consultations  

5-­‐‑level  self-­‐‑rated  health     Seen  a  physiotherapist  0  /  1  /  several  times  

EQ-­‐‑VAS     Seen  a  psychologist  0  /  1  /  several  times  

    Attended  to  group-­‐‑based  rehabilitation  

    Seen  a  social  worker        The  measures  and  variables  used  in  the  studies.    

Page 59: Health-related quality of life in patients with chronic pain

  59  

Statistical  analyses    The   statistical   analyses   were   conducted   using   STATA   for   Study   I,   the   IBM   SPSS  Statistics  version  23.0  for  Study  II,  and  R  for  Study  III  (R  Core  Team,  2015).      The   descriptive   statistics   for   continuous   variables   are   presented   as   means   and  standard  deviations,  and  as  counts  and  percentages  for  categorical  variables.      Statistical  comparisons  between  groups  were  performed  using  the  chi-­‐‑squared  test,  t-­‐‑test  or  analysis  of  variance  (ANOVA)  with  post-­‐‑hoc  Bonferroni  corrections,  depending  on   whether   the   analysed   variable   was   continuous   or   categorical,   or   whether   the  question  used  as  a  grouping  variable  was  dichotomous  or  multi-­‐‑class.  If  the  theoretical  distribution   of   the   test   statistics   was   unknown,   or   in   cases   of   violation   of   the  assumptions  (e.g.  non-­‐‑normality),  we  employed  the  bootstrap  method.      The  15D  and  EQ-­‐‑5D  scores   in  Study   I  were  compared  with  each  other  and  with   the  symptom-­‐‑specific   measures     using   Spearman's   rank   correlation   and   Kendall's  coefficient  of  concordance.  We  studied  the  agreement  of  the  two  instruments  using  the  Bland-­‐‑Altman  analysis.  Because  of  differences  in  both  the  theoretical  and  the  observed  range  of  the  15D  and  EQ-­‐‑5D  scores,  HRQoL  scores  were  standardized  and  compared  across  the  levels  of  perceived  general  health  status.  We  calculated  the  Pearson's  linear  correlation  coefficient  between  the  perceived  general  health  status  and  the  EQ-­‐‑5D  or  the  15D,  and  compared  the  statistical  significance  of  the  two  correlation  coefficients  with  Fischer's  R-­‐‑to-­‐‑Z  transformation.      In   Study   I,   the   independent   association   between   the   pain-­‐‑related   variables   and   the  scores  of  the  HRQoL  instruments  was  examined  with  multiple  least  squares  regression.  The   HRQoL   score   (either   the   15D   or   the   EQ-­‐‑5D   score)   was   set   as   the   dependent  variable,   and   each   pain-­‐‑   and   symptom-­‐‑related   measure   (CPAQ,   BDI,  PASS,   BPI/intensity,   BPI/interference,   BNSQ)   was   the   independent   variable.   To  prevent   multicollinearity   bias   and   in   order   to   compare   pain-­‐‑related   measures,   we  analysed  all  the  pain-­‐‑  and  symptom-­‐‑specific  variables  individually  in  separate  models.  The  six  afore  mentioned  pain-­‐‑  and  symptom-­‐‑related  measures  were  then  reduced  to  factors  using  principal  component  analysis  (PCA),  and  components  with  Eigenvalues  of  <  1  were  excluded  on  the  basis  of  Kaiser  criteria.  The  principal  component  (PC)  was  used  to  account  for  the  combined  variance  of  the  pain-­‐‑  and  symptom-­‐‑specific  results.  This  dimension  reduction  was  conducted  to  prevent  multicollinearity  bias.      The   regression  models   were   adjusted   for   the   background   variables   of   age,   gender,  education   years,   working   status,   smoking,   and   duration   of   pain.   Thus,   each   model  consisted  of  the  HRQoL  score  as  the  dependent  variable,  one  pain-­‐‑related  variable  (or  PC),  and  all  the  background  variables  as  independent  variables.  We  then  changed  the  pain-­‐‑related   variables   and   compared   the   standardized   beta   coefficients   (β)   for   the  respective  pain-­‐‑related  variables.  The  β  value   indicates  how  strongly  each  predictor  variable   influences   the   criterion   (dependent)   variable   and   is   measured   in   units   of  standard  deviation.  Cohen’s  standards  for  β  values  above  0.10,  0.30  and  0.50  represent  small,  moderate  and  large  relationships,  respectively.  

Page 60: Health-related quality of life in patients with chronic pain

  60  

 In   Studies   II   and   III,   we   analysed   the   difference   between   the   15D   scores   using   the  independent   or   paired   samples   t-­‐‑test,   depending   on   whether   we   were   testing   the  difference  between  two  groups  at  one  time  point,  or  between  two  time  points  for  one  group.  The  differences   in   the  15D  dimensions  were   tested  with   the  non-­‐‑parametric  Mann-­‐‑Whitney   U   test,   as   the   dimensions   have   five   levels   and   the   distribution   of  dimension  scores  is  not  normal.  The  unadjusted  association  of  the  15D  score  with  other  continuous  variables  was  assessed  using  Pearson's  linear  correlation.    In  Study  II,  we  analysed  the  independent  relation  of  the  background  and  pain-­‐‑related  variables  with   the  15D   score  with   a   forward   stepwise   linear   regression  model.   The  results  were  also  confirmed  with  a  backward  stepwise  model.    For   exploratory   analyses   in   Study   III,  we   compared   200   patients  who   reported   the  greatest   15D   score   improvement   (the   best   HRQoL   outcome)   with   the   200   who  reported   the   greatest   15D   score   deterioration   (the   worst   HRQoL   outcome).   We  compared  the  differences  between  the  background  variables  of  these  two  groups  using  independent  samples  t-­‐‑test  or  the  chi-­‐‑squared  test,  depending  on  whether  the  variable  was   continuous   or   categorical.   We   further   analysed   the   association   between   the  continuous  variables  and  the  15D  score  change  using  Spearman's  correlation  test.    In  Study  III,  a  binary  logistic  regression  model  was  constructed  to  predict  if  a  patient  would  achieve  a  clinically  major  improvement  in  quality  of  life  (15D  score  change  >  +0.035  at  12  months).  Background  variables  were  selected   for   the  model,  based  on  preliminary   significance   and   whether   the   inclusion   was   logically   justified.   This  selection  was  made  because  the  patient-­‐‑reported  background  variables  contained  missing   values   that   would   cause   the   case   to   be   eliminated   from   the   model  calculation.   We   also   used   a   linear   regression   model   to   analyse   the   association  between  these  background  variables  and  the  15D  score  change.    Imputation  of  missing  answers    If   the   patient   had   left   three   or   less   15D   dimensions   unanswered,  we   predicted   the  missing   answers   using   linear   regression,  with   age,   gender   and  other   dimensions   as  dependent  variables.  In  Study  II,  the  missing  dimensions  of  the  15D  (if  three  or  less)  were   predicted   using   multiple   imputation   models.   A   chained   equation   imputation  model  was  fit  to  create  five  imputed  data  sets.  (White  et  al.,  2011)    In  the  symptom-­‐‑specific   measures   of   Study   II   (CPAQ,   PASS,   BNSQ,   BPI/intensity,  BPI/interference,  BDI),  we  imputed  the  missing  values  by  using  the  personal  means  of  the  other  answers  if  ≤  20%  of  the  answers  were  missing.  Personal  mean  imputation  has  been  concluded  to  be  an  appropriate  method  for  the  SF-­‐‑36  instrument,  comparable  to  the  multiple  imputation  method  (Peyre  et  al.,  2011).    

Page 61: Health-related quality of life in patients with chronic pain

  61  

Results      

Participants    

KROKIETA  study  sample    The   pain   centres   participating   in   the   KROKIETA   study   were   the   Pain   Clinic   of   the  Helsinki  University  Hospital,  the  Pain  Clinic  of  the  Turku  University  Hospital,  and  the  Pain  Clinic  of  the  South-­‐‑Karelia  Central  Hospital.  The  participating  facial  pain  centres  were   from   the   following   hospitals:   the   Turku   University   Hospital,   the   Kuopio  University  Hospital  and  the  Tampere  University  Hospital.      The   data   were   collected   between   2.9.2013   and   3.6.2016.   Approximately   800  recruitment  letters  were  sent  –  the  accurate  number  of  letters  was  not  recorded.  By  the  mentioned  date,  391  patients  had  participated   in   the  study  and   their  data  had  been  recorded.  One  hundred  and  thirty  patients  were  treated  at  the  facial  pain  centres,  and  260  patients  in  the  pain  clinics.  This  data  was  missing  in  the  case  of  one  patient.  A  total  of  342  patients  answered  the  whole  15D  questionnaire,  but  31  patients  had  left  one  to  three   dimensions   empty,   and   their   15D   scores   were   imputed.   Thus,   373   patients  provided  sufficient  data  for  calculation  of  the  15D  results.  Of  the  391  patients,  359  filled  in   the   whole   EQ-­‐‑5D   questionnaire.   Table   1   shows   the   characteristics   of   the   study  sample.      Variable    n   373  Age,  mean  (sd)   46.9  (13.8)  Female  gender,  n  (%)   261  (70.0)    Working,  n  (%)   173  (46.6)    Multiple  pain  sites,  n  (%)   183  (58.5)    Never   smoked   regularly   in  their  lives,  n  (%)  

134  (35.9)    

Pain   duration   over   2   years,   n  (%)   256  (69.4)  

 Table  1  Socioeconomic  and  pain-­‐‑related  background  factors  of  KROKIETA  study  sample.          Helsinki  study  sample    The  data  were  collected  between  2004  and  2012.  A  total  of  1573  patients  agreed  to  participate,  and  were  given  the  15D  questionnaire.  Twenty-­‐‑one  of  these  were  duplicate  

Page 62: Health-related quality of life in patients with chronic pain

  62  

cases  of  patients  who  had  attended  a  second  treatment  episode  during  follow-­‐‑up,  and  were  thus  excluded.  Twenty-­‐‑four  patients  provided  insufficient  15D  data,  i.e.  they  had  left  more  than  three  of  the  15  dimensions  unanswered  or  had  returned  an  empty  form  –  they  were  thus  also  excluded.  The  number  of  cases  included  in  the  data  of  Study  II  was  1528.    In  Study  III’s  follow-­‐‑up,  20  patients  were  referred  for  psychological  consultation  only  and  were   excluded.   Of   the   remaining   1508   patients,   1043   (69%)   responded   to   the  follow-­‐‑up  15D  questionnaire  12  months  after  the  start  of  MPM.    In  summary,  the  baseline  data  of  Study  II  consisted  of  1528  cases  and  the  follow-­‐‑up  data  of  Study  III  consisted  of  1043  cases.    Table   2   shows   the   patient   characteristics   and   the   15D   scores   respective   to   the  socioeconomic  and  pain-­‐‑related  questions.      

Page 63: Health-related quality of life in patients with chronic pain

  63  

   Table  2.  Background  characteristics  of  the  Helsinki  study  sample,  and  the  respective  15D  scores.   The   p   value   shows   the   statistical   significance   of   the   difference   between   the  question's   levels.   The   p   value   was   obtained   using   a   t-­‐‑test   or   ANOVA   with   post-­‐‑hoc  Bonferroni   corrections,   depending   on  whether   the   grouping   variable   is   dichotomous   or  multi-­‐‑class.  *)  the  reference  category  of  a  multi-­‐‑class  question,  to  which  other  categories  are  compared.    

Variable   N  (%  of  responders)  

Missing  answers,  N  (%  of  patients)  

15D  score,  mean    

p                        (t-­‐‑test)  

p    (ANOVA)  

Gender   Male   563  (36.9)  -­‐‑  

0.703  0.06      

Female   965  (63.1)   0.714  

Age  groups  

18–35   222  (14.5)  

-­‐‑  

0.742  

 

ref.*  36–55   655  (42.9)   0.707   0.01  56–75   518  (33.9)   0.706   0.01  >  76   133  (8.7)   0.689   <  0.001  

Education,  years  

<  9   397  (29.3)  

175  (11.5)  

0.701  

 

ref.  9–12   454  (33.6)   0.710   0.657  >12  (post-­‐‑secondary  education)  

502  (37.1)   0.714   0.225  

Living  alone  /  cohabiting  

Living  alone   350  (29.3)  334  (21.9)  

0.690  <  0.001    

Cohabiting   844  (70.7)   0.718  

Employment  

Employed   359  (25.6)  

126  (8.2)  

0.773  

 

ref.  Sick  leave  or  rehabilitation   355  (25.3)   0.690   <  0.001  

Retired  or  not  working   688  (49.1)   0.687   <  0.001  

Single  /  several  types  of  pain  

Single   269  (20.5)  213  (13.9)  

0.728  <  0.001    

Several   1046  (79.5)   0.701  

Pain  duration     Under  3  years   951  (75.7)  272    (17.8)  

0.715  0.006    

Over  3  years   305  (24.3)   0.694  Constant/  intermittent  pain  

Constant   935  (80.4)  365  (23.9)  

0.693  <  0.001    

Intermittent   228  (19.6)   0.751  

Current  pain  intensity  VAS  (100mm  scale)  

0–40;  no  or  mild  pain   302  (22.6)  

191  (12.5)  

0.760  

 

ref.  

41–70;  Moderate  pain  

513  (38.4)   0.722   <  0.001  

71–100;  Severe  pain   522  (39.0)   0.668   <  0.001  

Pain-­‐‑related  distress  VAS  (100mm  scale)  

0–40   175  (13.0)  

180  (11.8)  

0.784  

 

ref.  41–70   351  (26.0)   0.746   <  0.001  

71–100   822  (61.0)   0.676   <  0.001  

Page 64: Health-related quality of life in patients with chronic pain

  64  

 HRQoL  results    

KROKIETA  study  sample    Table  3  shows  the  mean  results  of  the  HRQoL  measurements,  reference  measurements  and  other  symptoms.  The  mean  15D  score  of  the  patients  was  0.76,  with  a  median  of  0.76  and  standard  deviation  of  0.116,  ranging  from  0.39  to  1.0.  The  mean  EQ-­‐‑5D  score  was  0.53,  with  a  median  of  0.66  and  standard  deviation  of  0.305.  Twenty-­‐‑five  patients  (7%)   had   a   HRQoL   score   below   zero,   i.e.   worse   than   death,   in   the   EQ-­‐‑5D.   Eleven  patients  obtained  a  score  of  1  (the  best  score)  and  72  obtained  a  score  of  0.8  (second-­‐‑best  observed  score).  Figure  1  shows  the  distribution  of  the  two  HRQoL  instruments.  The   distribution   of   the   EQ-­‐‑5D  was   bimodal,   as   only   a   few   patients   scored   close   to  average.  The  distribution  of  the  15D  scores  was  close  to  normal.      Measure   Score   Score  range  

15D  score,  mean  (SD)    0.76  (0.12)   0–1  EQ-­‐‑5D  score,  mean  (SD)    0.53  (0.30)   (-­‐‑0.594)–1  Self-­‐‑rated  health,  n  (%)      .   .  

     Very  good  or  good  *        70  (18.9)     .  

     Average      102  (27.5)     .  

     Rather  poor      154  (41.5)     .  

     Very  poor        45  (12.1)     .        EQ-­‐‑VAS,  mean  (SD)      0.58  (0.20)   0–1  BPI   .   .  

     Pain  intensity,  mean  (SD)   21.9  (7.1)   0–40  

     Pain  interference,  mean  (SD)   33.9  (14.7)   0–70  BDI,  mean  (SD)   13.9  (9.8)   0–63  CPAQ,  mean  (SD)   57.0  (19.4)   0–120  PASS,  mean  (SD)   42.3  (18.9)   0–100  BNSQ,  mean  (SD)   15.7  (4.4)   0–24  

 Table   3.   Results   of   health   and   symptoms  measurements   in   Study   I.   The  middle   column  shows  the  mean  results  of  the  KROKIETA  study  sample,  and  the  column  on  the  right  shows  the  score  range  of  the  measure  or  subscale  in  question.      *)  In  the  five-­‐‑item  question  on  self-­‐‑rated  health,  only  three  patients  rated  their  health  as  ‘very  good’:    for  consecutive  analyses  were  grouped  together  with  those  rating  their  health  as  ‘good’.      

Page 65: Health-related quality of life in patients with chronic pain

  65  

 Figure  1.  Distribution  histograms  of  the  HRQoL  and  health  measurements.        

Helsinki  Study  sample    The  mean  15D  HRQoL  score  of  1528  chronic  pain  patients  at  baseline  was  0.710  (95%  CI  =  0.705-­‐‑0.716,  SD  =  0.114).  The  mean  15D  score  of  an  age-­‐‑  and  gender-­‐‑matched  sample   of   the   general   population   was   0.922   (SD   =   0.083;   p<   0.001   for   difference  between   the  population   and   the  patients).   Figure  2   shows   the  15D  profiles,   i.e.,   the  mean  scores  of  individual  dimensions  of  the  15D  among  the  patients  and  among  the  general  population  sample.  The  values  of  all  dimensions  were  statistically  significantly  (p<  0.001)  lower  among  the  chronic  pain  patients.  The  greatest  differences  were  seen  in   the   dimensions   of   ‘discomfort   and   symptoms’   (0.519),   ‘usual   activities’   (0.393),  ‘sexual  activity  (0.357)’,  ‘vitality’  (0.317),  and  ‘sleeping’  (0.292).      

0

20

40

60

0.0 0.5 1.0The EQ−5 score

coun

t

0

20

40

60

0 30 60 90The EQ−VAS value

coun

t

0

5

10

15

0.4 0.6 0.8 1.0The 15D score

coun

t

0

50

100

150

Good orvery good

Average Rather poorVery poor

Rating of overall health

coun

t

0

20

40

60

0.0 0.5 1.0The EQ−5 score

coun

t

0

20

40

60

0 30 60 90The EQ−VAS value

coun

t

0

5

10

15

0.4 0.6 0.8 1.0The 15D score

coun

t

0

50

100

150

Good orvery good

Average Rather poorVery poor

Rating of overall health

coun

t

Page 66: Health-related quality of life in patients with chronic pain

  66  

 Figure   2.   15D   profiles,   i.e.   the  mean   scores   of   the   individual   dimensions   of   health.   This  shows  the  profiles  of  the  KROKIETA  study  sample  (from  Study  I  of  this  thesis,  n=  373),  the  study   sample   from   Helsinki   University   Hospital's   Pain   Clinic   (from   Studies   II   and   III,  n=  1528),  and  the  profile  of  the  general  population  sample  adjusted  to  match  the  Helsinki  study  sample  in  terms  of  age  and  gender.          

Agreement  of  HRQoL  instruments    The   agreement   of   the   two  HRQoL   instruments   in   the   KROKIETA   study   sample  was  analysed.   Spearman's   correlation   coefficient   between   the   EQ-­‐‑5D   and   15D  was   0.66  (95%  CI  0.60-­‐‑0.71).  The  Kendall  rank  correlation  coefficient  of  concordance  for  the  two  HRQoL  instruments  was  0.83.      The  agreement  of  the  two  HRQoL  instruments  is  plotted  using  the  Bland-­‐‑Altman  analysis  in  Figure  3.  The  mean  of  the  two  measurements  for  each  case  is  plotted  against  the  difference  of  the  two  measures.  If  two  measures  agreed  perfectly,  their  difference  would  be  zero.        

0.2

0.4

0.6

0.8

1.0

Motility

Vision

Hearin

g

Breathi

ng

Sleepin

gEati

ng

Speec

h

Excreti

on

Usual

activi

ties

Mental

func

tion

Discom

fort

Depres

sion

Distres

sVita

lity

Sexual

activi

ty

dimension

scor

e

Group KROKIETA studysample (n=371)

Helsinki studysample (n=1528) General population

Page 67: Health-related quality of life in patients with chronic pain

  67  

 Figure  3.  Bland-­‐‑Altman  plot  of  the  two  HRQoL  instruments,  the  15D  and  the  EQ-­‐‑5D.  This  shows  the  difference  between  the  two  HRQoL  instruments  (15D  -­‐‑  EQ-­‐‑5D)  as  a  function  of  the  mean  of  the  two  measurements.  The  dashed  line  indicates  the  mean  difference  between  the  measurements.        Figure  3  compares   the  mean  standardized  EQ-­‐‑5D  and  15D  scores  (i.e.,   the  z-­‐‑scores)    across  the  four  levels  of  self-­‐‑reported  health.  Pearson's  coefficient  for  linear  correlation  between  self-­‐‑rated  health  was  -­‐‑0.37  for  the  EQ-­‐‑5D,  and  -­‐‑0.61  for  the  15D,  with  p<  0.001  for  the  difference.    

−0.25

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00Mean of 15D and EQ−5D scores

Diff

eren

ce o

f 15D

and

EQ−5

D s

core

s

Page 68: Health-related quality of life in patients with chronic pain

  68  

   Figure  4.  Mean  standardized  HRQoL  scores  grouped  according  to   the   levels  of  self-­‐‑rated  health.  The  difference  between  the  standardized  HRQoL  scores  is  statistically  significant  in  ‘good’  health.  Pearson's  coefficient  for  linear  correlation  was  -­‐‑0.37  for  the  EQ-­‐‑5D,  and  -­‐‑0.61  for  the  15D,  with  p<  0.001  for  the  difference.          HRQoL   instruments   and   other   measures   of   pain   and  symptoms    KROKIETA  study  sample    Table  4  compares  the  Spearman's  rank  correlation  coefficients  of  the  HRQoL  results  and  other  pain  and  symptom  results.            

−1.0

−0.5

0.0

0.5

1.0

Very goodor good

Average Rather poor Very poor

Self−rated health

Stan

dard

ized

HR

QoL

sco

re

HRQoL instrument15DEQ−5D

Page 69: Health-related quality of life in patients with chronic pain

  69  

 

Variable   15D  r  (95%  CI)  

EQ-­‐‑5D  r  (95%  CI)   p  for  difference  

CPAQ   0.63    (0.56  to  0.69)  

0.56    (0.48  to  0.63)   0.064  

PASS   -­‐‑0.52    (-­‐‑0.59  to  -­‐‑0.44)  

-­‐‑0.50    (-­‐‑0.57  to  -­‐‑0.42)   0.51  

BDI   -­‐‑0.69    (-­‐‑0.74  to  -­‐‑0.63)  

-­‐‑0.58    (-­‐‑0.64  to  -­‐‑0.50)   0.003  

BNSQ   -­‐‑0.59    (-­‐‑0.65  to  -­‐‑0.52)  

-­‐‑0.47    (-­‐‑0.54  to  -­‐‑0.38)   <  0.001  

BPI,  pain  intensity   -­‐‑0.46    (-­‐‑0.53  to  -­‐‑0.37)  

-­‐‑0.57    (-­‐‑0.64  to  -­‐‑0.50)   0.004  

BPI  pain  interference   -­‐‑0.64    (-­‐‑0.70  to  -­‐‑0.58)  

-­‐‑0.63    (-­‐‑0.69  to  -­‐‑0.57)   0.78  

   Table   4.   Spearman's   rank   correlation   coefficients   of   symptom-­‐‑specific   results  with   both  HRQoL   instruments.   The   p   value   indicates   the   statistical   significance   of   the   differences  between  the  15D  and  the  EQ-­‐‑5D.    To   analyse   and   compare   the   independent   association   between   pain   and   symptom  results   and   the  HRQoL   instruments,  we   constructed   linear   regression  models,   each  model  containing  either  the  EQ-­‐‑5D  or  the  15D  as  the  dependent  variable  and  one  of  the  pain-­‐‑  and  symptom-­‐‑specific  measures  (CPAQ,  PASS,  BDI,  BNSQ,  BPI/pain  intensity,  and  BPI/pain   interference)   as   an   independent   variable.   We   also   used   a   principal  component  (PC)  of   the  six  aforementioned  pain  and  symptom  measures  to  describe  their  combined  effect  as  a  single-­‐‑index  value.  This  PC  was  constructed  using  PCA  from  the  pain  and  symptom-­‐‑specific  measures,  and   it  accounted   for  59%  of   the  observed  variance  in  these  measures.  Each  model  was  also  adjusted  for  age,  sex,  education  years,  working  status,  and  duration  of  pain.      In   the   model   with   the   PC   of   the   six   pain-­‐‑and   symptom-­‐‑specific   measures   and   the  background   variables   as   the   independent   variables,   the   overall   adjusted  R2  (i.e.   the  proportion  of  variance  in  the  dependent  variable  explained  by  the  model)  was  0.65  for  the  15D  and  0.43  for  the  EQ-­‐‑5D  (p<  0.001  with  both  HRQoL  instruments).    We   assessed   the   association   between   the   individual   pain-­‐‑   and   symptom-­‐‑related  measures  and  the  HRQoL  instruments  by  comparing  the  standardized  beta  coefficients  from   the   regression   models.     All   the   pain-­‐‑related   measures   displayed   a   strong  association   with   both   HRQoL   instruments.   Figure   5   shows   the   standardized   beta  coefficients  and  the  statistical  significance  of  the  differences.      

Page 70: Health-related quality of life in patients with chronic pain

  70  

   Figure  5.  Standardized  beta  coefficients  (b)  with  their  95%  confidence  intervals  for  each  pain-­‐‑  and  symptom-­‐‑related  measure  and  their  combined  index,  the  PC.  In  all  measures  but  CPAQ,   higher   scores   indicated  more   severe   symptoms,   and   the   association  with  HRQoL  instruments  was  negative.  The  p  value  indicates  the  statistical  significance  of  the  difference  between   the   two  HRQoL   instruments.   The   dashed   line   indicates   a   threshold   of   -­‐‑0.5   for  standardized  beta  coefficients,   representing  a  strong  association  according   to   the  Cohen  standard.   Each   model   was   adjusted   for   age,   sex,   education   years,   working   status   and  duration  of  pain.  The  image  is  reproduced  with  the  permission  of  the  copyright  holder,  the  International  Association  for  the  Study  of  Pain    (Vartiainen  et  al.,  2017).      All  the  analysed  pain-­‐‑related  measures  displayed  a  strong  association  with  both  HRQoL  instruments.  The  Beck  Depression  Inventory,  CPAQ,  BNSQ  and  the  PC  of  the  measures  had  statistically  significantly  higher  standardized  beta  coefficients  with  the  15D  than  with  the  EQ-­‐‑5D.        Helsinki  study  sample      Figure  6  shows  the  distributions  of  three  clinical  pain  assessment  questions,  i.e.,  a  VAS  on  current  pain  intensity,  and  a  VAS  on  pain-­‐‑related  distress  and  pain  interference  in  daily  activities.  The  distribution  of  pain-­‐‑related  distress  was  skewed,  with  a  notable  concentration   of   the   highest   values.   A   total   of   290   patients   (19%)   reported   pain-­‐‑related  distress  of  >  95mm/100mm,  and  822  patients  (61%)  reported  distress  of  over  70mm/100mm.      Pearson's   linear   correlation   coefficients   for   the   15D   score   and   the   current   pain  intensity  VAS,  pain-­‐‑related  distress  VAS,  and  pain  interference  in  daily  activities  were  -­‐‑0.342,  -­‐‑0.392,  and  -­‐‑0.491,  respectively.    

Beta%(95%%CI)

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2

PC

BNSQ

BPI/intensity

BPI/interference

BDI

PASS

CPAQ%(inverse)

p<0.001

p=0.46

p=0.010

p<0.001

p=0.096

p=0.12

15DEQ-5D

p=0.032

Page 71: Health-related quality of life in patients with chronic pain

  71  

 Figure  6.  Distribution  histograms  of  the  three  clinical  pain-­‐‑related  measures  and  the  15D  score.   The   top-­‐‑left,   top-­‐‑right   and  bottom-­‐‑left   histograms   show  pain   intensity  VAS,   pain-­‐‑related  distress  VAS,  and  pain  interference,  respectively  ,  and  the  bottom-­‐‑right  histogram  shows  the  distribution  of  the  15D  score  .        Linear  regression  of  baseline  15D  score    In   a   forward   stepwise   linear   regression  model   with   the   baseline   15D   score   as   the  dependent   variable,   the   statistically   significant   predictors   in   the   model   were:   pain  interference  in  daily  life,  pain-­‐‑related  distress  VAS,  being  employed,  gender,  and  having  several  pain  types.  Table  4  shows  the  regression  results.  Variables  which  were  entered  into   the  analysis  but  excluded   from  the   final  model  were  age,  education   level,   living  alone,  pain  duration  of  over  three  years,  and  current  pain  intensity  VAS.  The  adjusted  R2  of   the  model,   i.e.,   the  variance   in   the  15D  score  explained  by  the  predictors,  was  0.363,  with  p  <  0.  001.  The  results  were  confirmed  by  the  backwards  stepwise  model,  which  gave  similar  results.        

Page 72: Health-related quality of life in patients with chronic pain

  72  

Variable   Unstandardized  beta  coef.   t  value   p  

Female  gender   0.013   1.95   0.052  Baseline  15D  score   -­‐‑0.180   -­‐‑6.35   <  0.001  Age   -­‐‑0.000   -­‐‑1.04   0.298  Post-­‐‑secondary  education  

0.0177   2.76   0.006  

Pain   duration   of  over  3  years  

-­‐‑0.024   -­‐‑3.34   <  0.001  

Employed   0.030   3.83   <  0.001      Table  5.  Final  step  of  the  forward  stepwise  linear  regression  model  with  the  15D  score  as  the  dependent  variable.  The   table  shows   the  variables   that  had  a  statistically   significant  independent  association  with   the  15D  score.     In  addition,   the  variables  entered   into   the  model  but  excluded  as  insignificant  were:  pain  duration  of  over  three  years,  age,  living  alone  or   with   someone,   VAS   for   pain   intensity,   and   education.   There   was   no   evidence   of  significant  multicollinearity:  the  highest  VIF  value  of  1.26  was  perceived  in  the  impact  of  pain  on  daily  life.  The  model  was  based  of  826  patients,  who  had  no  missing  variables  in  their  data.          Multidisciplinary  pain  management      The  average  treatment  period  at  the  Pain  Clinic  was  24.6  weeks.    The  median  duration  of  treatment  was  22  weeks  (Q25-­‐‑Q75  =  10–40  weeks).  The  mean  number  of  visits  was  3.6,  median  =  4  with  Q25-­‐‑Q75  =  2–7,  ranging  from  1  to  47.  The  duration  of  a  treatment  episode  and  the  visits  to  different  professionals  during  MPM  are  summarized  in  Table  5.  In  addition  to  the  summary  of  the  whole  study  sample,  the  200  patients  who  reported  the  greatest  HRQoL  improvement  were  compared  to  the  200  who  reported  the  greatest  HRQoL  deterioration.  The  patients   also  met   a   nurse   at   least   once,   but   often   several  times  during  MPM.  As  the  nurse  consultations  were  not  recorded  in  the  database,  they  are  not  included  in  these  results,  despite  being  an  important  part  of  MPM.      

Page 73: Health-related quality of life in patients with chronic pain

  73  

 

Variable   All  patients    (n=  1043)  

Worst  HRQoL  outcome    (n=  200)  

Best   HRQoL  outcome    (n=  200)   p*  

 Duration   of   treatment  in  weeks,  mean  (SD)   25.5  (16.3)   28.0  (16.8)   23.1  (16.2)   0.004  

Total  visits,  mean  (SD)   5.8  (4.7)   6.6  (6.1)   5.9  (4.7)   0.239  Physician   visits,   mean  (SD)   3.2  (1.9)   3.6  (2.2)   3.1  (2.0)   0.013  

Psychologist          Consultation,  n  (%)   603  (58.5)   122  (61.3)   124  (62.6)   0.867  Multiple  visits,  n  (%)   185  (18.0)   42  (21.1)   42  (21.2)   1.000  Physiotherapist          Consultation,  n  (%)   382  (37.1)   82  (41.2)   73  (36.9)   0.434  Multiple  visits,  n  (%)   127  (12.3)   21  (10.6)   35  (17.7)   0.058  Group-­‐‑based  rehabilitation  methods,  n  (%)  

128  (12.4)   24  (12.1)   27  (13.6)   0.750  

Social  worker,  n  (%)   20  (1.9)   9  (4.5)   2  (1.0)   0.068    Table  6.  Treatment  visits  to  the  Pain  Clinic.  The  table  shows  the  mean  number  of  total  visits,  the   mean   duration   of   treatment,   and   the   number   of   patients   who   saw   different  professionals  during  their  treatment  episode.  This  shows  the  figures  for  the  whole  study  sample,  for  the  200  patients  who  reported  the  greatest  positive  change  in  HRQoL,  and  for  the  200  who  reported  the  greatest  negative  change  in  HRQoL.      *)  The  p  value  shows  the  statistical  significance  of  the  differences  between  the  two  extreme  outcome  groups;  either  the  t-­‐‑test  or  chi-­‐‑squared  test  was  used,  depending  on  whether  the  baseline  variable  in  question  was  categorical  or  continuous.      Change  in  15D  score  after  treatment    The  mean  15D  score  change  at  12  months  after  the  start  of  treatment  was  +0.017  (95%  CI  9.912-­‐‑0.023),   from  0.711  at  baseline  to  0.728.  The  median  15D  score  change  was  0.019  (SD  0.094).  A  total  of  544  patients  (52%)  achieved  a  clinically   important  15D  score   improvement   (>   +0.015).     In   448   patients   (43%),   the   improvement   was  considered   major   (>   +0.035).   However,   374   patients   (36%)   reported   a   clinically  significant  decrease  in  their  15D  score,  despite  a  low  baseline  score.    Figure  7  shows  the  distribution  of  patients  into  different  clinical  categories  of  15D  score  change.    

Page 74: Health-related quality of life in patients with chronic pain

  74  

 Figure  7.  The  number  and  percentage  of  patients  in  the  clinical  categories  of  the  15D  score  changed.   Of   the   patients,   52.8%   reported   a   clinically   significant   HRQoL   improvement  (>  0.015)  at  12-­‐‑month  follow-­‐‑up.      

15D  profiles  and  their  changes    In  Figure  8a,   the  15D  profiles,   i.e.   the  mean  scores  of   the   individual  dimensions  are  shown   at   baseline   for   those   who   reported   major   improvement   (15D   score   change  >+0.035)   compared   with   the   other   patients.   Figure   8b   shows   the   changes   of   the  individual  15D  dimensions  at  12  months  after  the  start  of  treatment  for  three  groups:  those  who  reported  major  improvement,  those  with  minor  or  no  changes  (15D  score  change   -­‐‑0.035   -­‐‑  +0.035),   and   those  with  major  deterioration   (15D  score   change  <-­‐‑0.035).    

43.2 %

9.4 %

12.2 %

7 %

28.2 %

0

100

200

300

400

500

Majordeterioration

(<−0.035)

Minordeterioration

(−0.015 to −0.035)

No change Minorimprovement

>(+0.015)

Majorimprovement

(>+0.035)

Change in the 15D score at 12 months

No.

of p

atie

nts

Page 75: Health-related quality of life in patients with chronic pain

  75  

   Figure  8a.  Baseline  15D  profiles,  i.e.  the  mean  scores  of  the  individual  dimensions  before  treatment.   The   patients   are   divided   into   two   groups:   those   who   achieved   a   major  improvement   in  HRQoL   (15D   score   change  >  +0.035,   n  =  448)   are   compared   to   other  patients   (the   15D   score   change   <   +0.035,   n   =   595).   After   Bonferroni   corrections,  statistically  significant  (p<  0.05)  differences  were  seen  in  the  mental  function,  depression,  distress,   and   vitality   dimensions.   The   patients   with   major   improvement   in   HRQoL   had  lower   15D   scores   at   baseline   (0.699)   than   the   other   patients   (15D   score   at   baseline  =  0.720.)    

0.2

0.4

0.6

0.8

1.0

Motility

Vision

Hearin

g

Breathi

ng

Sleepin

gEati

ng

Speec

h

Excreti

on

Usual

activi

ties

Mental

func

tion

Discom

fort

Depres

sion

Distres

sVita

lity

Sexua

l activ

ity

Dimension

Mea

n di

men

sion

sco

re

15D score change<+0.035>+0.035

Page 76: Health-related quality of life in patients with chronic pain

  76  

   Figure  8b.  The  mean  changes  in  the  individual  dimensions  at  12  months.  The  patients  are  divided  into  three  groups:  those  who  achieved  a  major  improvement  in  HRQoL  (15D  score  change  >  +0.035,  n  =  448),  those  with  small  or  no  changes  (15D  score  change  -­‐‑0.035  to  +0.035,  n  =  296)  and  those  with  major  decrease  (the  15D  score  change  <-­‐‑0.035,  n=299).  The  error  bars  show  the  95%  confidence  interval  for  the  mean.      

−0.1

0.0

0.1

0.2

Motility

Vision

Hearin

g

Breathi

ng

Sleepin

gEati

ng

Speec

h

Excreti

on

Usual

activi

ties

Mental

func

tion

Discom

fort

Depres

sion

Distres

sVita

lity

Sexua

l activ

ity

Dimension

Mea

n di

men

sion

cha

nge

15D score change●

Major improvementMinor or no changeMajor deterioration

Page 77: Health-related quality of life in patients with chronic pain

  77  

 

 Table  7.  Patient  characteristics  at  baseline.  This  shows  the  numbers  for  the  whole  study  sample  who  responded  to  the  15D  follow-­‐‑up,  for  the  200  patients  who  reported  the  greatest  positive  change  in  HRQoL,  and  for  the  200  who  reported  the  greatest  negative  in  HRQoL.      *)  The  p  value  shows  the  statistical  significance  of  the  differences  between  the  two  extreme  outcome  groups;  either  the  t-­‐‑test  or  chi-­‐‑squared  test  was  used,  depending  on  whether  the  baseline  variable  in  question  was  categorical  or  continuous.      

Variables  associated  with  HRQoL  outcome    Table  7  shows  the  baseline  characteristics  of  the  patients  in  the  different  categories  of  the   15D   score   change.   Variables   with   statistically   significant   differences   in   the  improvement   groups   are:   age,   gender,   being   employed,   having   post-­‐‑secondary  

   Worst   HRQoL  outcome    (n  =  200)  

Best   HRQoL  outcome    (n  =  200)  

    All   patients    

(n  =  1043)    

Variable     p*  

Age,  mean  (sd)   54.1  (15.4)   55.5  (15.9)   52.5  (15.6)   0.042  

Female,  n  (%)   658  (63.1)   111  (55.5)   140  (70.0)   0.004  Post-­‐‑secondary  education,  n  (%)   323  (34.8)   48  (27.4)   83  (45.6)   0.001  

Pain  duration  >  3  years,  n  (%)   196  (23.3)   37  (27.6)   26  (15.8)   0.018  

Employed   229  (23.7)   26  (14.1)   54  (29.3)   0.001  

Several  types  of  pain   723  (80.1)   137  (79.2)   143  (81.7)   0.647  

         Current   pain   intensity  VAS,  mean  (sd)   60.1  (24.2)   61.5  (22.9)   62.8  (23.9)   0.593  

Pain-­‐‑related  distress  VAS,  mean  (sd)   70.9  (25.5)   70.7  (25.4)   75.0  (24.2)   0.101  

Pain  interference  in  daily  life,   percentage   of  maximum   score,   mean  (sd)  

60.8  (20.3)   63.8  (17.5)   64.7  (20.6)   0.649  

         Baseline  15D  score,  mean  (sd)   0.71  (0.11)   0.71  (0.11)   0.67  (0.11)   <  0.001  

15D   score   at   follow-­‐‑up,  mean  (sd)   0.73  (0.14)   0.60  (0.12)   0.82  (0.11)   <  0.001  

Change   in   the  15D  score,  mean  (sd)   0.017  (0.043)   -­‐‑0.117  (0.049)   0.148  (0.048)   <  0.001  

         

Page 78: Health-related quality of life in patients with chronic pain

  78  

education,  baseline  15D  score,  and  pain  duration  over  three  years.    Pain  intensity,  pain-­‐‑related  distress  or  pain  interference  did  not  appear  to  be  associated  with  the  15D  score  change.  The  only  treatment-­‐‑related  variable  associated  with  the  HRQoL  change  was  the  number  of  physician  visits;  patients  with  improved  HRQoL  seemed  to  have  slightly  less  visits  to  a  physician.        We  also   tested   the  nonparametric  Spearman's   correlations  of   the  15D  score  change  with   the  continuous  background  variables.   Significant   correlations  were  seen   in   the  following  variables:  baseline  15D  score  (rho  =  -­‐‑0.12,  p  <  0.001),  age  (rho  =  -­‐‑0.06,  p  =  0.05),  and  the  number  of  visits  to  the  physician  (rho  =  -­‐‑0.08,  p  =  0.009).  No  statistically  significant   correlations  with   the   15D   score   change  were   observed   for   the   following  variables:  VAS   for  pain   intensity,  VAS   for  pain-­‐‑related  distress,  pain   interference,  or  total  number  of  visits  to  the  pain  centre.      Binary  logistic  regression      We   used   binary   logistic   regression   to   assess   the   background   variables'   individual  association  with  the  probability  of  major  improvement.  Due  to  the  significant  amount  of  missing  data,  we  limited  the  number  of  variables  that  we  entered  into  the  model;  we  only   selected   those   that   had   shown   a   preliminary   association   with   the   15D   score  change  (shown  in  Table  7).  The  variables  selected  for  the  model  were  thus:  baseline  15D  score,  age,  gender,  post-­‐‑secondary  education,  employment,  and  duration  of  pain  over  three  years.  The  independent  variable  was  whether  or  not  a  patient  had  achieved  a  clinically  major  improvement  (>  +0.035)  in  the  15D  score.        

Page 79: Health-related quality of life in patients with chronic pain

  79  

 Figure   9.   Adjusted   odds   ratios   (OR)   for  major   improvement   in   HRQoL.   For   continuous  variables  (baseline  15D  score,  age)  the  OR  is  shown  as  a  change  in  OR  per  unit  of  change  in  the  variable.  Being  employed,  having  post-­‐‑secondary  education,  having  pain  duration  of  under  three  years,  and  having  a  lower  baseline  15D  score  were  independently  associated  with  higher  odds  of  major  improvement.      We   confirmed   these   results   using   models   into   which   we   also   entered   the   other  variables.  They  did  not  produce  statistically  significant  odds  ratios,  nor  did  they  change  the  odds  ratios  included  in  the  model  shown  here.      Linear  regression    We  also  made  a  multiple   linear   regression  model  with   the  15D  score   change  as   the  independent  variable,  and  baseline  15D  score,  age,  gender,  post-­‐‑secondary  education,  employment,  and  duration  of  pain  of  over  three  years  as  the  predictors.  Table  8  shows  the  results.        

2.21

1.62

0.5

0.71

1.18

0.97Younger age

(per 10 years)

Female gender

Higher baseline15D score

(per 0.1)

Pain durationover 3 years

Post−secondaryeducation

Employed

0.25 0.50 1.00 1.50 2.00 3.00OR

Varia

ble

Page 80: Health-related quality of life in patients with chronic pain

  80  

Variable   Unstandardized  beta  coef.     t  value   p  

(Intercept)   0.145   6.40   <  0.001  Female  gender   0.013   1.95   0.052  Baseline  15D  score   -­‐‑0.180   -­‐‑6.35   <  0.001  Age   -­‐‑0.000   -­‐‑1.04   0.298  Post-­‐‑secondary  education  

0.0177   2.76   0.006  

Pain   duration   of  over  3  years  

-­‐‑0.024   -­‐‑3.34   <  0.001  

Employed   0.030   3.83   <  0.001    Table   8.   Results   of   the   linear   regression   model   with   the   15D   score   change   as   the  independent  variable,  and  baseline  variables  that  showed  preliminary  association  with  the  15D  score  change  as  dependent  variables.        The  adjusted  R2  of  the  linear  model  was  0.08  with  p<  0.001,  in  other  words  the  model  explained  8%  of  the  observed  variance  in  the  15D  score  change.      Duration  of  pain  and  15D  score  change    As  seen  in  the  previous  analyses,  pain  duration  of  over  three  years  appeared  to  be  the  only  pain-­‐‑related  variable  associated  with  the  HRQoL  outcome.  Figure  10  more  closely  compares   the  15D  score   changes  among   those  with  pain  duration  of  <  3  years   and  those  with  pain  duration  of  >  3  years.      

Page 81: Health-related quality of life in patients with chronic pain

  81  

   Figure  10.  Mean  15D  score  changes  in  respect  of  the  duration  of  pain  under  or  over  three  years.  The  x-­‐‑axis  shows  the  time  of  the  15D  measurement,  and  the  y-­‐‑axis  shows  the  mean  15D  score  and  its  95%  confidence  interval.    Patients  with  missing  answers    Table  2  shows  the  number  of  patients  who  responded  incompletely  to  the  background  questions.   The   differences   in   the   15D   scores   between   the   patients   who   answered  incompletely   to   the   pain   questionnaire   and   those   who   gave   valid   answers,   were  statistically  and  clinically  significant  in  the  following  questions:  single  or  several  pain  types  (0.733  vs  0.706  for  missing  vs  valid  answers,  p  =  0.002),  constant  or  intermittent  pain   (0.727  vs  0.705,  p  =  0.001),  and   the   impact  of  pain  on  everyday   life   (0.737  vs  0.705,  p  =  0.001).  In  other  questions,  the  differences  were  not  statistically  significant.    467  patients  did  not   reply   to   the  15D   follow-­‐‑up  at  12  months.  Those  patients  were  younger  (49  vs  54  years,  p  <  0.001)  and  had  slightly  higher  education  (42%  vs  35%  completing  post-­‐‑secondary  education,  p  =  0.018)  than  those  completing  the  follow-­‐‑up.  

Page 82: Health-related quality of life in patients with chronic pain

  82  

There  were  no  statistically  significant  differences  in  the  baseline  15D  score  or  other  background  variables.        266  patients  with  missing  answers  to  the  background  variables  were  not  included  in  the  regression  models  of   the  15D  score  change.  We  compared  the  patients  who  had  provided  valid  answers   to   the  background  questions  with   those  not   included   in   the  models.   The   patients   with   missing   answers   had   a   smaller   15D   score   change   at   12  months  than  those  with  complete  answers  (0.003  vs  0.021,  p  =  0.01).  These  groups  did  not   have   statistically   significant   differences   regarding   age,   gender,   or   baseline   15D  score.  

Discussion    

Principal  findings      The  HRQoL  of  chronic  pain  patients  was  very  low.  In  Study  I,  both  instruments  used  produced   very   low   mean   HRQoL   scores   among   chronic   pain   patients.   The   EQ-­‐‑5D  produced   lower  mean  scores  and  a  greater  score  range   than   the  15D.   In   the  EQ-­‐‑5D,  23.1%  obtained  a  score  of  1  or  0.8,  the  two  highest  scores  in  this  data.  This  suggests  a  ceiling  effect,  i.e.  insensitivity  in  the  highest  scores.  The  distribution  of  the  15D  had  no  ceiling  or  floor  effects.  In  the  EQ-­‐‑5D,  8%  of  patients  obtained  HRQoL  scores  worse  than  death.    In  Study  II,  the  HRQoL  of  the  1528  patients  was  much  lower  (0.710)  than  that  of  the  age-­‐‑and  gender-­‐‑matched  sample  of  the  general  population  in  Finland  (0.922).  All  the  dimension  scores  were  statistically  significantly  lower  among  the  chronic  pain  patients  than   among   the   healthy   population,   but   the   five   most   affected   dimensions   were  discomfort  and  symptoms,  usual  activities,  sexual  activity,  vitality,  and  sleep.  The  15D  HRQoL  score  correlated  reasonably  well  with  the  questions  used  for  pain  assessment.  The   patients   also   reported   very   high   pain-­‐‑related   distress.   Median   pain-­‐‑related  distress  was  79,  822  patients  (61%)  reported  distress  of  more  than  70mm,  and  290  patients  (19.0%)  reported  distress  of  more  than  95mm  on  a  scale  of  0  to  100  mm.      Although   the   two   HRQoL   instruments   showed   moderate   agreement,   they   still   had  considerable  differences.  They  correlated  with  each  other  moderately.   In   the  Bland-­‐‑Altman  analysis,  the  difference  between  the  two  instruments  increased  as  the  mean  of  the   two   scores  decreased   (this   is   easy   to  understand,   considering   the  greater   score  range  of  the  EQ-­‐‑5D).  The  mean  difference  of  the  measures  was  0.237,  with  86  patients  (24%)  obtaining  a  difference  of  >  0.5.    When  the  HRQoL  scores  were  standardized  (i.e.,  scaled  to  have  a  mean  of  0  and  SD  of  1)  and  compared  to  the  levels  of  self-­‐‑rated  general  health,  the  15D  appeared  to  better  identify  patients  in  good  health.  The  15D  correlated  more  with  self-­‐‑rated  general  health  than  the  EQ-­‐‑5D.    

Page 83: Health-related quality of life in patients with chronic pain

  83  

All  the  analysed  measures  of  pain  and  symptoms  were  strongly  associated  with  both  HRQoL  measures.  BDI,  CPAQ,  BNSQ  were  more  strongly  associated  with  the  15D.  The  PC  describing  the  symptom-­‐‑specific  measures  was  slightly  more  associated  with  the  15D  than  with  the  EQ-­‐‑5D.  The  variance  explained  by  the  PC  of  the  symptom-­‐‑specific  measures  and  the  background  variables  was  higher  in  the  15D  than  in  the  EQ-­‐‑5D.    In  the  stepwise  linear  regression  model  of  Study  II,  the  psychosocial  aspects  of  pain  were  most  associated  with  HRQoL.  Independent  predictors  of  the  15D  score  were  gender,  number  of  pain  types,  employment,  VAS  for  pain-­‐‑related  distress,  and  the  impact  of  pain  on  daily  life.  Although  pain  intensity  and  the  15D  score  correlated  well,   the   association  was   accounted   for   by   the   other   variables   entered   into   the  regression  model.    The   mean   15D   score   change   after   MPM   (0.017)   at   12   months   after   the   start   of  treatment  was  statistically  significant  and  clinically  important.  Fifty-­‐‑two  per  cent  of  the  patients  achieved  a  clinically  important  improvement  in  their  15D  score.  However,  the  HRQoL  outcomes  varied  greatly,  as  7%  reported  a  minor  decrease  and  28%  reported  a  major  decrease  in  HRQoL  despite  an  already  very  low  baseline  score.  In  the  patients  who   rerported  major   improvement  of  HRQoL,   the  most   improved  dimensions  were  those  of  psychological  health.      Of   the   socioeconomic   background   variables,   having   a   high   education   and   being  employed   increased   the  odds   for  major  HRQoL   improvement.  The  only  pain-­‐‑related  variable  associated  with  the  HRQoL  outcome  was  the  duration  of  pain  over  three  years,  which  reduced   the  odds  of  major   improvement.  No  other  pain-­‐‑related  variables,   for  example  pain   intensity   or   pain-­‐‑related  distress,  were   associated  with   the   change   in  quality  of  life.          Comparison  with  other  studies  and  significance  of  results    

Health-­‐‑related  quality  of  life      The  HRQoL  of  chronic  pain  patients  was  extremely  low.  It  was  much  lower  than  that  of  the  healthy  population  sample.  In  a  similar  study  setting  of  100  patients  starting  their  treatment  at  an  outpatient,  referral-­‐‑based  tertiary  multidisciplinary  pain  clinic  at  the  University  of  Alberta  Hospital,  the  mean  15D  score  was  0.67,  even  lower  than  that  in  the  present  study.  The  authors  also  measured  comorbidities  among  their  patients,  and  concluded   that   these  were   clearly   associated  with   a   reduced  15D   score   (Dick   et   al.,  2011).    A  study  of  colorectal,  breast  and  prostate  cancer  patients  with  an  end-­‐‑stage  disease  in  palliative  care  measured  the  patients'  HRQoL  using  the  15D  and  the  EQ-­‐‑5D.  The  mean  HRQoL  scores  for  the  patients  were  0.735  and  0.585,  respectively,  and  the  mean  EQ-­‐‑VAS  was  55.0.   Twenty-­‐‑eight   per   cent   of   these  patients   died  within   three  months   of  filling  in  the  forms.  (Färkkilä  et  al.,  2014).  In  the  present  study,  the  mean  15D  score  of  the  1528  patients  from  the  Helsinki  University  Hospital  was  0.710.  For  the  KROKIETA  

Page 84: Health-related quality of life in patients with chronic pain

  84  

study  patients,  the  mean  score  was  0.763,  and  0.736  for  non-­‐‑facial  pain  patients  of  the  study  patients.  The  respective  means  of  the  EQ-­‐‑5D  scores  were  0.650  and  0.466,  and  those   of   the   EQ-­‐‑VAS   scores   63.6   and   54.5.   The   chronic   pain   patients   thus   reported  similar  or  worse  quality  of  life  to  cancer  patients  in  palliative  care.  Similar  results  have  also  been  reported  in  Norway  (Fredheim  et  al.,  2008).      A  population-­‐‑based  study  of  29  chronic  conditions  also  measured  HRQoL  using  the  15D  and  the  EQ-­‐‑5D.  None  of  the  disease  groups,  and  only  patients  under  85  years  of  age,  had   lower   15D   scores   than   the   current   study   sample.   Comparison   of   the   EQ-­‐‑5D  produces  similar  results:  only  those  with  Parkinson's  disease  (EQ-­‐‑5D  score  of  0.440),  and  only  the  age  groups  under  85  had  lower  EQ-­‐‑5D  scores  (Saarni  et  al.,  2006).      Many   other   studies   have   also   shown   chronic   pain   to   be   associated   with   markedly  reduced   HRQoL   (e.g.   Boonstra   et   al.,   2013;   Løyland   et   al.,   2010).   The   chronic   pain  patients  in  the  present  study  also  reported  high  symptom  burden  in  other  pain-­‐‑related  and  symptom-­‐‑specific  measures.  Especially  notable  was  the  high  pain-­‐‑related  distress  reported  by   the  patients:  61%  reported  pain-­‐‑related  distress  of  >70/100,  and  19%  reported   distress   of   >95/100.   These   results   indicate   high   symptom   burden,   low  functioning,  and  impaired  quality  of  life  among  chronic  pain  patients  in  tertiary  care.      Non-­‐‑participants  and  patients  with  missing  answers  

The   information  on   those  who   refused   to  participate  was  not   collected,   and   a   large  number  of  invited  patients  did  not  participate  to  the  KROKIETA  study.  It  remains  to  be  studied  whether  non-­‐‑participants  had  had,   for  example,  more  psychosocial  distress,  longer  pain  duration  or  more  failed  treatment  attempts  than  participants,  or  vice  versa.  Those   patients   in   the   study   I   with   missing   answers   to   the   background   variables  appeared  to  have  similar  of  higher  15D  scores  than  those  with  valid  answers.  It  appears  thus  unlikely  that  those  with  missing  answers  would  have  more  severe  symptoms  than  those  with  complete  answers.  However,   those  with  missing  answers  had   lower  15D  score  change  than  those  with  fully  completed  answers.    

 

Comparison  and  validity  of  HRQoL  instruments      The   two   HRQoL   instruments   showed   a   moderate   association,   but   also   notable  differences.   The   distribution   of   the   15D   scores   resembled   normal,  while   the   EQ-­‐‑5D  score   distribution  was   bimodal  with   hints   of   a   ceiling   effect,   or   insensitivity   in   the  highest  scores.  The  EQ-­‐‑5D  produced  lower  mean  scores  than  the  15D.    The   EQ-­‐‑5D   and   the   15D   correlated   moderately,   as   the   Spearman's   rho   was   0.66,  p<   0.001.  However,   as   correlation   is   a  measure   of   association,   it   is   not   a   sufficient  measure  of  agreement  (Bland  and  Altman,  1986).  Further,  the  rank  correlation  of  0.66  is  not  very  good  for  two  measures  that  are  supposed  to  measure  the  same  construct.    In  the  Bland-­‐‑Altman  plot  (Figure  2),  the  differences  between  HRQoL  instruments  were  notable.  The  mean  difference  between  the  two  instruments  was  0.238.  Furthermore,  

Page 85: Health-related quality of life in patients with chronic pain

  85  

the   differences   had   a   linear-­‐‑resembling   trend     –   the   lower   the   HRQoL   scores,   the  greater  the  difference.  In  the  low  HRQoL  scores,  the  EQ-­‐‑5D  produced  lower  scores.  The  relatively  small  number  of  health  states  and  large  gaps  between  these  states  in  the  EQ-­‐‑5D  are  also  apparent  in  the  figure,  as  the  EQ-­‐‑5D  scores  appear  in  distinct  groups  and  give  the  graph  a  striped  appearance  in  higher  scores.    Lillegraven   et   al.   conducted   a   population-­‐‑based   study   of   patients   with   rheumatoid  arthritis,  comparing  three  HRQoL  instruments,  the  EQ-­‐‑5D,  the  SF-­‐‑6D(12)  and  the  15D  (Lillegraven  et  al.,  2010).   In   their   study,   the  agreement  between   the  EQ-­‐‑5D  and   the  15D/SF-­‐‑6D  was  not  good.  They  also  showed  a  Bland-­‐‑Altman  plot  between  the  EQ-­‐‑5D  and  the  15D  which  had  a  similar  pattern  (great  differences,  differences  increasing  with  lower  HRQoL  scores,  bimodal  score  distribution  in  the  EQ-­‐‑5D,  as  well  as  large  gaps  in  better  health  states)  to  that  reported  in  the  present  study  (Figure  2).  The  agreement  between  the  15D  and  the  SF-­‐‑6D  was  better.  The  authors  also  made  hypothetical  QALY  calculations,  and  showed  that  the  differences  could  be  2–4-­‐‑fold  in  cost  per  QALY  when  different  instruments  were  used  (Lillegraven  et  al.,  2010).    In  a  study  conducted  in  a  critical   care   setting   using   the   15D   and   the   EQ-­‐‑5D,   both   the   choice   of   the   HRQoL  instrument   and   the   assumptions   regarding   the   progression   of   disease   in   between  measure   points   produced   significantly   differing   QALY   results,   resulting   in   2–3-­‐‑fold  differences  in  cost  per  QALY  calculation  (Vainiola  et  al.,  2011).        In  the  present  study,  both  HRQoL  instruments  were  strongly  associated  with  the  pain-­‐‑  and  symptom-­‐‑specific  measures.  The  15D  was  more  strongly  associated  with  self-­‐‑rated  health  than  the  EQ-­‐‑5D.  When  both  HRQoL  scores  were  standardized,  the  15D  scores  were   higher   in   'good'   health   states,   whereas   the   standardized   EQ-­‐‑5D   scores   were  approximately  the  same  in   'average'  and   'good'  health  states.  This   indicates  that  the  15D   had   better   discriminatory   power     in   good   health   states.   In   addition,   Pearson's  correlation   coefficient   was   higher   with   the   15D   than   with   the   EQ-­‐‑5D,   indicating   a  stronger  linear  association  of  self-­‐‑rated  health  with  the  standardized  15D  score  than  with   the   standardized   EQ-­‐‑5D   score.   In   the   regression   model   with   the   pain-­‐‑   and  symptom-­‐‑specific  measures  as  explanatory  variables,  both  HRQoL  instruments  were  strongly  associated  with  the  measures.  The  CPAQ,  BDI,  BNSQ,  and  PC  of  the  measures  were  statistically  significantly  more  associated  with  the  15D  than  with  the  EQ-­‐‑5D.      Brazier   et   al.   concluded   that   the   EQ-­‐‑5D   would   be   sensitive   in   conditions   causing  primarily   physical   symptoms   and   limitations   on   the   basis   of   the   comparison   of   the  absolute  mean  scores  of  the  HRQoL  instruments  (Brazier  et  al.,  2004).  Another  study  assessing  the  instruments'  validity  for  measuring  chronic  pain  also  made  conclusions  by  comparing  absolute  score  differences  (Obradovic  et  al.,  2013).  In  their  review  of  six  HRQoL  instruments  in  seven  disease  entities,  Richardson  et  al.  compared,  for  example,  effect  sizes,  and  reported  that  the  15D  had  the  smallest  absolute  differences  between  groups,  but  the  largest  effect  sizes.  The  review  concluded  that  the  15D  and  the  AQoL  appear  to  be  more  sensitive  than  other  instruments,  and  that  the  EQ-­‐‑5D  was  especially  problematic  (Richardson  et  al.,  2016).  Another  review  by  Hawthorne  et  al.  concluded  that  the  15D  fared  equally  well  or  better  than  other  HRQoL  instruments  (Hawthorne  et  al.,  2001).    

Page 86: Health-related quality of life in patients with chronic pain

  86  

A  notable  difference  in  the  HRQoL  scores  of  the  studied  instruments  is  that  the  EQ-­‐‑5D  produces  HRQoL  scores  below  zero,  which  indicates  health  worse  than  death  (WTD).  In  the  present  study,  8%  obtained  WTD  scores  in  the  EQ-­‐‑5D.  There  were  no  hints  of  floor  effect  in  the  15D  scores.  Torrance  et  al.  compared  the  SF-­‐‑6D  and  the  EQ-­‐‑5D  in  a  population   sample   reporting   chronic   pain   with   or   without   neuropathic   pain  characteristics,   and   also   reported   considerable   differences   in   the   HRQoL   scores.  Similarly,   the  differences  between  the  HRQoL  scores  were  greater   in   lower  absolute  scores.  They  reported  that  6%  of  their  patients  obtained  WTD  scores  in  the  EQ-­‐‑5D,  and  that  no  floor  effect  was  observable  in  the  SF-­‐‑6D  scores.  The  authors  discuss  that  if  both  instruments  agreed,   those  patients  who  reported  health  worse   than  death   in  EQ-­‐‑5D  should  have  been  grouped  close  to  the  lowest  score  (0.29)  produced  by  the  SF-­‐‑6D.    The  study  by  Torrance  et  al.,  and  the  comment  by  Schofield  discuss  the  comparability  of  the  different  HRQoL  instruments  in  chronic  pain  (Schofield,  2014;  Torrance  et  al.,  2014).   The   authors   raised   the   question   as   to   whether   HRQoL   results   should   be  interpreted   in   relation   to   the   'floor',   i.e.,   the  worst  possible   score  of   the   instrument,  rather  than  in  relation  to  death.  To  illustrate,  a  score  of  0.4  would  indicate  much  poorer  health  in  the  SF-­‐‑6D,  in  which  the  lowest  obtainable  score  is  0.29,  than  in  the  EQ-­‐‑5D,  in  which  the  lowest  score  is  -­‐‑0.59.    In  summary,  the  present  study  confirmed  the  considerable  differences  between  the  EQ-­‐‑5D  and   the  15D.  Both  measures  appear   to  have  good  construct  validity,   as   they  are  associated  with  pain   intensity,   its   interference   in  daily   life,  and  related  psychosocial  constructs   shown   to   cause   pain-­‐‑related   disability.   The   15D   appeared   to   be   slightly  more  strongly  associated  with  these  measures  than  the  EQ-­‐‑5D.      15D  and  clinical  measures  of  pain    Studies   II   and   III   also   compared   the  15D   to   the  questions  measuring  pain   intensity,  pain-­‐‑related   distress   and   its   interference   in   daily   life.   All   of   these   were   strongly  associated.   The   15D   score   was   most   associated   with   pain-­‐‑related   distress   and  interference   in   daily   life,   indicating   that   the   psychosocial   burden   of   chronic   pain  significantly   impairs   overall   quality   of   life.   Pain   intensity   did   not   appear   to   have   a  significant  independent  predictive  value  on  quality  of  life.  In  addition,  the  dimensions  of  the  15D  that  were  the  most  impaired  in  patients  with  chronic  pain  were  mostly  those  associated  with  the  psychosocial  aspects  of  health.    Similar  results  regarding  the  significance  of  psychosocial  aspects  for  the  overall  quality  of   life   and   functioning   have   been   previously   reported.   In   summary,   psychosocial  factors  have  been  concluded  as  being  more  important  to  quality  of  life  and  functioning  than  pain  intensity  (Keeley  et  al.,  2008;  Lamé  et  al.,  2005;  Nicholl  et  al.,  2009;  Orenius  et  al.,  2013).      Agreeing  with  the  results  of  the  present  study,  Sullivan  et  al.  argue  that  psychosocial  problems  are  the  main  causes  of  disability  in  chronic  pain,  rather  than  pain  intensity.  Therefore,  pain  intensity  is  not  sufficient  to  describe  the  comprehensive  problems  of  

Page 87: Health-related quality of life in patients with chronic pain

  87  

the  patients.  They  also  argue  that  the  target  of  chronic  pain  management  should  not  be  to  reduce  pain  intensity,  but  to  improve  quality  of  life  (Sullivan  and  Ballantyne,  2016).      

Effectiveness  of  multidisciplinary  pain  management    MPM  is  effective  in  managing  chronic  pain.  It  has  been  shown  to  be  more  effective  than  'usual'   therapy   or   various   unidisciplinary   treatment   modalities   (Flor   et   al.,   1992;  Gatchel  and  Okifuji,  2006;  Kamper  et  al.,  2015;  Karjalainen  et  al.,  1999;  Scascighini  et  al.,  2008).      In  an  RCT  of  93  patients  with  chronic  recurrent  LBP,  patients  were  assigned  to  either  receive  a  comprehensive  pain  programme  (CPP,  same  as  MPM)  or  a  standard  exercise  programme.  Follow-­‐‑up  assessments  at  3.5  weeks,  4  months,  12  months,  and  5  years  demonstrated  the  greater  long-­‐‑term  efficacy  (up  to  5  years)  of  the  comprehensive  pain  programme  group  in  terms  of  decreased  disability  and  pain  intensity  scores,  as  well  as  increased  work  ability  (Friedrich  et  al.,  2005).  Similarly,  Heiskanen  et  al.  showed  in  the  pilot  study  of  the  present  study  sample  that  the  beneficial  effect  of  MPM  on  HRQoL  was  still  observable  up  to  the  three  years  later  (Heiskanen  et  al.,  2012).      In   a   non-­‐‑controlled   follow-­‐‑up   study   of   464   Swedish   patients   with   chronic  musculoskeletal  pain,  the  patients  participated  in  a  rather  intensive  outpatient  MPM  programme.  The  average  duration  of  treatment  was  over  20h/week,  and  most  of  the  treatment  contacts  were  carried  out  in  groups.  At  12-­‐‑month  follow-­‐‑up,  the  EQ-­‐‑5D  score  of  the  patients  had  increased  from  0.33  to  0.45,  which  was  statistically  significant.  The  patients  were  also  asked  to  rate  the  global  improvement  in  retrospect:  54%  reported  improved  pain,  and  80%  reported  improved  life  situation.  (Gerdle  et  al.,  2016)    In   the  present  study,   the  mean  HRQoL   improvement  at  12  months  after   the  start  of  treatment  was   statistically   significant   and   clinically   important.  Most   of   the   patients  achieved   a   clinically   important   long-­‐‑term   improvement   in   HRQoL.   However,   the  variations  in  the  HRQoL  outcomes  were  substantial,  as  35%  of  patients  also  reported  a  decrease,  and  28%  a  major  decrease  in  HRQoL.  This  is  notable  because  of  the  already  very  low  baseline  score  of  the  patients.  There  was  also  a  great  deal  of  variation  in  the  treatment   received   by   the   patients,   as   the   MPM   was   administered   individually,   as  indicated.   In   the   present   study,   the   improvement   of   HRQoL   appeared   to   occur   in  dimensions   concerning   psychological   health.   In   the   patients   who   reported   major  decrease  of  HRQoL,  the  decrease  was  more  even  between  the  dimensions.    Moore  et  al.  studied  the  decrease  in  pain  intensity  after  pharmacological  treatments.  They   found   a   similar   pattern   of   change   to   that   in   the   present   study   –   most   of   the  patients   reported   either   a   large   decrease   in   pain   intensity,   or   no   decrease   at   all.   A  minority  of  patients  reported  slight  decreases  in  pain  intensity.  This  pattern  was  also  seen  in  the  placebo  group.  The  authors  recommend  that  individual-­‐‑level  response  data  should  also  be  analysed  after  pain  interventions  (Moore  et  al.,  2010,  2014).    

Page 88: Health-related quality of life in patients with chronic pain

  88  

When  MPM  programmes  are  compared  with  surgery,  they  produce  similar  or  better  pain  relief  in  the  management  of  chronic  LBP.  They  are  safer  and  more  cost-­‐‑effective  than   surgery,   and   one   longitudinal   study   showed   that   the   implementation   of   MPM  reduced  the  number  of  operations  due  to  back  pain  (Gatchel  and  Okifuji,  2006).  In  an  uncontrolled,   prospective   study   on  paediatric   patients  with   chronic   pain,  MPM  was  concluded  to  reduce  hospital  visits  and  related  costs  (Mahrer  et  al.,  2018).      

Methodological   considerations  when  assessing  outcome  of  MPM    MPM   aims   to   comprehensively   rehabilitate   patients   and   improve   their   overall  functioning,   even   though   pain   intensity   might   not   be   significantly   reduced.   The  recommendations   regarding   pain   management   outcomes   list   many   domains   to   be  measured  (Kaiser  et  al.,  2018).   Indeed,   chronic  pain   is  a   complex  problem,  and   it   is  likely   that   no   single   outcome   measure   would   be   sufficient   for   all   heterogeneous  patients   with   chronic   pain,   not   even   HRQoL.   Thus,   most   pain  management   studies  should,   and   hopefully   will,   use   many   outcome   measures.   However,   many   of   these  measures  are  intercorrelated,  and  the  methods  for  analysing  these  multiple  outcomes  need  to  be  developed  and  standardized.  This  involves  both  statistical  methods  as  well  as   strategies   for   making   conclusions   based   on   multiple   outcomes.   When   choosing  outcome   measures,   it   should   also   be   noted   that   the   goals   of   MPM   should   be   set  individually,  depending  on  the  nature  of  the  pain  problem.    Most  studies  use  pain  intensity  reduction  for  assessing  the  outcomes  of  MPM,  and  as  stated   before,   the   other   outcomes   used   vary   between   studies.   Reviews   have   also  assessed  the  effect  of  MPM  on  objective  measures  such  as  return  to  work.  Kamper  et  al.,  in  their  systematic  review  on  MPM  for  chronic  LBP,  found  that  the  reduction  in  pain  intensity  and  disability  was  superior  to  that  achieved  by  usual  care  or  single-­‐‑modality  treatments,  but  MPM  did  not  appear  to  be  superior  when  measured  by  return-­‐‑to-­‐‑work  rates   (Kamper  et   al.,   2015).  Conversely,  Gatchel   and  Okifuji   conducted  a   systematic  review  of  comprehensive  pain  programmes  for  chronic  non-­‐‑malignant  pain,  and  found  that  return-­‐‑to-­‐‑work  rates  were  superior  with  MPM  than  among  the  controls  (Gatchel  and  Okifuji,   2006).  This  probably   reflects   the  heterogeneity  of   studies   and  outcome  measures,  but  we  should  also  bear  in  mind  that  the  latter  review  was  carried  out  among  undifferentiated  patients  with  chronic  pain.    As  a  measure  of  overall  health  and   functioning,  HRQoL   is  well   suited   to  monitoring  MPM  outcomes  among  heterogeneous  patient  populations.  The  strengths  of  HRQoL  are  that  it  is  comparable  across  all  patient  groups,  it  takes  into  account  the  possible  adverse  effects  of  treatment,  and  it  allows  the  assessment  of  cost-­‐‑effectiveness.  Some  HRQoL  instruments  also  allow  the  application  of  population  preference  weights  to  individual  dimensions,  which  adds  a  descriptive  value  to  the  instrument.  And  example  of  this  is  the   15D   profiles   shown   in   the   present   study.   HRQoL   is   also   well   suited   to   routine  outcome  measurement,  as  most  instruments  are  easy  to  fill  in.  In  a  systematic  review  on   the   outcomes   used   for   assessing   MPM,   HRQoL   was   measured   in   15/70   studies  (Deckert  et  al.,  2016).  As  stated  previously,  no  single  outcome  measure  is  likely  to  be  

Page 89: Health-related quality of life in patients with chronic pain

  89  

sufficient   for  all  patients  with  chronic  pain,  but  HRQoL  has  many  advantages  which  make  it  an  attractive  part  of  an  outcome  set  in  chronic  pain  management  trials.      HRQoL  measurement  is  not  without  limitations.  Generic  HRQoL  can  be  less  sensitive  than  disease-­‐‑specific  outcomes,  as  it  might  not  capture  all  the  relevant  aspects  of  the  disease.   Differences   have   also   been   found   in   the   utility   value   of   a   health   state,  depending  on  whether   the  patient,  or   the  general,  healthy  population,   express   their  preferences  (Krahn  et  al.,  2003).  In  prostate  cancer  patients,  the  utility  values  elicited  directly  from  the  patients  were  higher  than  those  elicited  from  a  healthy  population  to  the  same  health  states  (Krahn  et  al.,  2003).    This   raises   the   question   of   which   HRQoL   instrument   to   use.   As   stated   previously,  different   HRQoL   instruments   have   produced   differing   results,   and   the   results   are  generally  not  comparable.  Richardson  et  al.  also  emphasize  that  no  HRQoL  instrument  is  wrong  or  invalid;  they  merely  differ  in  their  sensitivity  to  different  aspects  of  health.  This   is   why   extensive   research   efforts   should   be   carried   out   to   identify   which  instruments   should  be  used   in  which   contexts   (Richardson  et   al.,   2011).   In   another  review  article   of   the   commonly  used  HRQoL   instruments   in   seven  different   disease  entities,   Richardson   et   al.   conclude   that   the   15D   is   perhaps   the   most   sensitive   to  physical   problems,   while   AQoL   might   be   the   most   sensitive   to   psychological  impairment   (Richardson   et   al.,   2016),   and   they   recommend   wider   use   of   the   two  HRQoL  instruments  over  the  more  popular  EQ-­‐‑5D.  The  IMMPACT  recommendations    advocate   SF-­‐‑6D   because   it   has   been   used   previously   among   chronic   pain   patients.  However,  the  authors  note  that  as  more  data  on  the  properties  of  different  instruments  accumulate,  this  recommendation  should  be  reassessed  (Dworkin  et  al.,  2005).      In  the  present  study,  the  baseline  15D  score  was  associated  with  the  HRQoL  change  at  follow-­‐‑up.  Better  quality  of  life  at  baseline  was  associated  with  a  smaller  probability  of  major   improvement   in   HRQoL.   Moreover,   the   patients   who   reported   major  improvement  had  slightly  lower  scores  in  the  dimensions  of  depression  and  distress.  A  cohort  study  of  464  patients,  with  multiple  outcomes  and  rigorous  statistical  analyses  found   small   associations   between   the   background   and   baseline   variables   and   the  treatment   outcome.   To   summarize,   more   severe   symptoms   at   baseline   predicted  greater  absolute  improvement  (Gerdle  et  al.,  2016).  A  similar  observation  –  that  more  severe  symptoms  are  associated  with  better   improvement  –    was  also  reported   in  a  review  of  MPM  outcomes   (Boonstra   et   al.,   2015).  This  might,   of   course,   be  because  those  with  more  severe  symptoms  simply  have  more  room  for  improvement.      However,   without   a   control   group,   several   kinds   of   bias  may   explain   the   observed  changes  and  the  relation  of  baseline  variables.  As  HRQoL  is  a  measure  of  overall  health,  other  diseases  and  their  treatment  probably  accounts  for  some  of  the  HRQoL  changes.  Also,   the   treatment  of   chronic  pain  does  not  necessarily   stop  when  MPM  episode   is  over.  The  treatment  continues   in  the  primary  care,  and  for  example,   those   in  higher  socioeconomic   position   might   have   better   access   to   primary   health   care   services.  Regression  to  the  mean,   i.e.,   the  tendency  of  extreme  variables  to  move  towards  the  mean  over   time,  might   explain  why   a   lower  15D   score  was   associated  with   greater  improvement   in  quality  of   life  (Glymour  et  al.,  2005).  Moreover,  an  effect  known  as  response  shift,  an  adaptation  or  change   in  an   individual's  conceptions  and  values  of  

Page 90: Health-related quality of life in patients with chronic pain

  90  

health,   is   known   to   account   for   some  HRQoL   changes   (Postulart   and  Adang,   2000).  However,  the  effect  of  response  shift  on  health  utility  values  was  studied  using  direct  health  valuation  methods  (VAS,  TTO,  SG).  To  my  knowledge,  no  studies  have  previously  assessed  the  role  of  response  shift  in  indirect  health  valuation  methods  (i.e.,  the  HRQoL  instruments).  It  is  justified  to  reason  that  if  the  patient  is  asked  about  the  severity  of  problems  in  health  (instead  of  valuing  their  current  health  in  relation  to  death),  this  question  would  be  less  prone  to  change  because  of  changes  in  their  health  values.  The  possibility  of  bias  must  nevertheless  be  taken  into  account  by  preferably  including  a  control  group.  This  may  not  always  be  possible  –  for  example  in  the  present  study  –  as   the  Finnish   law  requires   that   treatment  of  patients  accepted   for  MPM  must   start  within   three  months   of   referral.   Thus,   the   use   of  waiting   list   controls,   for   example,  would  be  both  impossible  and  unethical.  Another  possible  solution  would  be  to  more  accurately  phenotype  the  patients  receiving  MPM,  and  to  use  statistical  methods  such  as   propensity   score   calculation   or   inverse   probabilities   weighing   to   account   for  differences   in   the   groups   receiving  different   treatments.  Techniques   such   as   group-­‐‑based  trajectory  models  might  shed  light  on  the  difficult  task  of  finding  subgroups  from  the  seemingly  heterogeneous  group  of  patients  in  chronic  pain    

Which  patients  benefit  from  MPM?    Currently,   we   are   unable   to   identify   patients   who   would   benefit   from  MPM.   Many  factors  have  been  shown  to  associate  with  pain  management  outcomes,  but  the  results  are  inconsistent.  In  an  observational  pilot  study  of  the  present  study  sample,  Heiskanen  et  al.  analysed  100  patients  with  the  greatest  positive  changes  in  HRQoL,  and  100  with  the   greatest  deterioration   (Heiskanen  et   al.,   2012).   Like   the   results  presented  here,  employment  status  and  education  level  were  associated  with  HRQoL  change.  They  did  not   find   pain-­‐‑   or   treatment-­‐‑related   factors   that   would   have   differed   between   the  groups.      Socioeconomic  factors  have  also  shown  to  relate  to  the  outcomes  of  MPM.  Males  have  been  reported  to  benefit  more  from  MPM  than  women  (Pieh  et  al.,  2012;  de  Rooij  et  al.,  2013a).  In  an  RCT  of  243  Danish  patients  managed  at  an  outpatient  multidisciplinary  pain   clinic,   those   applying   for   disability   pension   did   not   benefit   as  much   as   others  (Becker  et  al.,  1998).  This   study  also  measured  HRQoL  using   the  SF-­‐‑36,  but  did  not  calculate  health  utility  values.  In  the  present  study,  being  employed  and  having  a  higher  education  at  baseline  were  associated  with  better  HRQoL  outcomes.    Psychological  constructs  associated  with  increased  pain  disability  are  also  related  to  treatment  outcomes.  Catastrophizing  has  been   shown   to   impair   the   effectiveness  of  pain  management  interventions  (Hill  et  al.,  2007;  Karels  et  al.,  2007).  Catastrophizing  has  also  been  associated  with  reduced  benefit  from  pharmacological  interventions  or  total  knee  arthroplasty  (Edwards  et  al.,  2016).  In  an  RCT  assessing  the  effectiveness  of  cognitive-­‐‑behavioural  therapy,  the  authors  examined  a  subsample  of  TMD  patients  that  did   not   benefit   from   standard   care   or   psychosocial   interventions,   and   higher  catastrophizing   and   its   persistence   after   treatment   were   associated   with   poor  treatment  outcome  (Litt  and  Porto,  2013).  Further,  patients  with  stronger  beliefs   in  their  ability  to  control  pain  at  the  beginning  of  MPM,  and  those  who  increased  their  use  

Page 91: Health-related quality of life in patients with chronic pain

  91  

of   positive   coping   mechanisms,   showed   the   greatest   decreases   in   pain-­‐‑related  disability  at  six  months  and  18  months  after  treatment  (de  Rooij  et  al.,  2014).  Another  study  also  found  that  higher  levels  of  anxiety  were  associated  with  less  improvement  after  MPM  (de  Rooij   et   al.,   2013a).  A   systematic   review  on  MPM   for  FM  discovered  moderate   evidence   that   having   more   depressive   symptomts   predicted   a   poorer  outcome  for  FM  patients  (de  Rooij  et  al.,  2013b).    In  their  review  of  psychosocial  factors  and  chronic  pain,  Edwards  et  al.  also  presented  several  studies  of  the  mediators  for  pain  management  outcomes.  In  RCTs  in  a  primary  care  setting,  antidepressant  treatment  of  chronic  pain  patients  with  comorbid  mood  disorders   relieved   pain,   which   correlates   with   the   improvement   of   psychosocial  distress  (Kroenke  et  al.,  2009;  Rej  et  al.,  2014).  Changes  in  cognitive  factors  have  been  deemed   predictors   of  MPM   outcome:   early-­‐‑treatment   changes   in   harmful   cognitive  processes  (catastrophizing,  helplessness,  anxiety)  predicted  pain-­‐‑related  outcomes  in  later  stages  of  treatment  (Burns  et  al.,  2003).  Further,  acceptance  was  found  to  be  an  important   mediator   of   pain-­‐‑related   disability   improvement   after   cognitive-­‐‑behavioural  therapy,  even  when  it  was  not  targeted  (Åkerblom  et  al.,  2015).  Thus,  the  beneficial  effect  of  pain  management  appears  to  be  at  least  partly  because  of  changes  in  cognitive  strategies  and  coping,  and  in  harmful  psychological  constructs  (Edwards  et  al.,  2016;  de  Rooij  et  al.,  2014).    However,  a  retrospective  cohort  study  of  230  patients  with  undifferentiated  chronic  musculoskeletal   pain   did   not   identify   any   strong   predictors   of   MPM   outcome,   and  concluded  that  variables  other  than  the  baseline  scores  of  the  outcome  variables  were  only   slightly   associated  with   treatment   outcome,   and   that   those  with   poor   physical  functioning  or  mental  health  benefitted  most  from  pain  rehabilitation  (Boonstra  et  al.,  2015).   In   a   review  of  MPM  outcome  predictors,   the  authors  noted   the   tendency   for  more  severe  symptoms  at  baseline  to  be  associated  with  greater  improvement  in  the  respective  measures  (van  der  Hulst  et  al.,  2005).  Similarly,  in  the  present  study,  poorer  quality  of  life  at  baseline  was  associated  with  greater  odds  for  improvement.  This  is  to  some  degree  contradictory  to  the  results  presented  in  the  previous  chapter.    A   review  of  MPM   interventions   found  no  evidence   that   treatment   variables   such  as  duration  or  components  would  be  meaningful  for  treatment  outcome,  but  the  reviewed  studies  were  heterogeneous  (Scascighini  et  al.,  2008).  Similar  conclusions  were  made  in  a  systematic  review  of  MPM  interventions   for  chronic  LBP  (Kamper  et  al.,  2015).    Recent   systematic   reviews   have   failed   to   find   an   association   between   treatment  intensity   and   treatment   outcomes   (Kamper   et   al.,   2015;  Waterschoot   et   al.,   2014).  Thus,  the  intensity  of  MPM  does  not  seem  to  directly  influence  the  outcomes,  and  the  optimal   number   of   treatment   contacts   remains   unknown.   On   the   other   hand,   this  encourages  the  development  of  less  intensive  outpatient  MPM  programmes.    Differences  across  studies  with  respect  to  important  predictors  may  be  due  to  multiple  factors   such   as   the   number   of   potential   prognostic   factors   analysed,   cohort  characteristics,  statistical  methods,  chosen  outcomes,  and/or  content  of  MPM,  which  have  all  shown  to  differ  significantly  across  studies  (Deckert  et  al.,  2016;  van  der  Hulst  et  al.,  2005;  Scascighini  et  al.,  2008).  This  again  underlines  the  need  for  more  rigorous  

Page 92: Health-related quality of life in patients with chronic pain

  92  

consideration  of  the  study  designs  and  outcome  measures  in  studies  assessing  MPM  efficacy.    In   the   present   study,   those   with   incomplete   answers   to   the   background   questions  appeared  to  have  slightly  lower  15D  score  change  than  those  with  complete  answers.  It  could  be  speculated  that  not  answering  to  the  background  questions  might  reflect  poor  motivation,   lack  of  understanding  or  some  other  underlying  psychological  trait  that  might  affect  the  treatment  outcome.    Symptom  duration  and  treatment  outcome    Finally,  Dunn  et  al.  have  investigated  the  recalled  duration  of  symptoms  in  determining  prognosis.  In  their  study,  those  with  over  three  years  of  pain  took  significantly  longer  to  improve  (Dunn  and  Croft,  2006).  Based  on  their  study,  we  chose  a  cut-­‐‑off  value  of  pain  duration  of  three  years,  and  those  with  over  three  years  of  pain  were  not  as  likely  to   improve   after   MPM.   Another   prospective   observational   study   also   found   more  modest  outcomes  among  patients  with  longer  duration  of  pain  (Moradi  et  al.,  2012).  A  randomized,  blinded  experimental  study  showed,  with  n  =  53  and  symptom  duration  of  <  2  years,  that  an  early  cognitive-­‐‑behavioural  intervention  for  rheumatoid  arthritis  patients   vs.   medical   care   alone   produced   significant   improvements   in   depressive  symptoms  and  joint  involvement,  and  even  in  C-­‐‑reactive  protein  levels  (Sharpe  et  al.,  2001).   Interestingly,   an   fMRI   study   of   patients   who   developed   chronic   back   pain  showed   that   the   brain   representation   of   pain   shifted   from   nociceptive   areas   to  emotional  areas  as  pain  became  chronic  (Hashmi  et  al.,  2013).  These  results  require  further   research   to   analyse   the   relation   between   chronic   pain,   its   duration,   related  disability,  and  treatment  outcome.      

Strengths  and  limitations    The  apparent  strengths  of  the  present  studies  are  the  large  samples  they  analysed,  their  lack  of  exclusion  criteria,  and  sufficiently  long  follow-­‐‑up  time  of  study  III.  Indeed,  some  observational  studies  have  shown  that  improvement  can  be  observed    even  after  three  or  five  years  after  MPM  (Friedrich  et  al.,  2005;  Heiskanen  et  al.,  2012).      The   strength   of   the   validation   analyses   presented   here   is   the   thorough,   rigorous  comparison  of  two  HRQoL  instruments,  both  to  each  other  and  to  several  pain-­‐‑related  measures.   Similar   analyses   of   the   HRQoL   instruments'   validity   have   not   previously  been   conducted   among   chronic   pain   patients.   The   results   are   important   when  comparing   different   HRQoL   instruments'   performance   in   chronic   pain   and   other  patient  populations.      The  study  did  not   include  a  control  group,  except   for   the  age-­‐‑  and  gender-­‐‑weighted  representative  sample  of  the  general  population.  This  limits  the  conclusions  that  can  be  drawn  concerning  the  effectiveness  of  MPM  or  its  components.  Thus,  several  kinds  of   bias  might   account   for   the   observed   HRQoL   changes;   these   are   discussed   in   the  previous   section.   Also,   as   the   MPM   programme   was   tailored   individually   for   each  

Page 93: Health-related quality of life in patients with chronic pain

  93  

patient   as   indicated,   we   cannot   compare   the   effectiveness   of   different   treatment  modalities.   However,   the   primary   aim   of   the   study   was   not   to   experimentally  demonstrate   the   efficacy  of  MPM  components,   but   to  describe   real-­‐‑world   follow-­‐‑up  results  among  patients  managed  in  a  tertiary  pain  clinic.      The  study  samples  of  the  present  studies  represent  only  a  selected  part  of  the  chronic  pain  population.  All  patients  included  in  the  studies  had  been  referred  and  accepted  for  treatment  in  tertiary  pain  clinics.  The  patients  who  end  up  being  treated  at  the  pain  clinics  represent  those  with  the  most  difficult  chronic  pain,  who  have  had  several  failed  treatment  attempts.  Moreover,  the  prevalence  of  depressive  symptoms,  for  example,  has   shown   to  be  elevated   in  patients  being   treated   in  a  pain   clinic   compared   to   the  general   population   (Bair   et   al.,   2003),   and   the   study   sample   of   the   present   studies  might  not  accurately  represent  the  population  of  all  patients  in  chronic  pain.    We   did   not   collect   information   about   those  who   did   not   participate   to   the   studies.  Among  the  population  of  Study  I,  only  approximately  half  of  those  who  received  the  letter  of  invitation  participated  in  the  study.  It  is  possible  that  those  patients  refusing  to  participate  differ  from  those  who  agreed  to  take  part,  and  due  to  this  participation  bias  the  study  sample  might  not  accurately  reflect  the  patient  population  in  a  secondary  pain  clinic.      In   the   longitudinal   follow-­‐‑up   of   Study   III,   the   patients   only   answered   the   15D  questionnaire.  For  heterogeneous  patients  in  chronic  pain,  no  single  outcome  measure  would  probably  be  able  to  capture  all   the  important  aspects  of  the  disease.   It  would  also   be   important   to   obtain   more   longitudinal   comparisons   of   various   outcome  measures.  Different  HRQoL  instruments  should  especially  be  compared  to  each  other  in  follow-­‐‑up  studies  to  obtain  information  on  properties  such  as  test-­‐‑retest  validity  and  sensitivity.        HRQoL  aims  to  measure  the  comprehensive  health  of  patients.  A  major  limitation  of  the  present   study   was   that   no   information   on   diseases   other   than   chronic   pain   was  assessed.   Comorbidities   to   other   diseases,   as   well   as   their   subsequent   treatment,  probably  account  for  some  of  the  variation  in  baseline  scores  as  well  as  in  follow-­‐‑up  HRQoL  scores.  Dick  et  al.  have  shown,  using  the  15D  in  100  patients  in  chronic  pain  referred  to  a  tertiary  pain  clinic,  that  comorbidities  account  for  a  significant  part  of  the  variation  of  HRQoL  at  baseline  (Dick  et  al.,  2011).  Also  the  adverse  effects  of  treatment  might  account   for   the  HRQoL  changes.  Among  coronary  artery  patients,   the  adverse  effects  of  treatment  have  also  shown  to  be  more  common  among  patients  whose  15D  HRQoL  score  deteriorates  (Heiskanen  et  al.,  2016).      Pain  duration  of  over  three  years  was  associated  with  a  smaller  15D  score  change  at  follow-­‐‑up.  However,  the  question  used  to  elicit  the  duration  of  pain  was  simple.  As  such,  it  may   also   represent   some  underlying  psychological   trait;   patients  who  experience  that  their  pain  has  lasted  a   long  time  may  have,   for  example,   less  resilience  or  more  perceived  injustice  than  those  who  have  experienced  shorter  pain  duration.        

Page 94: Health-related quality of life in patients with chronic pain

  94  

Future  perspectives    The  heterogeneity  of  the  reported  outcomes  and  study  designs  efficiently  prevent  the  comparison   of   different   studies   of   pain   management   interventions   (Deckert   et   al.,  2016).   Recommendations   for   the   core   outcome  domains   specifically   for  MPM   trials  have  been  published  (Kaiser  et  al.,  2018).  This  kind  of   research  on   the  outcomes  of  chronic  pain  management  is  important  for  determining  the  most  significant  outcomes  for  the  patients.  Future  studies  should  consider  these  recommendations,   in  order  to  produce  comparable  data.    Future   studies   should   also   analyse   the   different   components   of   multidisciplinary  management   and   the   differential   effects   of   these   components,   instead   of   merely  comparing  multidisciplinary  management  to  ‘traditional’  treatment.  Understanding  of  why  MPM  is  more  effective  than  other  forms  of  treatment,  or  what  would  be  the  most  efficient   way   of   organizing   MPM   is   sufficient.   Cost-­‐‑effectiveness   studies   are   also  needed.  These  suggestions  have  also  been  made  in  a  systematic  review  on  MPM  for  LBP  (Kamper  et  al.,  2015).      Studies  on  the  efficacy  of  MPM  should  also  focus  on  identifying  the  patients  who  will  benefit  from  the  treatment.  The  results  of  the  present  study  suggest  that  there  is  much  variation   in   prognoses   after   treatment,   and   other   studies   have   even   found   similar  response   patterns   in   placebo   groups   (Moore   et   al.,   2010,   2014).   This   variation,  combined  with  our  insufficient  knowledge  on  the  pathologic  processes  of  chronic  pain  calls  for  better  characterization  of  the  chronic  pain  patients,  in  order  to  find  factors  that  would  be  associated  with  the  treatment  outcomes,  and  also  to  better  understand  the  development  of  chronic  pain.  Studies  on  the  efficacy  of  pain  management  should  also  report  individual-­‐‑level  response  data  in  addition  to  the  average  changes.  Techniques  such   as   group-­‐‑based   trajectory   modelling   might   provide   insight   for   the   seemingly  challenging   task   of   finding   subgroups   from   the   heterogeneous   group   of   patients   in  chronic  pain.    Concerning   the   properties   of   different   HRQoL   instruments,   future   studies   should  compare   these   instruments   in   a   longitudinal   setting   to   assess,   for   example,   their  responsiveness   and   sensitivity.   Future   studies   should   include   less   often   used  instruments  such  as   the  15D  and   the  AQoL.  The  SF-­‐‑6D  and  EQ-­‐‑5D  are  currently   the  most   used   instruments,   but   other   instruments   might   have   even   better   benefits  (Richardson   et   al.,   2016).  We   also   need  more   information   on   the   natural   course   of  HRQoL  over  time  in  the  general  population  and  in  untreated  patient  populations.    The  terminology  used  to  describe  MPM  and  the  interventions  characterized  as  MPM,  appears   to   be   heterogeneous.   The   term   MPM   is   used   in   many   reviews,   but   many  smaller  studies  use  terms  such  as  comprehensive  pain  programmes,  interdisciplinary  treatment,  multimodal  rehabilitation  programmes,  or  combinations  of  these.  The  lack  of   standardized   terminology   might   distort,   for   example,   literature   searches   in  systematic  reviews.  There  also  appears  to  be  great  variations  in  programmes  that  are  described  as  multidisciplinary.  This  evidently  prevents,  for  example,  meta-­‐‑analyses  of  the  subject.      

Page 95: Health-related quality of life in patients with chronic pain

  95  

Conclusions      The   study   was   carried   out   to   examine   HRQoL   measurement   among   chronic   pain  patients.  The  aims  were  to  assess  the  validity  of  two  HRQoL  measures;  the  15D  and  the  EQ-­‐‑5D  among  chronic  pain  patients  treated  in  a  tertiary  pain  centre;  to  describe  the  HRQoL  of   a   large   sample  of   severe   chronic  pain  patients;   to  analyse   the  association  between  HRQoL,  socioeconomic  background  and  different  aspects  of  chronic  pain;  to  describe  long-­‐‑term  changes  in  HRQoL  after  outpatient  MPM  in  a  tertiary  pain  centre;  and   to   identify   the   possible   predictors   of   good   or   bad   HRQoL   outcome   from  background  variables.  The  conclusions  to  the  specific  aims  of  the  study  are  as  follows:    

1.   The  EQ-­‐‑5D  and   the  15D  both  appear  valid   for  measuring  HRQoL   in  cases  of  chronic  pain.  However,  there  were  substantial  differences  among  the  HRQoL  scores   produced   by   the   two   instruments.   The   15D   appeared   slightly   more  sensitive   than   the   EQ-­‐‑5D,   especially   in   relation   to   the   measures   of  psychological   and   social   aspects   of   pain.   The   15D   was   also   better   able   to  discriminate  patients  with  higher  scores,  i.e.,  better  health  states.    

 2.   The  HRQoL  of  patients  with  chronic  pain  was  very  low,  much  lower  than  that  

of   the   general   population   sample   and   most   patient   populations.   The   most  impaired  dimensions  were  those  of  psychological  health.  

 3.   The   psychosocial   aspects   of   chronic   pain   were   strongly   associated   with  

HRQoL;   although   pain   intensity   correlated   with   HRQoL,   this   association  disappeared  when  we  adjusted  for  the  effect  of  pain-­‐‑related  distress  and  the  impact  of  pain  on  daily  life  were  adjusted.  Socioeconomic  factors,  most  notably  higher  education  and  employment  status,  were  associated  with  higher  baseline  HRQoL  as  well  as  its  greater  change  after  treatment.  

 4.   There   was   a   clinically   important   and   statistically   significant   mean  

improvement   in  HRQoL   among   1043  patients   treated   in   a  multidisciplinary  pain  clinic.  Most  of  the  patients  reported  clinically  significant  improvement  of  HRQoL,  but  the  changes  varied  greatly.    

 5.   Pain  duration  of  over  three  years  was  associated  with  worse  prognosis  of  MPM.  

Higher   education   and   being   employed   were   associated   with   a   higher  probability  of  HRQoL  improvement.  The  analysed  variables  explained  only  a  small  part  of  the  variance  in  the  HRQoL  changes,  indicating  that  many  of  the  factors  related  to  the  HRQoL  changes  were  not  analysed.  Pain  duration  of  over  three  years  was  associated  with  a  worse  HRQoL  outcome,  which  calls  for  more  research  on  the  relationship  between  symptom  duration,  related  disability  and  treatment  outcomes.  This  also  underlines  the  importance  of  sufficiently  early  intervention  for  chronic  pain.  

Page 96: Health-related quality of life in patients with chronic pain

  96  

Acknowledgements    Work   for   this   thesis   was   carried   out   at   the   Pain   Clinic,   Division   of   Pain   Medicine,  Department  of  Anesthesiology,  Intensive  Care  and  Pain  Medicine,  Helsinki  University  Hospital  and  University  of  Helsinki.  I  started  the  work  in  2012,  and  my  doctoral  studies  began   officially   in   2014   when   I   was   admitted   to   the   Doctoral   Program   of   Clinical  Research,  Doctoral  School  of  Health,  University  of  Helsinki.  Most  of  the  funding  for  this  work  came  from  the  Helsinki  University  Hospital's  research  funds.  Additional  financial  support  was  provided  by  Wilhelm  och  Else  Stockmanns  Stiftelse,  the  Finnish  Medical  Foundation  and  the  Finnish  Association  for  the  Study  of  Pain.  Further,  The  KROKIETA  research  project  has  received  financial  support  from  the  State  Funding  for  University-­‐‑Level  Health  Research  (project  number  TYH2014214/EK)  and  the  Finnish  Association  for  the  Study  of  Pain.  I  express  my  sincere  thanks  to  the  funders  for  their  support  and  for  believing  in  my  work.      Eija  Kalso,  you  have  my  deepest  and  heartfelt  gratitude  for  your  invaluable  guidance  throughout   the   years   of   this   work.   Not   only   has   your   outstanding   knowledge   and  expertise   been   pivotal   for   this   study,   but   also   your   example   has   guided   my  development   as   a   scientist,   a   doctor   and   a   person.   Your   enthusiasm   about   science,  people  and  life  is  unparalleled,  and  an  example  for  us  all.      I  express  my  sincere  and  profound  gratitude  to  my  PhD  director  Risto  P.  Roine.  He  has  shown  an  example  of  critical  thinking  and  humble  attitude  which  I  hope  to  cultivate  in  my  many  years  in  medicine  to  come.  Among  many  other  things,  I  remember  warmly  our   meetings   early   during   this   work,   when   you   always   had   time   to   answer   my  elementary   questions   and,   e.g.,   to   guide   in   the   use   of   SPSS.   I'm   lucky   to   continue  working  with  you  in  quality  of  life  research.      Tarja  Heiskanen,   I   am  grateful   for  your  much-­‐‑needed  guidance,  encouragement  and  mentoring  during  the  years  of  this  study.    You  have  my  sincere  thanks  also  for  your  work  in  the  writing  of  the  manuscripts.    Harri  Sintonen,  I  am  grateful  for  your  expertise  and  guidance  on  statistics  and  health-­‐‑related  quality  of  life  measurement,  and  also  for  your  valuable,  constructive  comments  that  have  greatly  improved  this  work  and  my  understanding  on  statistics  and  quality  of  life  measurement.  I  admire  your  work  on  developing  the  15D.    I  wish  to  deeply   thank  Hannu  Kautiainen   for  his  statistical  counseling  and  expertise  during  this  work.  Our  meetings  have  left  me  humble  but  motivated  to  understand  ever  more  about  the  fascinating  world  of  statistics.      The  reviewers  of  this  thesis,  Tuula  Manner  and  Markus  Paananen  are  thanked  for  their  time  and  expertise,  and  the  excellent  comments  that  notably  improved  this  work.  I  wish  also  to  thank  Nora  Hagelberg  and  Pekka  Mäntyselkä,  the  members  of  my  PhD  thesis  committee.   Heli   Forssell,   Seppo   Mustola,   and   the   KROKIETA   study   group   are  acknowledged  for  the  fascinating  collaboration  in  writing  the  first  article  of  this  thesis.  

Page 97: Health-related quality of life in patients with chronic pain

  97  

I   present   my   thanks   to   Les   Hearn   for   type-­‐‑editing   the   manuscripts,   and   to   Alice  Lehtinen  for  the  large  work  of  revising  the  language  of  this  thesis.      Nurses   and   staff   at   the   Pain   Clinic,   most   notably   Soile   Haakana   and   Anna-­‐‑Maija  Koivusalo  have  my  profound  gratitude  for  helping  me  to  collect  the  data  for  this  study  and  always  relentlessly  supporting  my  work.      Reino  Pöyhiä,  who  in  the  first  year  of  my  studies  showed  me  around  Meilahti  hospital  and  operating  rooms,  and  arranged   the  very   first  meeting  between  me  and  Eija,  my  supervisor.  Reino  is  ultimately  the  one  to  “blame”  for  this  thesis.  Thank  you  for  guiding  and  encouraging  the  young  medical  student.    My  family,  thank  you  for  the  great  memories  and  for  helping  me  to  explore  the  world.  Anna-­‐‑Maija,  thanks  for  being  a  great  and  powerful  little  sister!  I  have  a  lot  to  learn  from  you.    These  accomplishments  would  mean  little  if  there  were  no  friends  to  celebrate  with.  Several  friends,  or  groups  of  of  friends  are  acknowledged  and  thanked.      Joel,   Juho  and  Sakari,   for  being  my   "peer"   support   group  during   these  years  of  PhD  research.  The  quotation  marks  signify  how  you  constantly  impress  me  with  your  skills,  knowledge   and   ambition.   Joel,   I   have   immensely   enjoyed   our   discussions   about   all  things  related  and  unrelated  to  medicine,  and  I  hope  with  all  my  heart  that  we  would  end   up   living   in   the   same   country.   Juho,   thank   you   for   teaching  me   about   so  many  various  fascinating  things.  Sakari  is  acknowledged  for  his  DJ  skills,  for  giving  thought  on  my  startup  ideas,  and  for  his  honesty  towards  the  important  things  in  life.      PG,  many   thanks   for   our   unforgettable   years   together   in   school.  WD,   thank   you   for  sharing   the   enthusiasm   towards   adventures   in   the   nature   -­‐‑   our   hikes   have   been   a  source  of  very  important  ideas  and  a  great  counterweight  to  this  work.  Ville,  thank  you  for  your  courage  and  philosophical  attitude  that  inspires  me  and  many  others  around  you.  Vili,  probably  my  first  friend,  thank  you  for  the  exciting  adventures  in  Paimela  and  beyond!  PS,  thank  you  for  sharing  the  years  and  intense  experiences  of  medical  school.  Coma,  you  are  acknowledged  for  being  the  best  roommates.  May  your  legacy  live  on  among  medical  students!    Esko  Salokari,  who  is  affiliated  with  the  majority  of  the  afore  mentioned  groups.  We've  shared  an  exceptionally  long  road  of  common  education  together,  starting  as  9-­‐‑year-­‐‑old   school   kids,   ever   continuing   throughout   high   school   and   medical   school.   I'm  honored  to  have  shared  so  many  and  so  various  pages  of  life  with  you.          Finally,  I  express  my  gratitude  and  love  to  Elina.  During  the  six  years  we  have  known  each  other,  I  have  learned  so  much  about  life,  medicine  and  myself.  Because  of  you,  I've  grown  a  great  deal  as  a  person.  I  look  into  the  future  with  confidence  and  excitement,  knowing  I  can  share  it  with  you.      Pekka  Vartiainen    

Page 98: Health-related quality of life in patients with chronic pain

  98  

References    

Afari,  N.,  Ahumada,  S.M.,  Wright,  L.J.,  Mostoufi,  S.,  Golnari,  G.,  Reis,  V.,  and  Cuneo,  J.G.  (2014).  Psychological   trauma  and   functional  somatic  syndromes:  a  systematic  review  and  meta-­‐‑analysis.  Psychosom.  Med  76,  2–11.  

Alanne,   S.,   Roine,   R.P.,   Räsänen,   P.,   Vainiola,   T.,   and   Sintonen,   H.   (2015).   Estimating   the  minimum  important  change  in  the  15D  scores.  Qual  Life  Res  24,  599–606.  

Anderson,  K.O.,  Dowds,  B.N.,  Pelletz,  R.E.,  Edwards,  W.T.,  and  Peeters-­‐‑Asdourian,  C.  (1995).  Development  and  initial  validation  of  a  scale  to  measure  self-­‐‑efficacy  beliefs  in  patients  with  chronic  pain.  Pain  63,  77–84.  

Anema,   J.R.,   Schellart,  A.J.M.,  Cassidy,   J.D.,  Loisel,  P.,  Veerman,  T.J.,   and  van  der  Beek,  A.J.  (2009).  Can  cross  country  differences   in  return-­‐‑to-­‐‑work  after  chronic  occupational  back  pain  be  explained?  An  exploratory  analysis  on  disability  policies   in  a   six   country   cohort  study.  J.  Occup  Rehabil.  19,  419–426.  

Apkarian,   A.V.,   Bushnell,   M.C.,   Treede,   R.-­‐‑D.,   and   Zubieta,   J.-­‐‑K.   (2005).   Human   brain  mechanisms  of  pain  perception  and  regulation  in  health  and  disease.  Eur  J  Pain  9,  463–463.  

Arnold,  D.,  Girling,  A.,  Stevens,  A.,  and  Lilford,  R.  (2009).  Comparison  of  direct  and  indirect  methods  of  estimating  health  state  utilities  for  resource  allocation:  review  and  empirical  analysis.  BMJ  339,  b2688–b2688.  

Arnstein,  P.,  Caudill,  M.,  Mandle,  C.L.,  Norris,  A.,  and  Beasley,  R.   (1999).  Self  efficacy  as  a  mediator  of  the  relationship  between  pain  intensity,  disability  and  depression  in  chronic  pain  patients.  Pain  80,  483–491.  

Asklöf,   T.,   Martikainen,   J.,   Kautiainen,   H.,   Haanpää,   M.,   Kiviranta,   I.,   and   Pohjolainen,   T.  (2016).   Paid   expenditures   and   productivity   costs   associated   with   permanent   disability  pensions   in   patients   with   spinal   disorders:   Nationwide   Finnish   Register-­‐‑based   Study,  1990–2010.  Eur  Spine  J  25,  275–281.  

Asmundson,   G.J.G.,   and   Katz,   J.   (2009).   Understanding   the   co-­‐‑occurrence   of   anxiety  disorders  and  chronic  pain:  state-­‐‑of-­‐‑the-­‐‑art.  Depress.  Anxiety  26,  888–901.  

Azevedo,   L.F.,   Costa-­‐‑Pereira,   A.,   Mendonça,   L.,   Dias,   C.C.,   and   Castro-­‐‑Lopes,   J.M.   (2012).  Epidemiology   of   chronic   pain:   a   population-­‐‑based   nationwide   study   on   its   prevalence,  characteristics  and  associated  disability  in  Portugal.  J  Pain  Off.  J.  Am  Pain  Soc.  13,  773–783.  

Azevedo,   L.F.,   Costa-­‐‑Pereira,   A.,   Mendonça,   L.,   Dias,   C.C.,   and   Castro-­‐‑Lopes,   J.M.   (2013).  Chronic   pain   and   health   services   utilization:   is   there   overuse   of   diagnostic   tests   and  inequalities  in  nonpharmacologic  treatment  methods  utilization?  Med  Care  51,  859–869.  

Bäckryd,   E.,   Tanum,   L.,   Lind,   A.-­‐‑L.,   Larsson,   A.,   and   Gordh,   T.   (2017a).   Evidence   of   both  systemic  inflammation  and  neuroinflammation  in  fibromyalgia  patients,  as  assessed  by  a  multiplex  protein  panel  applied  to  the  cerebrospinal  fluid  and  to  plasma.  J  Pain  Res  Volume  10,  515–525.  

Page 99: Health-related quality of life in patients with chronic pain

  99  

Bäckryd,  E.,  Lind,  A.-­‐‑L.,  Thulin,  M.,  Larsson,  A.,  Gerdle,  B.,  and  Gordh,  T.  (2017b).  High  levels  of   cerebrospinal   fluid   chemokines   point   to   the   presence   of   neuroinflammation   in  peripheral  neuropathic  pain:  a  cross-­‐‑sectional  study  of  2  cohorts  of  patients  compared  with  healthy  controls.  Pain  158,  2487–2495.  

Bair,   M.J.,   Robinson,   R.L.,   Katon,   W.,   and   Kroenke,   K.   (2003).   Depression   and   pain  comorbidity:  a  literature  review.  Arch  Intern  Med  163,  2433–2445.  

Baliki,  M.N.,  Petre,  B.,  Torbey,  S.,  Herrmann,  K.M.,  Huang,  L.,  Schnitzer,  T.J.,  Fields,  H.L.,  and  Apkarian,  A.V.  (2012).  Corticostriatal  functional  connectivity  predicts  transition  to  chronic  back  pain.  Nat  Neurosci  15,  1117–1119.  

Bandura,  A.  (1982).  Self-­‐‑efficacy  mechanism  in  human  agency.  Am  Psychol  37,  122–147.  

Beck,  A.T.,  Ward,   C.H.,  Mendelson,  M.,  Mock,   J.,   and  Erbaugh,   J.   (1961).  An   inventory   for  measuring  depression.  Arch  Gen  Psychiatry  4,  561–571.  

Beck,  A.T.,   Steer,  R.A.,  Ball,  R.,   and  Ranieri,  W.F.   (1996).  Comparison  of  Beck  Depression  Inventories-­‐‑IA  and-­‐‑II  in  Psychiatric  Outpatients.  J  Pers  Assess.  67,  588–597.  

Becker,  N.,  Højsted,  J.,  Sjøgren,  P.,  and  Eriksen,  J.  (1998).  Sociodemographic  predictors  of  treatment   outcome   in   chronic   non-­‐‑malignant   pain   patients.   Do   patients   receiving   or  applying  for  disability  pension  benefit  from  multidisciplinary  pain  treatment?  Pain  77,  279–287.  

Bland,  J.M.,  and  Altman,  D.G.  (1986).  Statistical  methods  for  assessing  agreement  between  two  methods  of  clinical  measurement.  Lancet    1,  307–310.  

Blyth,  F.M.,  March,  L.M.,  Brnabic,  A.J.M.,  and  Cousins,  M.J.  (2004).  Chronic  pain  and  frequent  use  of  health  care.  Pain  111,  51–58.  

Blyth,   F.M.,  Macfarlane,  G.J.,   and  Nicholas,  M.K.   (2007).  The   contribution  of  psychosocial  factors  to  the  development  of  chronic  pain:  the  key  to  better  outcomes  for  patients?  Pain  129,  8–11.  

Boonstra,   A.M.,   Reneman,   M.F.,   Stewart,   R.E.,   Post,   M.W.,   and   Schiphorst   Preuper,   H.R.  (2013).  Life  satisfaction  in  patients  with  chronic  musculoskeletal  pain  and  its  predictors.  Qual  Life  Res  Int  J.  Qual  Life  Asp.  Treat.  Care  Rehabil.  22,  93–101.  

Boonstra,  A.M.,  Reneman,  M.F.,  Waaksma,  B.R.,  Schiphorst  Preuper,  H.R.,  and  Stewart,  R.E.  (2015).   Predictors   of   multidisciplinary   treatment   outcome   in   patients   with   chronic  musculoskeletal  pain.  Disabil  Rehabil  37,  1242–1250.  

Borodulin,  K.,  Vartiainen,  E.,  Peltonen,  M.,  Jousilahti,  P.,  Juolevi,  A.,  Laatikainen,  T.,  Mannisto,  S.,  Salomaa,  V.,  Sundvall,  J.,  and  Puska,  P.  (2015).  Forty-­‐‑year  trends  in  cardiovascular  risk  factors  in  Finland.  Eur  J  Public  Health  25,  539–546.  

Bousema,   E.J.,   Verbunt,   J.A.,   Seelen,   H.A.M.,   Vlaeyen,   J.W.S.,   and   Knottnerus,   J.A.   (2007).  Disuse  and  physical  deconditioning  in  the  first  year  after  the  onset  of  back  pain.  Pain  130,  279–286.  

Brazier,  J.E.,  and  Roberts,  J.  (2004).  The  estimation  of  a  preference-­‐‑based  measure  of  health  from  the  SF-­‐‑12.  Med  Care  42,  851–859.  

Page 100: Health-related quality of life in patients with chronic pain

  100  

Brazier,  J.,  Usherwood,  T.,  Harper,  R.,  and  Thomas,  K.  (1998).  Deriving  a  preference-­‐‑based  single  index  from  the  UK  SF-­‐‑36  Health  Survey.  J  Clin  Epidemiol  51,  1115–1128.  

Brazier,  J.,  Deverill,  M.,  Green,  C.,  Harper,  R.,  and  Booth,  A.  (1999).  A  review  of  the  use  of  health  status  measures  in  economic  evaluation.  Health  Technol  Assess  3,  i  –  iv,  1–164.  

Brazier,  J.,  Roberts,  J.,  Tsuchiya,  A.,  and  Busschbach,  J.  (2004).  A  comparison  of  the  EQ-­‐‑5D  and  SF-­‐‑6D  across  seven  patient  groups.  Health  Econ.  13,  873–884.  

Breivik,  H.,  Collett,  B.,  Ventafridda,  V.,  Cohen,  R.,  and  Gallacher,  D.  (2006).  Survey  of  chronic  pain  in  Europe:  Prevalence,  impact  on  daily  life,  and  treatment.  Eur  J  Pain  10,  287–287.  

Breivik,  H.,  Eisenberg,  E.,  O’Brien,  T.,  and  on  behalf  of  OPENMinds  (2013).  The  individual  and   societal   burden   of   chronic   pain   in   Europe:   the   case   for   strategic   prioritisation   and  action  to  improve  knowledge  and  availability  of  appropriate  care.  BMC  Public  Health  13,  1229.  

Brennstuhl,  M.-­‐‑J.,   Tarquinio,   C.,   and  Montel,   S.   (2015).   Chronic   Pain   and  PTSD:  Evolving  Views  on  Their  Comorbidity:  Chronic  Pain  and  PTSD:  Evolving  Views  on  Their  Comorbidity.  Perspect  Psychiatr  Care  51,  295–304.  

Brooks,  R.  (1996).  EuroQol:  the  current  state  of  play.  Health  Policy  37,  53–72.  

Burke,   A.L.J.,   Mathias,   J.L.,   and   Denson,   L.A.   (2015).   Psychological   functioning   of   people  living  with  chronic  pain:  a  meta-­‐‑analytic  review.  Br  J  Clin  Psychol  54,  345–360.  

Burns,   J.W.,   Glenn,   B.,   Bruehl,   S.,   Harden,   R.N.,   and   Lofland,   K.   (2003).   Cognitive   factors  influence  outcome   following  multidisciplinary   chronic  pain   treatment:   a   replication   and  extension  of  a  cross-­‐‑lagged  panel  analysis.  Behav  Res  Ther  41,  1163–1182.  

Castillo,  R.C.,  Wegener,  S.T.,  Heins,  S.E.,  Haythornthwaite,   J.A.,  MacKenzie,  E.J.,  and  Bosse,  M.J.  (2013).  Longitudinal  relationships  between  anxiety,  depression,  and  pain:  Results  from  a  two-­‐‑year  cohort  study  of  lower  extremity  trauma  patients.  Pain  154,  2860–2866.  

Cella,  D.F.  (1995).  Measuring  quality  of  life  in  palliative  care.  Semin.  Oncol.  22,  73–81.  

Chouchou,  F.,  Khoury,   S.,  Chauny,   J.-­‐‑M.,  Denis,  R.,   and  Lavigne,  G.J.   (2014).  Postoperative  sleep  disruptions:  a  potential  catalyst  of  acute  pain?  Sleep  Med  Rev  18,  273–282.  

Costa,  L.  da  C.M.,  Maher,  C.G.,  McAuley,  J.H.,  Hancock,  M.J.,  and  Smeets,  R.J.E.M.  (2011).  Self-­‐‑efficacy  is  more  important  than  fear  of  movement  in  mediating  the  relationship  between  pain  and  disability  in  chronic  low  back  pain.  Eur  J  Pain    15,  213–219.  

Croft,   P.,  Dunn,  K.M.,  Von  Korff,  M.   (2007).  Chronic  pain   syndromes:  You   can’t  have  one  without  another:  Pain  131,  237–238.  

Crombez,   G.,   Eccleston,   C.,   Van   Damme,   S.,   Vlaeyen,   J.W.S.,   and   Karoly,   P.   (2012).   Fear-­‐‑Avoidance  Model  of  Chronic  Pain:  The  Next  Generation.  Clin  J  Pain  28,  475–483.  

Deckert,  S.,  Kaiser,  U.,  Kopkow,  C.,  Trautmann,  F.,  Sabatowski,  R.,  and  Schmitt,  J.  (2016).  A  systematic  review  of  the  outcomes  reported  in  multimodal  pain  therapy  for  chronic  pain.  Eur  J  Pain  20,  51–63.  

Page 101: Health-related quality of life in patients with chronic pain

  101  

Desborough,  J.P.  (2000).  The  stress  response  to  trauma  and  surgery.  Br  J    Anaesth  85,  109–117.  

Devlin,  N.J.,  Shah,  K.K.,  Feng,  Y.,  Mulhern,  B.,  and  van  Hout,  B.  (2017).  Valuing  health-­‐‑related  quality  of  life:  An  EQ-­‐‑5D-­‐‑5L  value  set  for  England.  Health  Econ  27,  7-­‐‑22  

Dick,   B.D.,   Rashiq,   S.,   Verrier,  M.J.,   Ohinmaa,   A.,   and   Zhang,   J.   (2011).   Symptom  Burden,  Medication  Detriment,  and  Support  for  the  Use  of  the  15D  Health-­‐‑Related  Quality  of  Life  Instrument  in  a  Chronic  Pain  Clinic  Population.  Pain  Res  Treat  2011,  809071.  

Dionne,  C.E.,  Dunn,  K.M.,  and  Croft,  P.R.  (2006).  Does  back  pain  prevalence  really  decrease  with  increasing  age?  A  systematic  review.  Age  Ageing  35,  229–234.  

Dolan,  P.  (1997).  Modeling  valuations  for  EuroQol  health  states.  Med  Care  35,  1095–1108.  

Dowd,  H.,   Hogan,  M.J.,  McGuire,   B.E.,   Davis,  M.C.,   Sarma,   K.M.,   Fish,   R.A.,   and   Zautra,   A.J.  (2015).  Comparison  of  an  Online  Mindfulness-­‐‑based  Cognitive  Therapy  Intervention  With  Online  Pain  Management  Psychoeducation:  A  Randomized  Controlled  Study.  Clin  J  Pain  31,  517–527.  

Drummond,  M.  (2015).  Methods  for  the  economic  evaluation  of  health  care  programmes  (Oxford,  United  Kingdom;  New  York,  USA:  Oxford  University  Press).  

Dunn,  K.M.,  and  Croft,  P.R.   (2006).  The   importance  of   symptom  duration   in  determining  prognosis.  Pain  121,  126–132.  

Dworkin,  R.H.,  Turk,  D.C.,  Farrar,  J.T.,  Haythornthwaite,  J.A.,  Jensen,  M.P.,  Katz,  N.P.,  Kerns,  R.D.,  Stucki,  G.,  Allen,  R.R.,  Bellamy,  N.,  et  al.   (2005).  Core  outcome  measures   for  chronic  pain  clinical  trials:  IMMPACT  recommendations:  Pain  113,  9–19.  

Dworkin,  R.H.,  Burke,  L.B.,  Gewandter,  J.S.,  and  Smith,  S.M.  (2015).  Reliability  is  Necessary  but  Far  From  Sufficient:  How  Might  the  Validity  of  Pain  Ratings  be  Improved?  Clin  J  Pain  31,  599–602.  

Dworkin,  R.H.,  Bruehl,  S.,  Fillingim,  R.B.,  Loeser,  J.D.,  Terman,  G.W.,  and  Turk,  D.C.  (2016).  Multidimensional   Diagnostic   Criteria   for   Chronic   Pain:   Introduction   to   the   ACTTION–American  Pain  Society  Pain  Taxonomy  (AAPT).  J  Pain  17,  T1–T9.  

Edwards,   R.R.,   Cahalan,   C.,   Calahan,   C.,  Mensing,   G.,   Smith,  M.,   and  Haythornthwaite,   J.A.  (2011).   Pain,   catastrophizing,   and   depression   in   the   rheumatic   diseases.   Nat   Revv  Rheumatol  7,  216–224.  

Edwards,  R.R.,  Dworkin,  R.H.,  Sullivan,  M.D.,  Turk,  D.C.,  and  Wasan,  A.D.  (2016).  The  Role  of  Psychosocial  Processes   in   the  Development  and  Maintenance  of  Chronic  Pain.   J  Pain  17,  T70–T92.  

Ekman,  M.,  Johnell,  O.,  and  Lidgren,  L.  (2005).  The  economic  cost  of  low  back  pain  in  Sweden  in  2001.  Acta  Orthop.  76,  275–284.  

Elliott,   A.M.,   Smith,   B.H.,   Penny,   K.I.,   Smith,   W.C.,   and   Chambers,   W.A.   (1999).   The  epidemiology  of  chronic  pain  in  the  community.  Lancet  354,  1248–1252.  

Eriksen,  J.,  Jensen,  M.K.,  Sjøgren,  P.,  Ekholm,  O.,  and  Rasmussen,  N.K.  (2003).  Epidemiology  of  chronic  non-­‐‑malignant  pain  in  Denmark.  Pain  106,  221–228.  

Page 102: Health-related quality of life in patients with chronic pain

  102  

EuroQoL   Group   (1990).   EuroQoL-­‐‑   a   new   facility   for   the  measurement   of   health-­‐‑related  quality  of  life.  Health  Policy  16,  199–208.  

The  EuroQoL  Group  (2017).  Choosing  a  value  set  for  the  EQ-­‐‑5D.  https://euroqol.org/eq-­‐‑5d-­‐‑instruments/eq-­‐‑5d-­‐‑3l-­‐‑about/valuation/choosing-­‐‑a-­‐‑value-­‐‑set/  

Evers,  A.W.M.,  Kraaimaat,  F.W.,  Geenen,  R.,   Jacobs,   J.W.G.,  and  Bijlsma,   J.W.J.  (2003).  Pain  coping  and  social  support  as  predictors  of  long-­‐‑term  functional  disability  and  pain  in  early  rheumatoid  arthritis.  Behav  Res  Ther.  41,  1295–1310.  

Färkkilä,   N.,   Torvinen,   S.,   Roine,   R.P.,   Sintonen,   H.,   Hänninen,   J.,   Taari,   K.,   and   Saarto,   T.  (2014).  Health-­‐‑related  quality  of  life  among  breast,  prostate,  and  colorectal  cancer  patients  with  end-­‐‑stage  disease.  Qual  Life  Res  23,  1387–1394.  

Farrar,   J.T.,   Young,   J.P.,   LaMoreaux,   L.,   Werth,   J.L.,   and   Poole,   R.M.   (2001).   Clinical  importance  of  changes  in  chronic  pain  intensity  measured  on  an  11-­‐‑point  numerical  pain  rating  scale.  Pain  94,  149–158.  

Fayaz,   A.,   Croft,   P.,   Langford,   R.M.,   Donaldson,   L.J.,   and   Jones,   G.T.   (2016).   Prevalence   of  chronic  pain  in  the  UK:  a  systematic  review  and  meta-­‐‑analysis  of  population  studies.  BMJ  Open  6,  e010364.  

Feng,   Y.,  Devlin,  N.J.,   Shah,  K.K.,  Mulhern,  B.,   and   van  Hout,   B.   (2017).  New  methods   for  modelling  EQ-­‐‑5D-­‐‑5L  value  sets:  An  application  to  English  data.  Health  Econ  27,  23-­‐‑38  

Fikremariam,  D.,  and  Serafini,  M.  (2011).  Multidisciplinary  Approach  to  Pain  Management.  In  Essentials  of  Pain  Management,  N.  Vadivelu,  R.D.  Urman,  and  R.L.  Hines,  eds.  (New  York:  Springer  New  York),  pp.  17–28.  

Fillingim,  R.B.,  Ohrbach,  R.,  Greenspan,   J.D.,  Knott,  C.,  Diatchenko,  L.,  Dubner,  R.,  Bair,  E.,  Baraian,   C.,   Mack,   N.,   Slade,   G.D.,   et   al.   (2013).   Psychological   Factors   Associated   With  Development  of  TMD:  The  OPPERA  Prospective  Cohort  Study.  J  Pain  14,  T75–T90.  

Fillingim,  R.B.,  Loeser,  J.D.,  Baron,  R.,  and  Edwards,  R.R.  (2016).  Assessment  of  Chronic  Pain:  Domains,  Methods,  and  Mechanisms.  J  Pain  17,  T10–T20.  

Finan,   P.H.,   and   Smith,   M.T.   (2013).   The   comorbidity   of   insomnia,   chronic   pain,   and  depression:  dopamine  as  a  putative  mechanism.  Sleep  Med  Revv  17,  173–183.  

Finan,  P.H.,  Goodin,  B.R.,  and  Smith,  M.T.   (2013a).  The  Association  of  Sleep  and  Pain:  An  Update  and  a  Path  Forward.  J  Pain  14,  1539–1552.  

Finan,  P.H.,  Goodin,  B.R.,   and  Smith,  M.T.   (2013b).  The  association  of   sleep  and  pain:   an  update  and  a  path  forward.  J  Pain  Off.  J.  Am  Pain  Soc.  14,  1539–1552.  

Fitzcharles,  M.-­‐‑A.,  Ste-­‐‑Marie,  P.A.,  Goldenberg,  D.L.,  Pereira,  J.X.,  Abbey,  S.,  Choinière,  M.,  Ko,  G.,  Moulin,   D.E.,   Panopalis,   P.,   Proulx,   J.,   et   al.   (2013).   2012   Canadian  Guidelines   for   the  diagnosis  and  management  of  fibromyalgia  syndrome:  executive  summary.  Pain  Res  Manag  18,  119–126.  

Flor,   H.,   Fydrich,   T.,   and   Turk,   D.C.   (1992).   Efficacy   of  multidisciplinary   pain   treatment  centers:  a  meta-­‐‑analytic  review:  Pain  49,  221–230.  

Page 103: Health-related quality of life in patients with chronic pain

  103  

Fredheim,  O.M.S.,  Kaasa,  S.,  Fayers,  P.,  Saltnes,  T.,  Jordhøy,  M.,  and  Borchgrevink,  P.C.  (2008).  Chronic   non-­‐‑malignant   pain   patients   report   as   poor   health-­‐‑related   quality   of   life   as  palliative  cancer  patients.  Acta  Anaesthesiol  Scand  52,  143–148.  

Frieden,   T.R.   (2017).   Evidence   for   Health   Decision   Making   -­‐‑   Beyond   Randomized,  Controlled  Trials.  NEJM  377,  465–475.  

Friedrich,  M.,   Gittler,   G.,   Arendasy,  M.,   and   Friedrich,   K.M.   (2005).   Long-­‐‑term   effect   of   a  combined   exercise   and  motivational   program   on   the   level   of   disability   of   patients  with  chronic  low  back  pain.  Spine  30,  995–1000.  

Garcia-­‐‑Larrea,  L.,  and  Peyron,  R.   (2013).  Pain  matrices  and  neuropathic  pain  matrices:  a  review.  Pain  154  Suppl  1,  S29–S43.  

Gatchel,   R.J.,   and   Okifuji,   A.   (2006).   Evidence-­‐‑based   scientific   data   documenting   the  treatment   and   cost-­‐‑effectiveness   of   comprehensive   pain   programs   for   chronic  nonmalignant  pain.  J  Pain  7,  779–793.  

Gatchel,  R.J.,  Peng,  Y.B.,  Peters,  M.L.,  Fuchs,  P.N.,  and  Turk,  D.C.  (2007).  The  biopsychosocial  approach  to  chronic  pain:  scientific  advances  and  future  directions.  Psychol  Bull.  133,  581–624.  

Gerdle,   B.,   Molander,   P.,   Stenberg,   G.,   Stålnacke,   B.-­‐‑M.,   and   Enthoven,   P.   (2016).   Weak  outcome   predictors   of  multimodal   rehabilitation   at   one-­‐‑year   follow-­‐‑up   in   patients  with  chronic  pain-­‐‑a  practice  based  evidence  study  from  two  SQRP  centres.  BMC  Musculoskelet.  Disord.  17,  490.  

Gil,  K.M.,  Abrams,  M.R.,  Phillips,  G.,   and  Williams,  D.A.   (1992).  Sickle  cell  disease  pain:  2.  Predicting  health  care  use  and  activity  level  at  9-­‐‑month  follow-­‐‑up.  J  Consult.  Clin  Psychol  60,  267–273.  

Glymour,   M.M.,   Weuve,   J.,   Berkman,   L.F.,   Kawachi,   I.,   and   Robins,   J.M.   (2005).   When   is  baseline  adjustment  useful  in  analyses  of  change?  An  example  with  education  and  cognitive  change.  Am  J  Epidemiol  162,  267–278.  

Green,  C.,  Brazier,  J.,  and  Deverill,  M.  (2000).  Valuing  health-­‐‑related  quality  of  life.  A  review  of  health  state  valuation  techniques.  PharmacoEconomics  17,  151–165.  

Guinness,  L.  (2011).  Introduction  to  health  economics  (Maidenhead,  Berkshire:  Open  Univ.  Press).  

Gureje,  O.,  Von  Korff,  M.,  Simon,  G.E.,  and  Gater,  R.  (1998).  Persistent  pain  and  well-­‐‑being:  a  World  Health  Organization  Study  in  Primary  Care.  JAMA  280,  147–151.  

Guyatt,  G.H.,  Feeny,  D.H.,  and  Patrick,  D.L.  (1993).  Measuring  health-­‐‑related  quality  of  life.  Ann  Intern  Med  118,  622–629.  

Guzmán,  J.,  Esmail,  R.,  Karjalainen,  K.,  Malmivaara,  A.,  Irvin,  E.,  and  Bombardier,  C.  (2001).  Multidisciplinary   rehabilitation   for   chronic   low   back   pain:   systematic   review.   BMJ   322,  1511–1516.  

Hardt,  J.,  Jacobsen,  C.,  Goldberg,  J.,  Nickel,  R.,  and  Buchwald,  D.  (2008).  Prevalence  of  chronic  pain  in  a  representative  sample  in  the  United  States.  Pain  Med  9,  803–812.  

Page 104: Health-related quality of life in patients with chronic pain

  104  

Hashmi,  J.A.,  Baliki,  M.N.,  Huang,  L.,  Baria,  A.T.,  Torbey,  S.,  Hermann,  K.M.,  Schnitzer,  T.J.,  and  Apkarian,   A.V.   (2013).   Shape   shifting   pain:   chronification   of   back   pain   shifts   brain  representation  from  nociceptive  to  emotional  circuits.  Brain  J  Neurol.  136,  2751–2768.  

Hawthorne,  G.,   Richardson,   J.,   and  Day,  N.A.   (2001).  A   comparison  of   the  Assessment   of  Quality  of  Life  (AQoL)  with  four  other  generic  utility  instruments.  Ann  Med  33,  358–370.  

Haythornthwaite,   J.A.,   Menefee,   L.A.,   Heinberg,   L.J.,   and   Clark,   M.R.   (1998).   Pain   coping  strategies  predict  perceived  control  over  pain:  Pain  77,  33–39.  

Hechler,  T.,  Vervoort,  T.,  Hamann,  M.,  Tietze,  A.-­‐‑L.,  Vocks,  S.,  Goubert,  L.,  Hermann,  C.,  Wager,  J.,  Blankenburg,  M.,  Schroeder,  S.,  et  al.  (2011).  Parental  catastrophizing  about  their  child’s  chronic  pain:  are  mothers  and  fathers  different?  Eur  J  Pain    15,  515.e1–e9.  

Heinricher,   M.M.,   Tavares,   I.,   Leith,   J.L.,   and   Lumb,   B.M.   (2009).   Descending   control   of  nociception:  Specificity,  recruitment  and  plasticity.  Brain  Res  Rev  60,  214–225.  

Heiskanen,  J.,  Tolppanen,  A.,  Martikainen,  J.,  Hartikainen,  J.,  Miettinen,  H.,  Hippeläinen,  M.,  and  Roine,  R.  (2016).  Identification  of  Adverse  Events  In  Coronary  Artery  Disease  Patients  Based  on  Health-­‐‑Related  Quality  of  Life  Outcome  Data.  Value  Health  19,  A618.  

Heiskanen,  T.,  Roine,  R.P.,  and  Kalso,  E.  (2012).  Multidisciplinary  pain  treatment  –  Which  patients  do  benefit?  Scand.  J  Pain  3,  201–207.  

Hill,  J.C.,  Lewis,  M.,  Sim,  J.,  Hay,  E.M.,  and  Dziedzic,  K.  (2007).  Predictors  of  poor  outcome  in  patients  with  neck  pain  treated  by  physical  therapy.  Clin  J  Pain  23,  683–690.  

Hoftun,  G.B.,  Romundstad,  P.R.,  and  Rygg,  M.  (2013).  Association  of  parental  chronic  pain  with  chronic  pain  in  the  adolescent  and  young  adult:   family  linkage  data  from  the  HUNT  Study.  JAMA  Pediatr.  167,  61–69.  

van  Hout,  B.,   Janssen,  M.F.,  Feng,  Y.-­‐‑S.,  Kohlmann,  T.,  Busschbach,   J.,  Golicki,  D.,  Lloyd,  A.,  Scalone,  L.,  Kind,  P.,  and  Pickard,  A.S.  (2012).  Interim  scoring  for  the  EQ-­‐‑5D-­‐‑5L:  mapping  the  EQ-­‐‑5D-­‐‑5L  to  EQ-­‐‑5D-­‐‑3L  value  sets.  Value  Health  15,  708–715.  

Hoy,   D.,   Bain,   C.,   Williams,   G.,   March,   L.,   Brooks,   P.,   Blyth,   F.,   Woolf,   A.,   Vos,   T.,   and  Buchbinder,   R.   (2012).   A   systematic   review   of   the   global   prevalence   of   low   back   pain.  Arthritis  Rheum  64,  2028–2037.  

Huguet,  A.,  Tougas,  M.E.,  Hayden,  J.,  McGrath,  P.J.,  Stinson,  J.N.,  and  Chambers,  C.T.  (2016).  Systematic   review   with   meta-­‐‑analysis   of   childhood   and   adolescent   risk   and   prognostic  factors  for  musculoskeletal  pain:  Pain  157,  2640–2656.  

van   der   Hulst,   M.,   Vollenbroek-­‐‑Hutten,   M.M.R.,   and   Ijzerman,   M.J.   (2005).   A   systematic  review   of   sociodemographic,   physical,   and   psychological   predictors   of  multidisciplinary  rehabilitation-­‐‑or,  back  school  treatment  outcome  in  patients  with  chronic  low  back  pain.  Spine  30,  813–825.  

IASP   (2009).   Pain   Treatment   Services.   https://www.iasp-­‐‑pain.org/Education/Content.aspx?ItemNumber=1381  

ISOQOL   (n.d.)   Health-­‐‑Related   Quality   of   Life   Research.   http://www.isoqol.org/about-­‐‑isoqol/what-­‐‑is-­‐‑health-­‐‑related-­‐‑quality-­‐‑of-­‐‑life-­‐‑research  

Page 105: Health-related quality of life in patients with chronic pain

  105  

Jacobsen,  P.B.,  and  Butler,  R.W.  (1996).  Relation  of  cognitive  coping  and  catastrophizing  to  acute  pain  and  analgesic  use  following  breast  cancer  surgery.  J  Behav  Med  19,  17–29.  

Jarvik,  J.G.,  Hollingworth,  W.,  Heagerty,  P.J.,  Haynor,  D.R.,  Boyko,  E.J.,  and  Deyo,  R.A.  (2005).  Three-­‐‑year   incidence   of   low   back   pain   in   an   initially   asymptomatic   cohort:   clinical   and  imaging  risk  factors.  Spine  30,  1541–1549.  

Jensen,  M.P.,  and  Turk,  D.C.  (2014).  Contributions  of  psychology  to  the  understanding  and  treatment  of  people  with  chronic  pain:  Why  it  matters  to  ALL  psychologists.  Am  Psychol  69,  105–118.  

Jensen,  M.P.,  Ehde,  D.M.,  Hoffman,  A.J.,  Patterson,  D.R.,  Czerniecki,  J.M.,  and  Robinson,  L.R.  (2002).   Cognitions,   coping   and   social   environment   predict   adjustment   to   phantom   limb  pain.  Pain  95,  133–142.  

Jensen,  M.P.,  Moore,  M.R.,   Bockow,  T.B.,   Ehde,  D.M.,   and  Engel,   J.M.   (2011).   Psychosocial  factors  and  adjustment  to  chronic  pain  in  persons  with  physical  disabilities:  a  systematic  review.  Arch  Phys  Med  Rehabil  92,  146–160.  

Jensen,   T.S.,   Krebs,   B.,   Nielsen,   J.,   and   Rasmussen,   P.   (1985).   Immediate   and   long-­‐‑term  phantom  limb  pain  in  amputees:  Incidence,  clinical  characteristics  and  relationship  to  pre-­‐‑amputation  limb  pain.  Pain  21,  267–278.  

Jones,  G.T.,  Power,  C.,  and  Macfarlane,  G.J.  (2009).  Adverse  events  in  childhood  and  chronic  widespread  pain  in  adult  life:  Results  from  the  1958  British  Birth  Cohort  Study.  Pain  143,  92–96.  

Jones,  G.T.,  Atzeni,  F.,  Beasley,  M.,  Flüß,  E.,  Sarzi-­‐‑Puttini,  P.,  and  Macfarlane,  G.J.  (2015).  The  Prevalence   of   Fibromyalgia   in   the   General   Population:   A   Comparison   of   the   American  College  of  Rheumatology  1990,  2010,  and  Modified  2010  Classification  Criteria:  Prevalence  of  Fibromyalgia.  Arthritis  Rheumatol.  67,  568–575.  

Kaiser,   U.,   Kopkow,   C.,   Deckert,   S.,   Neustadt,   K.,   Jacobi,   L.,   Cameron,   P.,   De   Angelis,   V.,  Apfelbacher,  C.,  Arnold,  B.,  Birch,  J.,  et  al.  (2018).  Developing  a  core  outcome  domain  set  to  assessing   effectiveness   of   interdisciplinary   multimodal   pain   therapy:   the   VAPAIN  consensus  statement  on  core  outcome  domains.  Pain  159,  673–683.  

Kamper,  S.J.,  Apeldoorn,  A.T.,  Chiarotto,  A.,  Smeets,  R.J.E.M.,  Ostelo,  R.W.J.G.,  Guzman,  J.,  and  van  Tulder,  M.W.  (2015).  Multidisciplinary  biopsychosocial  rehabilitation  for  chronic  low  back  pain:  Cochrane  systematic  review  and  meta-­‐‑analysis.  BMJ  350,  h444–h444.  

Karels,  C.H.,  Bierma-­‐‑Zeinstra,  S.M.A.,  Burdorf,  A.,  Verhagen,  A.P.,  Nauta,  A.P.,  and  Koes,  B.W.  (2007).  Social  and  psychological  factors  influenced  the  course  of  arm,  neck  and  shoulder  complaints.  J  Clin  Epidemiol  60,  839–848.  

Karjalainen,  K.A.,  Malmivaara,  A.,  van  Tulder,  M.W.,  Roine,  R.,  Jauhiainen,  M.,  Hurri,  H.,  and  Koes,  B.W.   (1999).  Multidisciplinary   rehabilitation   for   fibromyalgia   and  musculoskeletal  pain   in  working   age   adults.   In  Cochrane  Database  of   Systematic  Reviews,  The  Cochrane  Collaboration,  ed.  (Chichester,  UK:  John  Wiley  &  Sons,  Ltd),.  

Kato,  K.,  Sullivan,  P.F.,  Evengård,  B.,  and  Pedersen,  N.L.  (2006).  Chronic  widespread  pain  and  its  comorbidities:  a  population-­‐‑based  study.  Arch  Intern.  Med  166,  1649–1654.  

Page 106: Health-related quality of life in patients with chronic pain

  106  

Katz,   J.,   Jackson,  M.,   Kavanagh,   B.P.,   and   Sandler,   A.N.   (1996).   Acute   pain   after   thoracic  surgery  predicts  long-­‐‑term  post-­‐‑thoracotomy  pain.  Clin  J  Pain  12,  50–55.  

Katz,  J.,  Asmundson,  G.J.G.,  McRae,  K.,  and  Halket,  E.  (2009).  Emotional  numbing  and  pain  intensity   predict   the   development   of   pain   disability   up   to   one   year   after   lateral  thoracotomy.  Eur  J  Pain    13,  870–878.  

Keefe,  F.J.,  and  Somers,  T.J.  (2010).  Psychological  approaches  to  understanding  and  treating  arthritis  pain.  Nat  Revv  Rheumatol.  6,  210–216.  

Keefe,  F.J.,  Rumble,  M.E.,  Scipio,  C.D.,  Giordano,  L.A.,  and  Perri,  L.M.  (2004).  Psychological  aspects  of  persistent  pain:  current  state  of  the  science.  J  Pain  5,  195–211.  

Keeley,  P.,  Creed,  F.,  Tomenson,  B.,  Todd,  C.,  Borglin,  G.,  and  Dickens,  C.  (2008).  Psychosocial  predictors   of   health-­‐‑related   quality   of   life   and   health   service   utilisation   in   people   with  chronic  low  back  pain.  Pain  135,  142–150.  

Kehlet,  H.,  Jensen,  T.S.,  and  Woolf,  C.J.  (2006).  Persistent  postsurgical  pain:  risk  factors  and  prevention.  The  Lancet  367,  1618–1625.  

Kendall,  N.,  Linton,  S.,  and  Main,  C.  (1997).  Guide  to  assessing  psychosocial  yellow  flags  in  acute  low  back  pain:  risk  factors  for  long-­‐‑term  disability  and  work  loss  (Wellington,  N.Z.:  Accident  Rehabilitation  and  Compensation  Insurance  Corporation  of  New  Zealand  and  the  National  Health  Committee).  

Kendell,  K.,  Saxby,  B.,  Farrow,  M.,  and  Naisby,  C.  (2001).  Psychological   factors  associated  with  short-­‐‑term  recovery  from  total  knee  replacement.  Br  J  Health  Psychol  6,  41–52.  

Khan,   R.S.,   Ahmed,   K.,   Blakeway,   E.,   Skapinakis,   P.,   Nihoyannopoulos,   L.,   Macleod,   K.,  Sevdalis,  N.,  Ashrafian,  H.,   Platt,  M.,  Darzi,  A.,   et   al.   (2011).   Catastrophizing:   a  predictive  factor  for  postoperative  pain.  Am  J  Surg.  201,  122–131.  

Kinchington,   P.R.,   and   Goins,  W.F.   (2011).   Varicella   zoster   virus-­‐‑induced   pain   and   post-­‐‑herpetic  neuralgia  in  the  human  host  and  in  rodent  animal  models.  J  Neurovirol.  17,  590–599.  

Knaster,   P.,   Karlsson,  H.,   Estlander,   A.-­‐‑M.,   and  Kalso,   E.   (2012).   Psychiatric   disorders   as  assessed  with  SCID  in  chronic  pain  patients:  the  anxiety  disorders  precede  the  onset  of  pain.  Gen  Hosp  Psychiatry  34,  46–52.  

Kopec,   J.A.,  and  Willison,  K.D.  (2003).  A  comparative  review  of  four  preference-­‐‑weighted  measures  of  health-­‐‑related  quality  of  life.  J  Clin  Epidemiol  56,  317–325.  

Koskinen,   S.,   Lundqvist,   A.,   and   Ristiluoma,   N.   (2012).   Health,   functional   capacity   and  welfare  in  Finland  in  2011.  Natl.  Inst.  Health  Welf.  THL  Rep.  68/2012.  

Krabbe,  P.F.,  Essink-­‐‑Bot,  M.L.,  and  Bonsel,  G.J.  (1997).  The  comparability  and  reliability  of  five  health-­‐‑state  valuation  methods.  Soc.  Sci.  Med  1982  45,  1641–1652.  

Krahn,  M.,  Ritvo,  P.,  Irvine,  J.,  Tomlinson,  G.,  Bremner,  K.E.,  Bezjak,  A.,  Trachtenberg,  J.,  and  Naglie,   G.   (2003).   Patient   and   community   preferences   for   outcomes   in   prostate   cancer:  implications  for  clinical  policy.  Med  Care  41,  153–164.  

Page 107: Health-related quality of life in patients with chronic pain

  107  

Kroenke,   K.,   Bair,  M.J.,   Damush,   T.M.,  Wu,   J.,   Hoke,   S.,   Sutherland,   J.,   and   Tu,  W.   (2009).  Optimized  antidepressant  therapy  and  pain  self-­‐‑management  in  primary  care  patients  with  depression  and  musculoskeletal  pain:  a  randomized  controlled  trial.  JAMA  301,  2099–2110.  

Kumar,  B.,  Kalita,  J.,  Kumar,  G.,  and  Misra,  U.K.  (2009).  Central  poststroke  pain:  a  review  of  pathophysiology  and  treatment.  Anesth.  Analg.  108,  1645–1657.  

Lamé,   I.E.,  Peters,  M.L.,  Vlaeyen,   J.W.S.,  Kleef,  M.  v,  and  Patijn,   J.   (2005).  Quality  of   life   in  chronic  pain  is  more  associated  with  beliefs  about  pain,  than  with  pain  intensity.  Eur  J  Pain  9,  15–24.  

Langley,   P.C.,   Van   Litsenburg,   C.,   Cappelleri,   J.C.,   and   Carroll,   D.   (2013).   The   burden  associated  with  neuropathic  pain  in  Western  Europe.  J  Med  Econ.  16,  85–95.  

Latremoliere,   A.,   and   Woolf,   C.J.   (2009).   Central   Sensitization:   A   Generator   of   Pain  Hypersensitivity  by  Central  Neural  Plasticity.  J  Pain  10,  895–926.  

Ledowski,   T.,   Reimer,   M.,   Chavez,   V.,   Kapoor,   V.,   Wenk,   M.   (2012).   Effects   of   acute  postoperative  pain  on  catecholamine  plasma  levels,  hemodynamic  parameters,  and  cardiac  autonomic  control:  Pain  153,  759–764.  

Leeuw,  M.,   Goossens,   M.E.J.B.,   Linton,   S.J.,   Crombez,   G.,   Boersma,   K.,   and   Vlaeyen,   J.W.S.  (2007).   The   fear-­‐‑avoidance   model   of   musculoskeletal   pain:   current   state   of   scientific  evidence.  J  Behav  Med  30,  77–94.  

Li,  X.,  Gignac,  M.A.M.,  and  Anis,  A.H.  (2006).  Workplace,  psychosocial  factors,  and  depressive  symptoms   among  working   people   with   arthritis:   a   longitudinal   study.   J   Rheumatol.   33,  1849–1855.  

Lillegraven,  S.,  Kristiansen,  I.S.,  and  Kvien,  T.K.  (2010).  Comparison  of  utility  measures  and  their   relationship  with   other   health   status  measures   in   1041   patients  with   rheumatoid  arthritis.  Ann  Rheum  Dis  69,  1762–1767.  

Linton,  S.J.  (2000).  A  review  of  psychological  risk  factors  in  back  and  neck  pain.  Spine  25,  1148–1156.  

Litt,   M.D.,   and   Porto,   F.B.   (2013).   Determinants   of   pain   treatment   response   and  nonresponse:  identification  of  TMD  patient  subgroups.  J  Pain  14,  1502–1513.  

Littlejohn,   C.,   Pang,   D.,   Power,   C.,   Macfarlane,   G.J.,   and   Jones,   G.T.   (2012).   Is   there   an  association   between   preterm   birth   or   low   birthweight   and   chronic   widespread   pain?  Results  from  the  1958  Birth  Cohort  Study:  Is  there  an  association  between  preterm  birth  or  low  birthweight  and  chronic  widespread  pain?  Eur  J  Pain  16,  134–139.  

Løyland,  B.,  Miaskowski,  C.,  Paul,  S.M.,  Dahl,  E.,   and  Rustøen,  T.   (2010).  The  relationship  between   chronic   pain   and   health-­‐‑related   quality   of   life   in   long-­‐‑term   social   assistance  recipients  in  Norway.  Qual  Life  Res  19,  1457–1465.  

Macfarlane,  G.J.  (2016).  The  epidemiology  of  chronic  pain:  Pain  157,  2158–2159.  

Macfarlane,  G.J.,  McBeth,  J.,  and  Silman,  A.J.  (2001).  Widespread  body  pain  and  mortality:  prospective  population  based  study.  BMJ  323,  662–665.  

Page 108: Health-related quality of life in patients with chronic pain

  108  

Macfarlane,  G.J.,  Beasley,  M.,  Smith,  B.H.,  Jones,  G.T.,  and  Macfarlane,  T.V.  (2015).  Can  large  surveys   conducted   on   highly   selected   populations   provide   valid   information   on   the  epidemiology   of   common   health   conditions?   An   analysis   of   UK   Biobank   data   on  musculoskeletal  pain.  Br  J  Pain  9,  203–212.  

Macfarlane,  G.J.,  Barnish,  M.S.,  and  Jones,  G.T.  (2017).  Persons  with  chronic  widespread  pain  experience  excess  mortality:  longitudinal  results  from  UK  Biobank  and  meta-­‐‑analysis.  Ann  Rheum  Dis  76,  1815–1822.  

Machado,  L.A.C.,  Kamper,  S.J.,  Herbert,  R.D.,  Maher,  C.G.,  and  McAuley,  J.H.  (2009).  Analgesic  effects  of  treatments  for  non-­‐‑specific  low  back  pain:  a  meta-­‐‑analysis  of  placebo-­‐‑controlled  randomized  trials.  Rheumatology  48,  520–527.  

Main,   C.J.,   and   Burton,   A.K.   (2000).   Economic   and   occupational   influences   on   pain   and  disability.   In   Pain  Management:   An   Interdisciplinary   Approach,   (Edinburgh ;   New   York:  Churchill  Livingstone),  pp.  63–87.  

Maixner,  W.,  Fillingim,  R.B.,  Williams,  D.A.,  Smith,  S.B.,  and  Slade,  G.D.  (2016).  Overlapping  Chronic  Pain  Conditions:  Implications  for  Diagnosis  and  Classification.  J  Pain  17,  T93–T107.  

Mansfield,  K.E.,  Sim,  J.,  Jordan,  J.L.,  and  Jordan,  K.P.  (2016).  A  systematic  review  and  meta-­‐‑analysis  of  the  prevalence  of  chronic  widespread  pain  in  the  general  population:  Pain  157,  55–64.  

Mäntyselkä,   P.,   Kumpusalo,   E.,   Ahonen,   R.,   Kumpusalo,   A.,   Kauhanen,   J.,   Viinamäki,   H.,  Halonen,  P.,  and  Takala,  J.  (2001).  Pain  as  a  reason  to  visit  the  doctor:  a  study  in  Finnish  primary  health  care.  Pain  89,  175–180.  

Mäntyselkä,  P.T.,  Turunen,  J.H.O.,  Ahonen,  R.S.,  and  Kumpusalo,  E.A.  (2003).  Chronic  pain  and  poor  self-­‐‑rated  health.  JAMA  290,  2435–2442.  

Markkula,  R.A.,  Kalso,  E.A.,  and  Kaprio,  J.A.  (2016).  Predictors  of  fibromyalgia:  a  population-­‐‑based  twin  cohort  study.  BMC  Musculoskelet  Disord  17:29,  .  

Mahrer,  N.E.,  Gold,  J.I.,  Luu,  M.,  Herman,  P.M.  (2018).  A  Cost-­‐‑Analysis  of  an  Interdisciplinary  Pediatric  Chronic  Pain  Clinic.  The  Journal  of  Pain  19,  158–165.  

Maixner,   W.,   Fillingim,   R.B.,   Williams,   D.A.,   Smith,   S.B.,   Slade,   G.D.   (2016).   Overlapping  Chronic  Pain  Conditions:  Implications  for  Diagnosis  and  Classification.  J  Pain  17,  T93–T107.  

Martin,  M.Y.,  Bradley,  L.A.,  Alexander,  R.W.,  Alarcón,  G.S.,  Triana-­‐‑Alexander,  M.,  Aaron,  L.A.,  and   Alberts,   K.R.   (1996).   Coping   strategies   predict   disability   in   patients   with   primary  fibromyalgia:  Pain  68,  45–53.  

McConnell,   S.,   Kolopack,   P.,   and  Davis,  A.M.   (2001).   The  Western  Ontario   and  McMaster  Universities   Osteoarthritis   Index   (WOMAC):   a   review   of   its   utility   and   measurement  properties.  Arthritis  Rheum  45,  453–461.  

McCracken,  L.M.  (2013).  Pain  Anxiety  Symptoms  Scale  (PASS)  and  Short  Version  PASS-­‐‑20.  In  Encyclopedia  of  Behavioral  Medicine,  M.D.  Gellman,  and  J.R.  Turner,  eds.  (New  York,  NY:  Springer  New  York),  pp.  1423–1424.  

McCracken,   L.M.,   and   Vowles,   K.E.   (2014).   Acceptance   and   commitment   therapy   and  mindfulness  for  chronic  pain:  model,  process,  and  progress.  Am  Psychol  69,  178–187.  

Page 109: Health-related quality of life in patients with chronic pain

  109  

McCracken,  L.M.,  Carson,  J.W.,  Eccleston,  C.,  and  Keefe,  F.J.  (2004a).  Acceptance  and  change  in  the  context  of  chronic  pain:  Pain  109,  4–7.  

McCracken,   L.M.,   Vowles,   K.E.,   and   Eccleston,   C.   (2004b).   Acceptance   of   chronic   pain:  component  analysis  and  a  revised  assessment  method.  Pain  107,  159–166.  

McDermott,  A.M.,  Toelle,  T.R.,  Rowbotham,  D.J.,  Schaefer,  C.P.,  and  Dukes,  E.M.  (2006).  The  burden  of  neuropathic  pain:  results  from  a  cross-­‐‑sectional  survey.  Eur  J  Pain  10,  127–127.  

McHorney,  C.A.,  Ware,  J.E.,  and  Raczek,  A.E.  (1993).  The  MOS  36-­‐‑Item  Short-­‐‑Form  Health  Survey   (SF-­‐‑36):   II.   Psychometric   and   clinical   tests   of   validity   in  measuring  physical   and  mental  health  constructs.  Med  Care  31,  247–263.  

McWilliams,  L.A.,  Goodwin,  R.D.,   and  Cox,  B.J.   (2004).  Depression  and  anxiety  associated  with  three  pain  conditions:  results  from  a  nationally  representative  sample.  Pain  111,  77–83.  

Meeus,   M.,   and   Nijs,   J.   (2007).   Central   sensitization:   a   biopsychosocial   explanation   for  chronic  widespread  pain  in  patients  with  fibromyalgia  and  chronic  fatigue  syndrome.  Clin  Rheumatol  26,  465–473.  

Melloh,  M.,  Elfering,  A.,  Chapple,  C.M.,  Käser,  A.,  Rolli  Salathé,  C.,  Barz,  T.,  Röder,  C.,  and  Theis,  J.-­‐‑C.  (2013a).  Prognostic  occupational  factors  for  persistent  low  back  pain  in  primary  care.  Int  Arch  Occup  Environ.  Health  86,  261–269.  

Melloh,  M.,  Elfering,  A.,  Stanton,  T.R.,  Käser,  A.,  Salathé,  C.R.,  Barz,  T.,  Röder,  C.,  and  Theis,  J.-­‐‑C.   (2013b).  Who  is   likely  to  develop  persistent   low  back  pain?  A   longitudinal  analysis  of  prognostic  occupational  factors.  Work  Read  Mass  46,  297–311.  

Melzack,  R.,  and  Wall,  P.D.  (1965).  Pain  mechanisms:  a  new  theory.  Science  150,  971–979.  

Meretoja,  T.J.,  Andersen,  K.G.,  Bruce,  J.,  Haasio,  L.,  Sipilä,  R.,  Scott,  N.W.,  Ripatti,  S.,  Kehlet,  H.,  and  Kalso,  E.   (2017).  Clinical  Prediction  Model  and  Tool   for  Assessing  Risk  of  Persistent  Pain  After  Breast  Cancer  Surgery.  J  Clin  Oncol  35,  1660–1667.  

Merskey,  H.  and  Bogduk,  N.  (1994).  Classification  of  chronic  pain:  descriptions  of  chronic  pain  syndromes  and  definitions  of  pain  terms  (Seattle:  IASP  Press).  

Meyer-­‐‑Rosberg,  K.,  Kvarnström,  A.,  Kinnman,  E.,  Gordh,  T.,  Nordfors,  L.O.,  and  Kristofferson,  A.  (2001).  Peripheral  neuropathic  pain-­‐‑-­‐‑a  multidimensional  burden  for  patients.  Eur  J  Pain    5,  379–389.  

Millan,  M.J.  (2002).  Descending  control  of  pain.  Prog.  Neurobiol.  66,  355–474.  

Milligan,  E.D.,  and  Watkins,  L.R.  (2009).  Pathological  and  protective  roles  of  glia  in  chronic  pain.  Nat  Rev  Neurosci.  10,  23–36.  

Molton,   I.R.,   Graham,   C.,   Stoelb,   B.L.,   and   Jensen,   M.P.   (2007).   Current   psychological  approaches  to  the  management  of  chronic  pain.  Curr  Opin  Anaesthesiol.  20,  485–489.  

Moock,  J.,  and  Kohlmann,  T.  (2008).  Comparing  preference-­‐‑based  quality-­‐‑of-­‐‑life  measures:  results   from   rehabilitation   patients   with   musculoskeletal,   cardiovascular,   or  psychosomatic  disorders.  Qual  Life  Res  17,  485–495.  

Page 110: Health-related quality of life in patients with chronic pain

  110  

Moore,   R.A.,   Smugar,   S.S.,  Wang,   H.,   Peloso,   P.M.,   and   Gammaitoni,   A.   (2010).   Numbers-­‐‑needed-­‐‑to-­‐‑treat  analyses-­‐‑-­‐‑do  timing,  dropouts,  and  outcome  matter?  Pooled  analysis  of  two  randomized,  placebo-­‐‑controlled  chronic  low  back  pain  trials.  Pain  151,  592–597.  

Moore,  R.A.,  Cai,  N.,  Skljarevski,  V.,  and  Tölle,  T.R.  (2014).  Duloxetine  use  in  chronic  painful  conditions-­‐‑-­‐‑individual  patient  data  responder  analysis.  Eur  J  Pain    18,  67–75.  

Moradi,  B.,  Hagmann,  S.,  Zahlten-­‐‑Hinguranage,  A.,  Caldeira,  F.,  Putz,  C.,  Rosshirt,  N.,  Schönit,  E.,   Mesrian,   A.,   Schiltenwolf,   M.,   and   Neubauer,   E.   (2012).   Efficacy   of   Multidisciplinary  Treatment  for  Patients  With  Chronic  Low  Back  Pain:  A  Prospective  Clinical  Study  in  395  Patients.  J  Clin  Rheumatol.  18,  76–82.  

MVH   Group   (1995).   The   Measurement   and   Valuation   of   Health.   Final   report   on   the  modelling  of  valuation  tariffs.  York  Cent.  Health  Econ.  

National  Institute  for  Health  and  Care  Excellence  (2017).  NICE’s  position  statement  on  EQ-­‐‑5D-­‐‑5L.  

Neblett,  R.,  Hartzell,  M.M.,  Mayer,  T.G.,  Bradford,  E.M.,  and  Gatchel,  R.J.  (2016).  Establishing  clinically  meaningful  severity  levels  for  the  Tampa  Scale  for  Kinesiophobia  (TSK-­‐‑13).  Eur  J  Pain  20,  701–710.  

Nicholas,  M.K.,  Linton,  S.J.,  Watson,  P.J.,  Main,  C.J.,  and  “Decade  of  the  Flags”  Working  Group  (2011).  Early  identification  and  management  of  psychological  risk  factors  (“yellow  flags”)  in  patients  with  low  back  pain:  a  reappraisal.  Phys  Ther  91,  737–753.  

Nicholl,  B.I.,  Macfarlane,  G.J.,  Davies,  K.A.,  Morriss,  R.,  Dickens,  C.,   and  McBeth,   J.   (2009).  Premorbid  psychosocial   factors  are  associated  with  poor  health-­‐‑related  quality  of   life   in  subjects  with  new  onset  of  chronic  widespread  pain  -­‐‑  results  from  the  EPIFUND  study.  Pain  141,  119–126.  

Noel,  M.,  Rabbitts,  J.A.,  Tai,  G.G.,  and  Palermo,  T.M.  (2015).  Remembering  pain  after  surgery:  a   longitudinal   examination  of   the   role  of  pain   catastrophizing   in   children’s   and  parents’  recall.  Pain  156,  800–808.  

Obradovic,  M.,  Lal,  A.,  and  Liedgens,  H.  (2013).  Validity  and  responsiveness  of  EuroQol-­‐‑5  dimension  (EQ-­‐‑5D)  versus  Short  Form-­‐‑6  dimension  (SF-­‐‑6D)  questionnaire  in  chronic  pain.  Health  Qual  Life  Outcomes  11,  110.  

Oddy,  W.H.,  Allen,  K.L.,  Trapp,  G.S.A.,  Ambrosini,  G.L.,  Black,  L.J.,  Huang,  R.-­‐‑C.,  Rzehak,  P.,  Runions,   K.C.,   Pan,   F.,   Beilin,   L.J.,   et   al.   (2018).   Dietary   patterns,   body   mass   index   and  inflammation:  Pathways  to  depression  and  mental  health  problems  in  adolescents.  Brain.  Behav  Immun.  

Okifuji,  A.,  and  Hare,  B.D.  (2011a).  Do  sleep  disorders  contribute  to  pain  sensitivity?  Curr  Rheumatol.  Rep.  13,  528–534.  

Okifuji,  A.,  and  Hare,  B.D.  (2011b).  Nightly  analyses  of  subjective  and  objective  (actigraphy)  measures  of  sleep  in  fibromyalgia  syndrome:  what  accounts  for  the  discrepancy?  Clin  J  Pain  27,  289–296.  

Onen,  S.H.,  Onen,  F.,  Courpron,  P.,  and  Dubray,  C.  (2005).  How  pain  and  analgesics  disturb  sleep.  Clin  J  Pain  21,  422–431.  

Page 111: Health-related quality of life in patients with chronic pain

  111  

Orenius,  T.,  Koskela,  T.,  Koho,  P.,  Pohjolainen,  T.,  Kautiainen,  H.,  Haanpaa,  M.,  and  Hurri,  H.  (2013).  Anxiety  and  depression  are  independent  predictors  of  quality  of  life  of  patients  with  chronic  musculoskeletal  pain.  J  Health  Psychol  18,  167–175.  

Palermo,   T.M.,   and   Holley,   A.L.   (2013).   The   importance   of   the   family   environment   in  pediatric  chronic  pain.  JAMA  Pediatr.  167,  93–94.  

Parker,  S.L.,  Godil,  S.S.,  Zuckerman,  S.L.,  Mendenhall,  S.K.,  Devin,  C.J.,  and  McGirt,  M.J.  (2015).  Extent  of  Preoperative  Depression  Is  Associated  with  Return  to  Work  After  Lumbar  Fusion  for  Spondylolisthesis.  World  Neurosurg.  83,  608–613.  

Partinen,     null,   and   Gislason,     null   (1995).   Basic   Nordic   Sleep   Questionnaire   (BNSQ):   a  quantitated  measure  of  subjective  sleep  complaints.  J    Sleep  Res  4,  150–155.  

Payakachat,   N.,   Ali,   M.M.,   and   Tilford,   J.M.   (2015).   Can   The   EQ-­‐‑5D   Detect   Meaningful  Change?  A  Systematic  Review.  PharmacoEconomics  33,  1137–1154.  

Peyre,  H.,  Leplège,  A.,  and  Coste,  J  (2011).  Missing  data  methods  for  dealing  with  missing  items  in  quality  of  life  questionnaires.  A  comparison  by  simulation  of  personal  mean  score,  full  information  maximum  likelihood,  multiple  imputation,  and  hot  deck  techniques  applied  to  the  SF-­‐‑36  in  the  French  2003  decennial  health  survey.  Qual  Life  Res  20,  287–300.  

Picavet,   H.S.J.,   Vlaeyen,   J.W.S.,   and   Schouten,   J.S.A.G.   (2002).   Pain   catastrophizing   and  kinesiophobia:  predictors  of  chronic  low  back  pain.  Am  J  Epidemiol  156,  1028–1034.  

Picavet,   H.S.J.,   Schouten,   J.S.A.G.   (2003).   Musculoskeletal   pain   in   the   Netherlands:  prevalences,  consequences  and  risk  groups,  the  DMC3-­‐‑study:  Pain  102,  167–178.  

Pieh,  C.,  Altmeppen,  J.,  Neumeier,  S.,  Loew,  T.,  Angerer,  M.,  and  Lahmann,  C.  (2012).  Gender  differences  in  outcomes  of  a  multimodal  pain  management  program.  Pain  153,  197–202.  

Postulart,   D.,   and   Adang,   E.M.   (2000).   Response   shift   and   adaptation   in   chronically   ill  patients.  Med  Decis  Making  20,  186–193.  

Rabin,  R.,  and  de  Charro,  F.   (2001).  EQ-­‐‑5D:  a  measure  of  health  status   from  the  EuroQol  Group.  Ann  Med  33,  337–343.  

Rabin,   R.,   Gudex,   C.,   Selai,   C.,   and   Herdman,   M.   (2014).   From   translation   to   version  management:  a  history  and  review  of  methods  for  the  cultural  adaptation  of  the  EuroQol  five-­‐‑dimensional  questionnaire.  Value  Health  17,  70–76.  

Raftery,  M.N.,   Sarma,   K.,   Murphy,   A.W.,   De   la   Harpe,   D.,   Normand,   C.,   and  McGuire,   B.E.  (2011).   Chronic   pain   in   the   Republic   of   Ireland—Community   prevalence,   psychosocial  profile  and  predictors  of  pain-­‐‑related  disability:  Results  from  the  Prevalence,  Impact  and  Cost  of  Chronic  Pain  (PRIME)  study,  Part  1.  Pain  152,  1096–1103.  

Raftery,  M.N.,  Ryan,  P.,  Normand,  C.,  Murphy,  A.W.,  de  la  Harpe,  D.,  and  McGuire,  B.E.  (2012).  The  Economic  Cost  of  Chronic  Noncancer  Pain  in  Ireland:  Results  From  the  PRIME  Study,  Part  2.  J  Pain  13,  139–145.  

Räsänen,  P.,  Roine,  E.,  Sintonen,  H.,  Semberg-­‐‑Konttinen,  V.,  Ryynänen,  O.-­‐‑P.,  and  Roine,  R.  (2006).  Use  of  quality-­‐‑adjusted  life  years  for  the  estimation  of  effectiveness  of  health  care:  A  systematic  literature  review.  Int  J  Technol.  Assess.  Health  Care  22,  235–241.  

Page 112: Health-related quality of life in patients with chronic pain

  112  

Rayner,  L.,  Hotopf,  M.,  Petkova,  H.,  Matcham,  F.,  Simpson,  A.,  and  McCracken,  L.M.  (2016).  Depression   in   patients  with   chronic   pain   attending   a   specialised  pain   treatment   centre:  prevalence  and  impact  on  health  care  costs.  Pain  157,  1472–1479.  

R  Core  Team   (2015).  R:  A   language  and  environment   for   statistical   computing.   (Vienna,  Austria:  R  Foundation  for  Statistical  Computing).  

Rej,   S.,  Dew,  M.A.,   and  Karp,   J.F.   (2014).  Treating   concurrent   chronic   low  back  pain   and  depression   with   low-­‐‑dose   venlafaxine:   an   initial   identification   of   “easy-­‐‑to-­‐‑use”   clinical  predictors  of  early  response.  Pain  Med  Malden  Mass  15,  1154–1162.  

Revicki,   D.,   Hays,   R.D.,   Cella,   D.,   and   Sloan,   J.   (2008).   Recommended   methods   for  determining   responsiveness   and   minimally   important   differences   for   patient-­‐‑reported  outcomes.  J  Clin  Epidemiol  61,  102–109.  

Richardson,   J.,   McKie,   J.,   and   Bariola,   E.   (2011).   Review   and   Critique   of   Related   Multi  Attribute   Utility   Instruments.   Research   Paper   64,   (Forthcoming   in   A   Culyer   (ed),  Encyclopedia  of  Health  Economics,  Elsevier  Science  San  Diego).  

Richardson,   J.,   Khan,   M.A.,   Iezzi,   A.,   and   Maxwell,   A.   (2015).   Comparing   and   explaining  differences  in  the  magnitude,  content,  and  sensitivity  of  utilities  predicted  by  the  EQ-­‐‑5D,  SF-­‐‑6D,   HUI   3,   15D,   QWB,   and   AQoL-­‐‑8D   multiattribute   utility   instruments.   Med   Decis  Making.  35,  276–291.  

Richardson,   J.,   Iezzi,   A.,   Khan,   M.A.,   Chen,   G.,   and   Maxwell,   A.   (2016).   Measuring   the  Sensitivity  and  Construct  Validity  of  6  Utility   Instruments   in  7  Disease  Areas.  Med  Decis  Making  36,  147–159.  

Roland,   M.,   and   Morris,   R.   (1983).   A   study   of   the   natural   history   of   back   pain.   Part   I:  development  of   a   reliable   and   sensitive  measure  of   disability   in   low-­‐‑back  pain.   Spine  8,  141–144.  

de   Rooij,   A.,   van   der   Leeden,   M.,   Roorda,   L.D.,   Steultjens,   M.P.,   and   Dekker,   J.   (2013a).  Predictors   of   outcome   of   multidisciplinary   treatment   in   chronic   widespread   pain:   an  observational  study.  BMC  Musculoskelet.  Disord.  14,  133.  

de  Rooij,  A.,  Roorda,  L.D.,  Otten,  R.H.J.,  van  der  Leeden,  M.,  Dekker,  J.,  and  Steultjens,  M.P.M.  (2013b).  Predictors  of  multidisciplinary   treatment  outcome   in   fibromyalgia:a  systematic  review.  Disabil  Rehabil  35,  437–449.  

de  Rooij,  A.,  de  Boer,  M.R.,  van  der  Leeden,  M.,  Roorda,  L.D.,  Steultjens,  M.P.M.,  and  Dekker,  J.  (2014).  Cognitive  mechanisms  of  change  in  multidisciplinary  treatment  of  patients  with  chronic  widespread  pain:  a  prospective  cohort  study.  J  Rehabil  Med  46,  173–180.  

Rothwell,  P.M.  (2005).  External  validity  of  randomised  controlled  trials:  “to  whom  do  the  results  of  this  trial  apply?”  Lancet    365,  82–93.  

Rudy,   T.E.,   Kerns,   R.D.,   and   Turk,   D.C.   (1988).   Chronic   pain   and   depression:   toward   a  cognitive-­‐‑behavioral  mediation  model.  Pain  35,  129–140.  

Saarni,  S.I.,  Härkänen,  T.,  Sintonen,  H.,  Suvisaari,  J.,  Koskinen,  S.,  Aromaa,  A.,  and  Lönnqvist,  J.  (2006).  The  impact  of  29  chronic  conditions  on  health-­‐‑related  quality  of   life:  a  general  population  survey  in  Finland  using  15D  and  EQ-­‐‑5D.  Qual  Life  Res  15,  1403–1414.  

Page 113: Health-related quality of life in patients with chronic pain

  113  

Saastamoinen,  P.,  Leino-­‐‑Arjas,  P.,  Laaksonen,  M.,  and  Lahelma,  E.  (2005).  Socio-­‐‑economic  differences   in   the  prevalence  of  acute,   chronic  and  disabling  chronic  pain  among  ageing  employees.  Pain  114,  364–371.  

Scascighini,   L.,   Toma,   V.,   Dober-­‐‑Spielmann,   S.,   and   Sprott,   H.   (2008).   Multidisciplinary  treatment  for  chronic  pain:  a  systematic  review  of  interventions  and  outcomes.  Rheumatol.  Oxf.  Engl.  47,  670–678.  

Schofield,  D.J.  (2014).  How  should  we  measure  the  impact  of  chronic  pain?  Limitations  of  utility  measurement  using  the  EQ-­‐‑5D  and  SF-­‐‑6D:  Pain  155,  1918–1919.  

Severeijns,   R.,   van   den   Hout,   M.A.,   Vlaeyen,   J.W.S.,   and   Picavet,   H.S.J.   (2002).   Pain  catastrophizing  and  general  health  status  in  a  large  Dutch  community  sample.  Pain  99,  367–376.  

Sharpe,  L.,  Sensky,  T.,  Timberlake,  N.,  Ryan,  B.,  Brewin,  C.R.,  and  Allard,  S.  (2001).  A  blind,  randomized,  controlled  trial  of  cognitive-­‐‑behavioural  intervention  for  patients  with  recent  onset  rheumatoid  arthritis:  preventing  psychological  and  physical  morbidity.  Pain  89,  275–283.  

Shaver,  J.L.F.  (2008).  Sleep  Disturbed  by  Chronic  Pain  in  Fibromyalgia,  Irritable  Bowel,  and  Chronic  Pelvic  Pain  Syndromes.  Sleep  Med  Clin  3,  47–60.  

Sintonen,  H.  (1994).  The  15D-­‐‑measure  of  health-­‐‑related  quality  of  life.  I.  Reliability,  validity  and  sensitivity  of  its  health  state  descriptive  system.  Natl.  Cent.  Health  Program  Eval.  Work.  Pap.  41  Melb.  

Sintonen,  H.   (2001).  The  15D  instrument  of  health-­‐‑related  quality  of   life:  properties  and  applications.  Ann  Med  33,  328–336.  

Smith,   B.H.,   Elliott,   A.M.,   Hannaford,   P.C.,   Chambers,   W.A.,   Smith,   W.C.   (2004).   Factors  related  to  the  onset  and  persistence  of  chronic  back  pain  in  the  community:  results  from  a  general  population  follow-­‐‑up  study.  Spine  29,  1032–1040.  

Smith,   D.,   Wilkie,   R.,   Uthman,   O.,   Jordan,   J.L.,   and   McBeth,   J.   (2014).   Chronic   Pain   and  Mortality:  A  Systematic  Review.  PLoS  ONE  9,  e99048.  

Stanquet,  M.J.,  Hays,  R.D.,  and  Frayers,  P.M.  (1998).  Quality  of  Life  Assessment  in  Clinical  Trials:  Methods  and  Practice  (Oxford  University  Press).  

Stewart,  D.E.,  and  Yuen,  T.   (2011).  A  systematic  review  of  resilience   in   the  physically   ill.  Psychosomatics  52,  199–209.  

Stiggelbout,  A.M.,  Eijkemans,  M.J.,  Kiebert,  G.M.,  Kievit,  J.,  Leer,  J.W.,  and  De  Haes,  H.J.  (1996).  The   “utility”   of   the   visual   analog   scale   in   medical   decision   making   and   technology  assessment.  Is  it  an  alternative  to  the  time  trade-­‐‑off?  Int.  J  Technol.  Assess.  Health  Care  12,  291–298.  

Sullivan,  M.D.,  and  Ballantyne,  J.C.  (2016).  Must  we  reduce  pain  intensity  to  treat  chronic  pain?:  Pain  157,  65–69.  

Sullivan,   M.J.,   Thorn,   B.,   Haythornthwaite,   J.A.,   Keefe,   F.,   Martin,   M.,   Bradley,   L.A.,   and  Lefebvre,  J.C.  (2001).  Theoretical  perspectives  on  the  relation  between  catastrophizing  and  pain.  Clin  J  Pain  17,  52–64.  

Page 114: Health-related quality of life in patients with chronic pain

  114  

Swinkels-­‐‑Meewisse,   I.E..,   Roelofs,   J.,   Verbeek,   A.L..,   Oostendorp,   R.A..,   and   Vlaeyen,   J.W..  (2003).  Fear  of  movement/(re)injury,  disability  and  participation  in  acute  low  back  pain:  Pain  105,  371–379.  

Szende,   A.,   Oppe,   M.,   ande   Devlin,   N.   (2007).   EQ-­‐‑5D   Value   Sets   (Dordrecht:   Springer  Netherlands).  

Tan,   G.,   Jensen,   M.P.,   Thornby,   J.I.,   and   Shanti,   B.F.   (2004).   Validation   of   the   Brief   Pain  Inventory  for  chronic  nonmalignant  pain.  J  Pain  5,  133–137.  

Tasmuth,  T.,  Estlanderb,  A.-­‐‑M.,  and  Kalso,  E.  (1996).  Effect  of  present  pain  and  mood  on  the  memory  of  past  postoperative  pain  in  women  treated  surgically  for  breast  cancer:  Pain  68,  343–347.  

Thompson,   M.,   and   McCracken,   L.M.   (2011).   Acceptance   and   related   processes   in  adjustment  to  chronic  pain.  Curr  Pain  Headache  Rep.  15,  144–151.  

Todd,   A.J.   (2010).   Neuronal   circuitry   for   pain   processing   in   the   dorsal   horn.   Nat   Revv  Neurosci.  11,  823–836.  

Torrance,  G.W.,  Feeny,  D.,  and  Furlong,  W.  (2001).  Visual  Analog  Scales:  Do  They  Have  a  Role  in  the  Measurement  of  Preferences  for  Health  States?  Med  Decis  Making  21,  329–334.  

Torrance,  N.,  Elliott,  A.M.,  Lee,  A.J.,  and  Smith,  B.H.  (2010).  Severe  chronic  pain  is  associated  with  increased  10  year  mortality.  A  cohort  record  linkage  study.  Eur  J  Pain  14,  380–386.  

Torrance,  N.,  Lawson,  K.D.,  Afolabi,  E.,  Bennett,  M.I.,  Serpell,  M.G.,  Dunn,  K.M.,  and  Smith,  B.H.  (2014).   Estimating   the  burden  of   disease   in   chronic   pain  with   and  without   neuropathic  characteristics:  Does  the  choice  between  the  EQ-­‐‑5D  and  SF-­‐‑6D  matter?:  Pain  155,  1996–2004.  

Treede,  R.-­‐‑D.,   Rief,  W.,   Barke,  A.,   Aziz,  Q.,   Bennett,  M.I.,   Benoliel,   R.,   Cohen,  M.,   Evers,   S.,  Finnerup,  N.B.,  First,  M.B.,  et  al.  (2015).  A  classification  of  chronic  pain  for  ICD-­‐‑11.  Pain  1.  

Tripp,  D.A.,  VanDenKerkhof,  E.G.,  and  McAlister,  M.  (2006).  Prevalence  and  determinants  of  pain  and  pain-­‐‑related  disability  in  urban  and  rural  settings  in  southeastern  Ontario.  Pain  Res  Manag.  11,  225–233.  

Tsang,   A.,   Von   Korff,   M.,   Lee,   S.,   Alonso,   J.,   Karam,   E.,   Angermeyer,   M.C.,   Borges,   G.L.G.,  Bromet,   E.J.,   Demytteneare,   K.,   de   Girolamo,   G.,   et   al.   (2008).   Common   chronic   pain  conditions   in   developed   and   developing   countries:   gender   and   age   differences   and  comorbidity  with  depression-­‐‑anxiety  disorders.  J  Pain.  9,  883–891.  

Turk,  D.C.   (2002).  Clinical  effectiveness  and  cost-­‐‑effectiveness  of   treatments   for  patients  with  chronic  pain.  Clin  J  Pain  18,  355–365.  

Turk,  D.C.,  Dworkin,  R.H.,  Allen,  R.R.,  Bellamy,  N.,  Brandenburg,  N.,  Carr,  D.B.,  Cleeland,  C.,  Dionne,  R.,   Farrar,   J.T.,  Galer,  B.S.,   et   al.   (2003).   Core  outcome  domains   for   chronic  pain  clinical  trials:  IMMPACT  recommendations:  Pain  106,  337–345.  

Turk,  D.C.,  Fillingim,  R.B.,  Ohrbach,  R.,  and  Patel,  K.V.  (2016).  Assessment  of  Psychosocial  and  Functional  Impact  of  Chronic  Pain.  J  Pain  17,  T21–T49.  

Page 115: Health-related quality of life in patients with chronic pain

  115  

Turner,   J.A.,   Jensen,   M.P.,   Warms,   C.A.,   and   Cardenas,   D.D.   (2002).   Catastrophizing   is  associated  with  pain   intensity,   psychological   distress,   and  pain-­‐‑related  disability   among  individuals  with  chronic  pain  after  spinal  cord  injury.  Pain  98,  127–134.  

Turner,  J.A.,  Holtzman,  S.,  and  Mancl,  L.  (2007).  Mediators,  moderators,  and  predictors  of  therapeutic  change  in  cognitive-­‐‑behavioral  therapy  for  chronic  pain.  Pain  127,  276–286.  

Vainiola,  T.,  Roine,  R.P.,  Pettilä,  V.,  Kantola,  T.,  Räsänen,  P.,  and  Sintonen,  H.  (2011).  Effect  of  Health-­‐‑Related   Quality-­‐‑Of-­‐‑Life   Instrument   and   Quality-­‐‑Adjusted   Life   Year   Calculation  Method  on  the  Number  of  Life  Years  Gained  in  the  Critical  Care  Setting.  Value  Health  14,  1130–1134.  

Vartiainen,   P.,   Mäntyselkä,   P.,   Heiskanen,   T.,   Hagelberg,   N.,   Mustola,   S.,   Forssell,   H.,  Kautiainen,   H.,   and  Kalso,   E.   (2017).   Validation   of   EQ-­‐‑5D   and   15D   in   the   assessment   of  health-­‐‑related  quality  of  life  in  chronic  pain.  Pain  158,  1577–1585.  

Veehof,  M.M.,  Oskam,  M.-­‐‑J.,  Schreurs,  K.M.G.,  and  Bohlmeijer,  E.T.  (2011).  Acceptance-­‐‑based  interventions   for   the   treatment  of   chronic  pain:  A   systematic   review  and  meta-­‐‑analysis:  Pain  152,  533–542.  

Verbunt,  J.A.,  Sieben,  J.,  Vlaeyen,  J.W.S.,  Portegijs,  P.,  and  André  Knottnerus,  J.  (2008).  A  new  episode  of  low  back  pain:  who  relies  on  bed  rest?  Eur  J  Pain    12,  508–516.  

Verhaak,  P.F.M.,  Kerssens,  J.J.,  Dekker,  J.,  Sorbi,  M.J.,  and  Bensing,  J.M.  (1998).  Prevalence  of  chronic  benign  pain  disorder  among  adults:  a  review  of  the  literature.  Pain  77,  231–239.  

de  Vet,  H.C.W.,  and  Terwee,  C.B.  (2010).  The  minimal  detectable  change  should  not  replace  the  minimal  important  difference.  J  Clin  Epidemiol  63,  804–805.  

Vincent,  A.,  Lahr,  B.D.,  Wolfe,  F.,  Clauw,  D.J.,  Whipple,  M.O.,  Oh,  T.H.,  Barton,  D.L.,   and  St.  Sauver,  J.  (2013).  Prevalence  of  Fibromyalgia:  A  Population-­‐‑Based  Study  in  Olmsted  County,  Minnesota,  Utilizing  the  Rochester  Epidemiology  Project:  Estimation  of  the  Prevalence  of  FM  in  a  Defined  Population.  Arthritis  Care  Res  65,  786–792.  

Vlaeyen,   J.W.,   and   Linton,   S.J.   (2000).   Fear-­‐‑avoidance   and   its   consequences   in   chronic  musculoskeletal  pain:  a  state  of  the  art.  Pain  85,  317–332.  

Vlaeyen,   J.W.,   Kole-­‐‑Snijders,   A.M.,   Boeren,   R.G.,   and   van   Eek,   H.   (1995).   Fear   of  movement/(re)injury  in  chronic  low  back  pain  and  its  relation  to  behavioral  performance.  Pain  62,  363–372.  

Vos,  T.,  Flaxman,  A.D.,  Naghavi,  M.,  Lozano,  R.,  Michaud,  C.,  Ezzati,  M.,  Shibuya,  K.,  Salomon,  J.A.,   Abdalla,   S.,   Aboyans,   V.,   et   al.   (2012).   Years   lived   with   disability   (YLDs)   for   1160  sequelae   of   289   diseases   and   injuries   1990–2010:   a   systematic   analysis   for   the   Global  Burden  of  Disease  Study  2010.  The  Lancet  380,  2163–2196.  

Vowles,   K.E.,   McCracken,   L.M.,   McLeod,   C.,   and   Eccleston,   C.   (2008).   The   Chronic   Pain  Acceptance   Questionnaire:   Confirmatory   factor   analysis   and   identification   of   patient  subgroups:  Pain  140,  284–291.  

Walters,  S.J.,  and  Brazier,  J.E.  (2005).  Comparison  of  the  minimally  important  difference  for  two  health  state  utility  measures:  EQ-­‐‑5D  and  SF-­‐‑6D.  Qual  Life  Res  14,  1523–1532.  

Page 116: Health-related quality of life in patients with chronic pain

  116  

Ware,  J.E.,  and  Sherbourne,  C.D.  (1992).  The  MOS  36-­‐‑item  short-­‐‑form  health  survey  (SF-­‐‑36).  I.  Conceptual  framework  and  item  selection.  Med  Care  30,  473–483.  

Ware,   J.,   Kosinski,   M.,   and   Keller,   S.D.   (1996).   A   12-­‐‑Item   Short-­‐‑Form   Health   Survey:  construction  of  scales  and  preliminary  tests  of  reliability  and  validity.  Med  Care  34,  220–233.  

Waterschoot,  F.P.C.,  Dijkstra,  P.U.,  Hollak,  N.,  de  Vries,  H.J.,  Geertzen,  J.H.B.,  and  Reneman,  M.F.   (2014).  Dose  or   content?  Effectiveness  of  pain   rehabilitation  programs   for  patients  with  chronic  low  back  pain:  a  systematic  review.  Pain  155,  179–189.  

Weiner,  B.K.  (2008).  Spine  Update:  The  Biopsychosocial  Model  and  Spine  Care.  Spine  33,  219–223.  

White,   I.R.,   Royston,   P.,   and   Wood,   A.M.   (2011).   Multiple   imputation   using   chained  equations:  Issues  and  guidance  for  practice.  Stat  Med  30,  377–399.  

World   Health   Organization   (1948).   Preamble   to   the   Constitution   of   the   World   Health  Organization   as   adopted  by   the   International  Health  Conference,  New  York,   19–22   June  1946  and  entered  into  force  on  7  April  1948.  

Wynne-­‐‑Jones,  G.,  Jones,  G.T.,  Wiles,  N.J.,  Silman,  A.J.,  and  Macfarlane,  G.J.  (2006).  Predicting  new  onset  of  widespread  pain  following  a  motor  vehicle  collision.   J  Rheumatol.  33,  968–974.