56
Department of Biomedical, Human Factors, & Industrial Engineering Head Position and Frame of Reference Head Position and Frame of Reference in Flight: The Opto-kinetic Cervical in Flight: The Opto-kinetic Cervical Reflex Reflex Jennie J. Gallimore, Ph.D. June 24, 2009 NASA Langley

Head Position and Frame of Reference in Flight: The Opto-kinetic Cervical Reflex

  • Upload
    gezana

  • View
    19

  • Download
    0

Embed Size (px)

DESCRIPTION

Head Position and Frame of Reference in Flight: The Opto-kinetic Cervical Reflex. Jennie J. Gallimore, Ph.D. June 24, 2009 NASA Langley. Topics. Spatial Disorientation Attitude Indicator OKCR Research Considerations for Cockpit Displays Other On Going Research at WSU. - PowerPoint PPT Presentation

Citation preview

  • Pilot Spatial Awareness Models Conventional Paradigm Revised Paradigm

    Primary Visual Spatial Cue(stable horizon)

    Secondary VisualSpatial Cue(moving cockpit)

    Department of Biomedical, Human Factors, & Industrial Engineering

  • Pilot Spatial Awareness Models Conventional Paradigm Revised Paradigm

    Primary Visual Spatial Cue(stable horizon)

    Secondary VisualSpatial Cue(moving cockpit)

    Department of Biomedical, Human Factors, & Industrial Engineering

  • Pilot Spatial Awareness Models Conventional Paradigm Revised Paradigm

    Primary Visual Spatial Cue(stable horizon)

    Secondary VisualSpatial Cue(moving cockpit)

    Department of Biomedical, Human Factors, & Industrial Engineering

    Opto-Kinetic Cervical Reflex (OKCR)Pilots align their heads toward the horizon during Visual Meteorological Conditions (VMC) flight.Pilots do not tilt their heads during Instrument Meteorological Conditions (IMC) flight.Visual to Instrument transition can cause reversal errors.

    Department of Biomedical, Human Factors, & Industrial Engineering

    Head Tilt

    Patterson (1989) noticed that pilots align their heads with the horizon.If they are aligning their heads with the aircraft then the view from the windscreen is a fixed horizon (not moving).

    Department of Biomedical, Human Factors, & Industrial Engineering

    F/A-18 aircraft (Blue Angel) 73 degrees of bank (VMC, +Gz Turn).OKCR Head tilt = 31degrees away from the Gz axis.Horizon Linewith 73 degrees of bank angleOpto-Kinetic Cervical Reflex (In-flight)

    Department of Biomedical, Human Factors, & Industrial Engineering

    WSU Research Investigating Head TiltPatterson (1995, 1997)Smith et al (1997)Merryman et al (1997)Gallimore et al (1999, 2000)Liggett & Gallimore (2001)Gallimore, Liggett & Patterson (2001)Others since

    Department of Biomedical, Human Factors, & Industrial Engineering

    OKCR Studies

    AuthorPlat-formVisual Field SizeInstru-mentsVMCTaskOCKR Found?IMCTaskOKCRFound?UATaskCRE%SubsPatterson(1995)Fixed aircraftsimFull dome180oHDDAIXYesXNoX65%16Smith et al. (1997)Fixed aircraftsimFull dome180oHDDAIXYes16Merryman et al. (1997)F-15aircraftRealworldHDD AIHUDXYes9Braithwaiteet al (1998)MovingHeli-copter SimHalf dome160o H FOVHDDAINVGXYesXNoX25%20Gallimore et al. (1999)Fixed aircraftsimFull dome180oHDDAIXYesXNoX31%12Gallimoreet al. (2000)Fixed aircraftsimFull dome180oHDDAIIXYesXNo26

    Department of Biomedical, Human Factors, & Industrial Engineering

    Horizon Roll Vs. Head Roll for Low-Level RoutePatterson et al.

    Department of Biomedical, Human Factors, & Industrial Engineering

    Three graduate studies: Patterson, Merryman, Smith

    Department of Biomedical, Human Factors, & Industrial Engineering

    Merryman & Smith

    Department of Biomedical, Human Factors, & Industrial Engineering

    Results: Head tilt with respect to aircraft bank during low-level routeGallimore, et al (1999)

    Chart1

    9.3530556

    9.9955556

    10.0208333

    10.5797222

    9.8725

    9.6883333

    9.0202778

    8.7402778

    8.9416667

    8.4391667

    8.4066667

    7.4027778

    6.8866667

    5.9011111

    5.0013889

    3.9177778

    2.6275

    1.2461111

    -0.9572222

    -3.27

    -4.7522222

    -6.0572222

    -7.3480556

    -7.8577778

    -8.6980556

    -9.7088889

    -10.0072222

    -10.6127778

    -10.8555556

    -10.7141667

    -10.6419444

    -10.6841667

    -10.4219444

    -10.4983333

    -9.7633333

    -8.9866667

    -7.0302778

    Aircraft Bank

    Head Tilt

    Sheet1

    &A

    Page &P

    Sheet1

    9.3530556

    9.9955556

    10.0208333

    10.5797222

    9.8725

    9.6883333

    9.0202778

    8.7402778

    8.9416667

    8.4391667

    8.4066667

    7.4027778

    6.8866667

    5.9011111

    5.0013889

    3.9177778

    2.6275

    1.2461111

    -0.9572222

    -3.27

    -4.7522222

    -6.0572222

    -7.3480556

    -7.8577778

    -8.6980556

    -9.7088889

    -10.0072222

    -10.6127778

    -10.8555556

    -10.7141667

    -10.6419444

    -10.6841667

    -10.4219444

    -10.4983333

    -9.7633333

    -8.9866667

    -7.0302778

    &A

    Page &P

    Aircraft Bank

    Head Tilt

    Sheet2

    4.29944444

    6.46166667

    5.58527778

    6.51194444

    6.04416667

    5.22

    4.88166667

    4.63472222

    4.02638889

    3.35472222

    3.13361111

    2.19555556

    1.34888889

    -0.07777778

    -1.52833333

    -2.86305556

    -3.89083333

    -4.54972222

    -5.43944444

    -5.85583333

    -6.54777778

    -6.80861111

    -7.58527778

    -7.60305556

    -9.09111111

    -7.27555556

    -6.97138889

    -5.60111111

    -4.51166667

    &A

    Page &P

    Aircraft Bank

    Head Tilt

    Figure 3-2: Head Tilt as a Function of Aircraft Bank for Solo Figure 8 VMC

    Sheet3

    5.22472222

    6.22611111

    9.23833333

    9.51888889

    8.57111111

    7.91138889

    7.64944444

    7.28722222

    7.255

    6.71722222

    6.59194444

    5.97277778

    4.68027778

    4.01777778

    3.98722222

    3.62416667

    2.61388889

    1.56

    -0.80305556

    -2.64888889

    -4.14944444

    -4.01166667

    -5.0525

    -5.49555556

    -5.735

    -6.47611111

    -6.17472222

    -6.65805556

    -6.56638889

    -6.88888889

    -7.46222222

    -7.60388889

    -8.29888889

    -9.05444444

    -9.10888889

    -7.44833333

    -6.47277778

    &A

    Page &P

    Aircraft Bank

    Head Tilt

    Figure 3-3: Head Tilt as a Function of Aircraft Bank for Formation Figure 8 VMC

    Sheet4

    2.50638889

    1.75222222

    0.87416667

    1.88861111

    1.94166667

    1.19416667

    0.91333333

    1.10027778

    0.95611111

    1.47888889

    0.35722222

    0.32888889

    1.21888889

    0.43027778

    0.18333333

    0.17305556

    0.20277778

    -0.41333333

    -1.79944444

    -1.91194444

    -1.91083333

    -1.94277778

    -2.76888889

    -2.53888889

    -1.38194444

    -1.86305556

    -2.11527778

    -2.61277778

    -1.67694444

    -2.75722222

    -3.16055556

    -3.49555556

    -3.65

    -5.23944444

    -3.41833333

    -3.40833333

    -2.71944444

    &A

    Page &P

    Aircraft Bank

    Head Tilt

    Figure 3-5: Head Tilt as a Function of Aircraft Bank for Formation Figure 8 IMC

    Sheet5

    -0.53638889

    -0.06333333

    1.895

    2.30944444

    3.27583333

    3.22444444

    3.03083333

    3.07722222

    3.08916667

    2.84305556

    3.52638889

    3.58722222

    3.48861111

    2.79138889

    3.74694444

    2.81805556

    3.29888889

    2.83194444

    1.26222222

    -0.49222222

    -2.22944444

    -3.19083333

    -3.81305556

    -2.28305556

    -5.22888889

    -6.25194444

    -5.54666667

    -5.125

    -5.53194444

    -6.01861111

    -6.45944444

    -6.19194444

    -6.52277778

    -6.45916667

    -6.16083333

    -6.46138889

    -5.16777778

    -4.72361111

    -5.005

    &A

    Page &P

    Aircraft Bank

    Head Tilt

    Figure 3-4: Head Tilt as a Function of Aircraft Bank for Transition Maneuver VMC

    Sheet6

    -1.54194444

    -1.37722222

    -1.48416667

    -0.81611111

    -1.54222222

    -1.31

    0.18555556

    0.54833333

    0.67027778

    0.51083333

    0.45333333

    1.04138889

    0.97611111

    1.16805556

    0.78

    0.23138889

    -0.28916667

    0.10861111

    -0.18444444

    -1.12444444

    -1.69444444

    -1.99611111

    -1.86583333

    -2.41694444

    -2.53111111

    -2.42333333

    -2.57416667

    -2.59138889

    -2.37111111

    -1.91388889

    -1.95555556

    -2.21333333

    -2.40694444

    -2.43472222

    -2.61138889

    -2.6425

    -1.67472222

    -1.94555556

    -2.86111111

    &A

    Page &P

    Aircraft Bank

    Head Tilt

    Figure 3-6: Head Tilt as a Function of Aircraft Bank for Transition Maneuver IMC

    Sheet7

    -2.37371429

    -2.40914286

    -2.36057143

    -2.536

    -2.31285714

    -2.27

    -2.21942857

    -2.17914286

    -2.16914286

    -2.12542857

    -2.23428571

    -2.26971429

    -2.38228571

    -2.42057143

    -2.58828571

    -2.63828571

    -2.80085714

    -2.81942857

    -2.982

    -3.048

    -3.27

    -3.126

    -2.78257143

    -2.89371429

    -3.08542857

    -3.30542857

    -2.99828571

    -2.62542857

    -2.16314286

    &A

    Page &P

    Aircraft Bank

    Head Tilt

    Figure 3-7: Head Tilt as a Function of Aircraft Bank for Low Level Navigation IMC

    Sheet8

    -3.94388889

    -4.98638889

    -4.2875

    -5.04666667

    -5.23638889

    -4.71527778

    -4.92

    -4.88916667

    -4.89444444

    -4.04388889

    -5.26388889

    -4.49444444

    -3.415

    -3.26444444

    -2.82555556

    -1.86583333

    -1.32027778

    -0.70666667

    0.0225

    0.90166667

    1.05555556

    1.75694444

    2.21611111

    2.03138889

    2.65944444

    2.91666667

    3.03472222

    3.66194444

    4.07638889

    4.0975

    4.36694444

    3.78861111

    2.65972222

    2.61666667

    2.88722222

    2.44666667

    1.95305556

    &A

    Page &P

    Aircraft Bank

    Head Yaw

    Figure 3-19: Head Yaw as a Function of Aircraft Bank for Low Level VMC

    Sheet9

    -7.0236111

    -8.2580556

    -9.0636111

    -7.7116667

    -7.6838889

    -7.2302778

    -6.7508333

    -7.8105556

    -10.3938889

    -10.8622222

    -12.0063889

    -11.2841667

    -6.6647222

    -4.9216667

    -2.2180556

    4.7366667

    8.3936111

    6.3744444

    7.4738889

    9.2891667

    8.4275

    6.1844444

    9.2969444

    9.2616667

    8.52

    8.5816667

    9.4366667

    8.3597222

    6.0219444

    &A

    Page &P

    Aircraft Bank

    Head Yaw

    Figure 3-20: Head Yaw as a Function of Aircraft Bank for Solo Figure 8 VMC

    Sheet10

    -7.63055556

    -6.79944444

    -6.70111111

    -6.7025

    -5.48

    -5.63416667

    -5.21388889

    -3.54861111

    -4.92861111

    -6.21055556

    -5.06861111

    -3.97805556

    -5.15333333

    -5.61416667

    -5.63416667

    -5.28611111

    -4.51

    -2.52111111

    -2.25527778

    -1.74916667

    -1.38222222

    -0.59166667

    -0.44194444

    -0.71416667

    -0.40805556

    -0.05138889

    0.40666667

    0.71833333

    0.21833333

    0.39916667

    0.90166667

    1.51166667

    2.78944444

    3.31194444

    4.7725

    6.32055556

    5.47555556

    &A

    Page &P

    Aircraft Bank

    Head Yaw

    Figure 3-21: Head Yaw as a Function of Aircraft Bank for Formation Figure 8 VMC

    Sheet11

    -2.60055556

    -5.37027778

    -6.52972222

    -5.86555556

    -4.4375

    -3.02111111

    -2.66833333

    -1.94694444

    -1.20555556

    -2.86416667

    -3.00555556

    -2.805

    -4.19666667

    -3.31472222

    -3.7425

    -3.19722222

    -3.58833333

    -3.41472222

    0.09916667

    -1.44472222

    -1.04555556

    -1.90305556

    -1.62638889

    -1.0075

    -2.60944444

    -0.92972222

    -2.30222222

    -2.10444444

    -2.54583333

    -1.33638889

    -1.86638889

    -1.72277778

    -0.53722222

    1.3925

    4.92277778

    5.72472222

    3.9825

    &A

    Page &P

    Aircraft Bank

    Head Yaw

    Figure 3-23: Head Yaw as a Function of Aircraft Bank for Formation Figure 8 IMC

    Sheet12

    -9.1994444

    -11.9922222

    -9.6141667

    -9.6491667

    -9.5941667

    -9.4202778

    -10.8561111

    -9.9666667

    -10.6755556

    -11.1230556

    -9.2277778

    -7.8925

    -6.73

    -7.2819444

    -5.9441667

    -6.2522222

    -7.5038889

    -8.5402778

    -8.4230556

    -6.0408333

    -6.9033333

    -5.4433333

    -3.5088889

    -1.8383333

    -0.0938889

    1.9983333

    3.93

    4.585

    4.4372222

    4.3005556

    4.1716667

    3.4480556

    2.7083333

    4.1244444

    3.8463889

    3.6291667

    3.6275

    5.7175

    0.7344444

    &A

    Page &P

    Aircraft Bank

    Head Yaw

    Figure 3-22: Head Yaw as a Function of Aircraft Bank for Transition Maneuver VMC

    Sheet13

    -2.36055556

    -1.85083333

    -1.69888889

    -4.24972222

    -3.96611111

    -5.70194444

    -6.82083333

    -6.54972222

    -7.69083333

    -7.57777778

    -7.26111111

    -6.72972222

    -7.46916667

    -6.94944444

    -7.38944444

    -7.69138889

    -7.50416667

    -7.12722222

    -5.47861111

    -3.57833333

    -2.68333333

    -3.82527778

    -2.63361111

    -0.89027778

    0.46138889

    1.095

    -0.60416667

    -0.42305556

    0.68972222

    0.23666667

    -0.39222222

    -1.475

    -0.58777778

    -2.53638889

    -0.68583333

    -1.76277778

    -1.71138889

    -0.99666667

    -0.08638889

    &A

    Page &P

    Aircraft Bank

    Head Yaw

    Figure 3-24: Head Yaw as a Function of Aircraft Bank for Transition Maneuver IMC

    Sheet14

    -0.65171429

    -0.57885714

    -0.15085714

    0.16542857

    -0.338

    -0.29342857

    -0.61028571

    -0.58628571

    -0.57542857

    -0.14

    -0.02857143

    0.05942857

    0.07371429

    0.52857143

    0.70485714

    0.29942857

    0.42428571

    0.02428571

    0.14771429

    0.53571429

    0.43885714

    0.68085714

    0.17142857

    0.36571429

    0.54457143

    1.10971429

    0.70285714

    1.01857143

    0.374

    &A

    Page &P

    Aircraft Bank

    Head Yaw

    Figure 3-25: Head Yaw as a Function of Aircraft Bank for Low Level IMC

    Sheet15

    &A

    Page &P

    Sheet16

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    &A

    Page &P

    Department of Biomedical, Human Factors, & Industrial Engineering

    OKCR Results

    Sheet3

    Aircraft Bank Angle-90-85-80-75-70-65-60-55-50-45-40-35-30-25-20-15-10-5051015202530354045505560657075808590

    Merryman (1995)22.95229822.738119522.32829421.735562520.97266620.052345518.98734217.790396516.4742515.051643513.53531811.938014510.2724748.55143756.7876464.99384053.1827621.3671515-0.44025-2.2267015-3.979462-5.6857905-7.332946-8.9081875-10.398774-11.7919645-13.075018-14.2351935-15.25975-16.1359465-16.851042-17.3922955-17.746966-17.9023125-17.845594-17.5640695-17.044998

    Patterson (1995)15.769416.3906516.755416.8786516.775416.4606515.949415.2566514.397413.3866512.239410.970659.59548.128656.58544.980653.32941.64665-0.0526-1.75335-3.4406-5.09935-6.7146-8.27135-9.7546-11.14935-12.4406-13.61335-14.6526-15.54335-16.2706-16.81935-17.1746-17.32135-17.2446-16.92935-16.3606

    Smith [Active] (1994)14.622061614.62823297514.529877614.32634687514.017705613.60473197513.088917612.47246747511.758310.95004697510.05205369.0693784758.00779366.8737843755.67454964.4180014753.11276561.7681809750.3943-0.998111525-2.3975744-3.791896025-5.1681704-6.512778125-7.8113864-9.048949025-10.2097064-11.277185525-12.2342-13.062850025-13.7445224-14.259890525-14.5889144-14.710840625-14.6042024-14.246819525-13.6157984

    Smith [Passive] (1994)8.890368811.834212314.136496815.846162517.010920817.677254317.890416817.694433317.132116.244984315.073424813.656531312.032184810.23703758.30651286.27480534.17488082.0384763-0.1039-2.2229687-4.2906792-6.2802097-8.1659672-9.9235875-11.5299352-12.9631037-14.2024152-15.2284207-16.0229-16.5688617-16.8505432-16.8534107-16.5641592-15.9707125-15.0622232-13.8290727-12.2628712

    Braithwaite (1997)26.52224.761428571426.898333333326.158525.827524.451522.48220.131518.682516.85314.599512.26059.8046.97854.13150.9875-2.871-6.723-9.068-11.166-13.046-14.8965-15.8285-17.048-19.0115-20.089-20.7378947368-23.1629411765-22.5615384615-20.608-20.3157142857

    Aircraft bank-87.5-82.5-77.5-72.5-67.5-62.5-57.5-52.5-47.5-42.5-37.5-32.5-27.5-22.5-17.5-12.5-7.5-2.52.57.512.517.522.527.532.537.542.547.552.557.562.567.572.577.582.587.592.5

    &A

    Page &P

    Sheet1

    &A

    Page &P

    Sheet1

    22.95229815.769414.62206168.8903688-90

    22.738119516.3906514.62823297511.8342123-85

    22.32829416.755414.529877614.136496826.522

    21.735562516.8786514.32634687515.846162524.7614285714

    20.97266616.775414.017705617.010920826.8983333333

    20.052345516.4606513.60473197517.677254326.1585

    18.98734215.949413.088917617.890416825.8275

    17.790396515.2566512.47246747517.694433324.4515

    16.4742514.397411.758317.132122.482

    15.051643513.3866510.95004697516.244984320.1315

    13.53531812.239410.052053615.073424818.6825

    11.938014510.970659.06937847513.656531316.853

    10.2724749.59548.007793612.032184814.5995

    8.55143758.128656.87378437510.237037512.2605

    6.7876466.58545.67454968.30651289.804

    4.99384054.980654.4180014756.27480536.9785

    3.1827623.32943.11276564.17488084.1315

    1.36715151.646651.7681809752.03847630.9875

    -0.44025-0.05260.3943-0.1039-2.871

    -2.2267015-1.75335-0.998111525-2.2229687-6.723

    -3.979462-3.4406-2.3975744-4.2906792-9.068

    -5.6857905-5.09935-3.791896025-6.2802097-11.166

    -7.332946-6.7146-5.1681704-8.1659672-13.046

    -8.9081875-8.27135-6.512778125-9.9235875-14.8965

    -10.398774-9.7546-7.8113864-11.5299352-15.8285

    -11.7919645-11.14935-9.048949025-12.9631037-17.048

    -13.075018-12.4406-10.2097064-14.2024152-19.0115

    -14.2351935-13.61335-11.277185525-15.2284207-20.089

    -15.25975-14.6526-12.2342-16.0229-20.7378947368

    -16.1359465-15.54335-13.062850025-16.5688617-23.1629411765

    -16.851042-16.2706-13.7445224-16.8505432-22.5615384615

    -17.3922955-16.81935-14.259890525-16.8534107-20.608

    -17.746966-17.1746-14.5889144-16.5641592-20.3157142857

    -17.9023125-17.32135-14.710840625-15.970712575

    -17.845594-17.2446-14.6042024-15.062223280

    -17.5640695-16.92935-14.246819525-13.829072785

    -17.044998-16.3606-13.6157984-12.262871290

    &A

    Page &P

    Merryman (1995)

    Patterson (1995)

    Smith [Active] (1994)

    Smith [Passive] (1994)

    Braithwaite (1997)

    PREDICT

    -0.44025Intercept

    -0.35981X

    0.000419XX

    0.000016988XXX

    Aircraft Bank AngleMerryman (1995)Patterson (1995)Smith [Active] (1994)Smith [Passive] (1994)Braithwaite (1997)

    -9022.9515.7714.628.89

    -8522.7416.3914.6311.83

    -8022.3316.7614.5314.1426.52

    -7521.7416.8814.3315.8524.76

    -7020.9716.7814.0217.0126.90

    -6520.0516.4613.6017.6826.16

    -6018.9915.9513.0917.8925.83

    -5517.7915.2612.4717.6924.45

    -5016.4714.4011.7617.1322.48

    -4515.0513.3910.9516.2420.13

    -4013.5412.2410.0515.0718.68

    -3511.9410.979.0713.6616.85

    -3010.279.608.0112.0314.60

    -258.558.136.8710.2412.26

    -206.796.595.678.319.80

    -154.994.984.426.276.98

    -103.183.333.114.174.13

    -51.371.651.772.040.99

    0-0.44-0.050.39-0.10-2.87

    5-2.23-1.75-1.00-2.22-6.72

    10-3.98-3.44-2.40-4.29-9.07

    15-5.69-5.10-3.79-6.28-11.17

    20-7.33-6.71-5.17-8.17-13.05

    25-8.91-8.27-6.51-9.92-14.90

    30-10.40-9.75-7.81-11.53-15.83

    35-11.79-11.15-9.05-12.96-17.05

    40-13.08-12.44-10.21-14.20-19.01

    45-14.24-13.61-11.28-15.23-20.09

    50-15.26-14.65-12.23-16.02-20.74

    55-16.14-15.54-13.06-16.57-23.16

    60-16.85-16.27-13.74-16.85-22.56

    65-17.39-16.82-14.26-16.85-20.61

    70-17.75-17.17-14.59-16.56-20.32

    75-17.90-17.32-14.71-15.97

    80-17.85-17.24-14.60-15.06

    85-17.56-16.93-14.25-13.83

    90-17.04-16.36-13.62-12.26

    &A

    Page &P

    PREDICT

    22.95229815.769414.62206168.8903688

    22.738119516.3906514.62823297511.8342123

    22.32829416.755414.529877614.1364968

    21.735562516.8786514.32634687515.8461625

    20.97266616.775414.017705617.0109208

    20.052345516.4606513.60473197517.6772543

    18.98734215.949413.088917617.8904168

    17.790396515.2566512.47246747517.6944333

    16.4742514.397411.758317.1321

    15.051643513.3866510.95004697516.2449843

    13.53531812.239410.052053615.0734248

    11.938014510.970659.06937847513.6565313

    10.2724749.59548.007793612.0321848

    8.55143758.128656.87378437510.2370375

    6.7876466.58545.67454968.3065128

    4.99384054.980654.4180014756.2748053

    3.1827623.32943.11276564.1748808

    1.36715151.646651.7681809752.0384763

    -0.44025-0.05260.3943-0.1039

    -2.2267015-1.75335-0.998111525-2.2229687

    -3.979462-3.4406-2.3975744-4.2906792

    -5.6857905-5.09935-3.791896025-6.2802097

    -7.332946-6.7146-5.1681704-8.1659672

    -8.9081875-8.27135-6.512778125-9.9235875

    -10.398774-9.7546-7.8113864-11.5299352

    -11.7919645-11.14935-9.048949025-12.9631037

    -13.075018-12.4406-10.2097064-14.2024152

    -14.2351935-13.61335-11.277185525-15.2284207

    -15.25975-14.6526-12.2342-16.0229

    -16.1359465-15.54335-13.062850025-16.5688617

    -16.851042-16.2706-13.7445224-16.8505432

    -17.3922955-16.81935-14.259890525-16.8534107

    -17.746966-17.1746-14.5889144-16.5641592

    -17.9023125-17.32135-14.710840625-15.9707125

    -17.845594-17.2446-14.6042024-15.0622232

    -17.5640695-16.92935-14.246819525-13.8290727

    -17.044998-16.3606-13.6157984-12.2628712

    &A

    Page &P

    Merryman (1995)

    Patterson (1995)

    Smith [Active] (1994)

    Smith [Passive] (1994)

    Aircraft Bank Angle (degrees)

    Pilot Coronal Head Tilt (degrees)

    Chart2

    16.755414.529877614.136496822.32829426.52210.0208333

    16.8786514.32634687515.846162521.735562524.761428571410.5797222

    16.775414.017705617.010920820.97266626.89833333339.8725

    16.4606513.60473197517.677254320.052345526.15859.6883333

    15.949413.088917617.890416818.98734225.82759.0202778

    15.2566512.47246747517.694433317.790396524.45158.7402778

    14.397411.758317.132116.4742522.4828.9416667

    13.3866510.95004697516.244984315.051643520.13158.4391667

    12.239410.052053615.073424813.53531818.68258.4066667

    10.970659.06937847513.656531311.938014516.8537.4027778

    9.59548.007793612.032184810.27247414.59956.8866667

    8.128656.87378437510.23703758.551437512.26055.9011111

    6.58545.67454968.30651286.7876469.8045.0013889

    4.980654.4180014756.27480534.99384056.97853.9177778

    3.32943.11276564.17488083.1827624.13152.6275

    1.646651.7681809752.03847631.36715150.98751.2461111

    -0.05260.3943-0.1039-0.44025-2.871-0.9572222

    -1.75335-0.998111525-2.2229687-2.2267015-6.723-3.27

    -3.4406-2.3975744-4.2906792-3.979462-9.068-4.7522222

    -5.09935-3.791896025-6.2802097-5.6857905-11.166-6.0572222

    -6.7146-5.1681704-8.1659672-7.332946-13.046-7.3480556

    -8.27135-6.512778125-9.9235875-8.9081875-14.8965-7.8577778

    -9.7546-7.8113864-11.5299352-10.398774-15.8285-8.6980556

    -11.14935-9.048949025-12.9631037-11.7919645-17.048-9.7088889

    -12.4406-10.2097064-14.2024152-13.075018-19.0115-10.0072222

    -13.61335-11.277185525-15.2284207-14.2351935-20.089-10.6127778

    -14.6526-12.2342-16.0229-15.25975-20.7378947368-10.8555556

    -15.54335-13.062850025-16.5688617-16.1359465-23.1629411765-10.7141667

    -16.2706-13.7445224-16.8505432-16.851042-22.5615384615-10.6419444

    -16.81935-14.259890525-16.8534107-17.3922955-20.608-10.6841667

    -17.1746-14.5889144-16.5641592-17.746966-20.3157142857-10.4219444

    -17.32135-14.710840625-15.9707125-17.9023125-10.4983333

    -17.2446-14.6042024-15.0622232-17.845594-9.7633333

    Patterson: Dome

    Smith Active: Dome

    Smith Passive: Dome

    Merryman: F-15

    Braithwaite: Helicopter

    Gallimore 1999:Dome

    Aircraft Bank (Degrees)

    Head Tilt (Degrees)

    Chart1

    22.32829416.755414.529877614.136496826.522

    21.735562516.8786514.32634687515.846162524.7614285714

    20.97266616.775414.017705617.010920826.8983333333

    20.052345516.4606513.60473197517.677254326.1585

    18.98734215.949413.088917617.890416825.8275

    17.790396515.2566512.47246747517.694433324.4515

    16.4742514.397411.758317.132122.482

    15.051643513.3866510.95004697516.244984320.1315

    13.53531812.239410.052053615.073424818.6825

    11.938014510.970659.06937847513.656531316.853

    10.2724749.59548.007793612.032184814.5995

    8.55143758.128656.87378437510.237037512.2605

    6.7876466.58545.67454968.30651289.804

    4.99384054.980654.4180014756.27480536.9785

    3.1827623.32943.11276564.17488084.1315

    1.36715151.646651.7681809752.03847630.9875

    -0.44025-0.05260.3943-0.1039-2.871

    -2.2267015-1.75335-0.998111525-2.2229687-6.723

    -3.979462-3.4406-2.3975744-4.2906792-9.068

    -5.6857905-5.09935-3.791896025-6.2802097-11.166

    -7.332946-6.7146-5.1681704-8.1659672-13.046

    -8.9081875-8.27135-6.512778125-9.9235875-14.8965

    -10.398774-9.7546-7.8113864-11.5299352-15.8285

    -11.7919645-11.14935-9.048949025-12.9631037-17.048

    -13.075018-12.4406-10.2097064-14.2024152-19.0115

    -14.2351935-13.61335-11.277185525-15.2284207-20.089

    -15.25975-14.6526-12.2342-16.0229-20.7378947368

    -16.1359465-15.54335-13.062850025-16.5688617-23.1629411765

    -16.851042-16.2706-13.7445224-16.8505432-22.5615384615

    -17.3922955-16.81935-14.259890525-16.8534107-20.608

    -17.746966-17.1746-14.5889144-16.5641592-20.3157142857

    -17.9023125-17.32135-14.710840625-15.9707125

    -17.845594-17.2446-14.6042024-15.0622232

    Merryman

    Patterson

    Smith (Active)

    Smith (Passive)

    Braithwaite

    Aircraft Bank (Degrees)

    Head Tilt (Degrees)

    Sheet2

    Aircraft Bank AngleMerryman (1995)Patterson (1995)Smith [Active] (1994)Smith [Passive] (1994)Braithwaite (1997)Gallimore 1999(+2.5)

    -9022.95229815.769414.62206168.8903688-87.5

    -8522.738119516.3906514.62823297511.8342123-82.5

    -8022.32829416.755414.529877614.136496826.52210.0208333-77.5

    -7521.735562516.8786514.32634687515.846162524.761428571410.5797222-72.5

    -7020.97266616.775414.017705617.010920826.89833333339.8725-67.5

    -6520.052345516.4606513.60473197517.677254326.15859.6883333-62.5

    -6018.98734215.949413.088917617.890416825.82759.0202778-57.5

    -5517.790396515.2566512.47246747517.694433324.45158.7402778-52.5

    -5016.4742514.397411.758317.132122.4828.9416667-47.5

    -4515.051643513.3866510.95004697516.244984320.13158.4391667-42.5

    -4013.53531812.239410.052053615.073424818.68258.4066667-37.5

    -3511.938014510.970659.06937847513.656531316.8537.4027778-32.5

    -3010.2724749.59548.007793612.032184814.59956.8866667-27.5

    -258.55143758.128656.87378437510.237037512.26055.9011111-22.5

    -206.7876466.58545.67454968.30651289.8045.0013889-17.5

    -154.99384054.980654.4180014756.27480536.97853.9177778-12.5

    -103.1827623.32943.11276564.17488084.13152.6275-7.5

    -51.36715151.646651.7681809752.03847630.98751.2461111-2.5

    0-0.44025-0.05260.3943-0.1039-2.871-0.95722222.5

    5-2.2267015-1.75335-0.998111525-2.2229687-6.723-3.277.5

    10-3.979462-3.4406-2.3975744-4.2906792-9.068-4.752222212.5

    15-5.6857905-5.09935-3.791896025-6.2802097-11.166-6.057222217.5

    20-7.332946-6.7146-5.1681704-8.1659672-13.046-7.348055622.5

    25-8.9081875-8.27135-6.512778125-9.9235875-14.8965-7.857777827.5

    30-10.398774-9.7546-7.8113864-11.5299352-15.8285-8.698055632.5

    35-11.7919645-11.14935-9.048949025-12.9631037-17.048-9.708888937.5

    40-13.075018-12.4406-10.2097064-14.2024152-19.0115-10.007222242.5

    45-14.2351935-13.61335-11.277185525-15.2284207-20.089-10.612777847.5

    50-15.25975-14.6526-12.2342-16.0229-20.7378947368-10.855555652.5

    55-16.1359465-15.54335-13.062850025-16.5688617-23.1629411765-10.714166757.5

    60-16.851042-16.2706-13.7445224-16.8505432-22.5615384615-10.641944462.5

    65-17.3922955-16.81935-14.259890525-16.8534107-20.608-10.684166767.5

    70-17.746966-17.1746-14.5889144-16.5641592-20.3157142857-10.421944472.5

    75-17.9023125-17.32135-14.710840625-15.9707125-10.498333377.5

    80-17.845594-17.2446-14.6042024-15.0622232-9.763333382.5

    85-17.5640695-16.92935-14.246819525-13.829072787.5

    90-17.044998-16.3606-13.6157984-12.262871292.5

    &A

    Page &P

    Department of Biomedical, Human Factors, & Industrial Engineering

    OKCR as a function of task and field of view

    Chart1

    -12.036.51194444-10.578.57111111-0.761.94166667

    -11.726.04416667-9.937.91138889-0.461.19416667

    -10.975.22-9.567.649444440.160.91333333

    -9.864.88166667-7.687.28722222-0.751.10027778

    -9.544.63472222-7.347.255-0.340.95611111

    -6.444.02638889-8.756.71722222-1.61.47888889

    -7.333.35472222-7.146.59194444-1.430.35722222

    -5.583.13361111-65.97277778-1.540.32888889

    -5.52.19555556-5.374.68027778-0.441.21888889

    -4.951.34888889-3.244.017777780.050.43027778

    -3.89-0.07777778-3.513.987222220.950.18333333

    -3.82-1.52833333-4.393.62416667-0.190.17305556

    -0.27-2.86305556-2.192.61388889-0.90.20277778

    -1.82-3.89083333-0.431.56-0.35-0.41333333

    0.69-4.549722222.46-0.80305556-0.5-1.79944444

    1.72-5.439444441.89-2.648888890-1.91194444

    4.95-5.855833334.26-4.149444441.77-1.91083333

    6.1-6.547777781.96-4.011666670.62-1.94277778

    5.07-6.808611115.18-5.0525-0.06-2.76888889

    7.03-7.585277785.35-5.49555556-0.07-2.53888889

    7.72-7.603055566.74-5.7351.17-1.38194444

    8.08-9.091111116.25-6.476111111.08-1.86305556

    8.617.83-6.174722220.51-2.11527778

    10.717.89-6.658055560.01-2.61277778

    10.688.15-6.566388890.33-1.67694444

    11.798.55-6.888888890.83-2.75722222

    12.049.55-7.462222221.67-3.16055556

    12.6110.15-7.603888892.21-3.49555556

    Figure 4. Head tilt as a function of aircraft bank and task type for Experiment I and II.

    Solo Fig 8 Exp I

    Solo Fig 8 Exp II

    FF8 VMC Exp I

    FF8 VMC Exp II

    FF8 IMC Exp I

    FF8 IMC Exp II

    Chart2

    -12.03-10.57-0.76

    -11.72-9.93-0.46

    -10.97-9.560.16

    -9.86-7.68-0.75

    -9.54-7.34-0.34

    -6.44-8.75-1.6

    -7.33-7.14-1.43

    -5.58-6-1.54

    -5.5-5.37-0.44

    -4.95-3.240.05

    -3.89-3.510.95

    -3.82-4.39-0.19

    -0.27-2.19-0.9

    -1.82-0.43-0.35

    0.692.46-0.5

    1.721.890

    4.954.261.77

    6.11.960.62

    5.075.18-0.06

    7.035.35-0.07

    7.726.741.17

    8.086.251.08

    8.617.830.51

    10.717.890.01

    10.688.150.33

    11.798.550.83

    12.049.551.67

    12.6110.152.21

    Experiment I

    Figure 2. Head tilt as a function of aircraft bank and task type for experiment I.

    Solo Figure 8 VMC

    Formation Figure 8 VMC

    Formation Figure 8 IMC

    Chart3

    6.511944448.571111111.94166667

    6.044166677.911388891.19416667

    5.227.649444440.91333333

    4.881666677.287222221.10027778

    4.634722227.2550.95611111

    4.026388896.717222221.47888889

    3.354722226.591944440.35722222

    3.133611115.972777780.32888889

    2.195555564.680277781.21888889

    1.348888894.017777780.43027778

    -0.077777783.987222220.18333333

    -1.528333333.624166670.17305556

    -2.863055562.613888890.20277778

    -3.890833331.56-0.41333333

    -4.54972222-0.80305556-1.79944444

    -5.43944444-2.64888889-1.91194444

    -5.85583333-4.14944444-1.91083333

    -6.54777778-4.01166667-1.94277778

    -6.80861111-5.0525-2.76888889

    -7.58527778-5.49555556-2.53888889

    -7.60305556-5.735-1.38194444

    -9.09111111-6.47611111-1.86305556

    -6.17472222-2.11527778

    -6.65805556-2.61277778

    -6.56638889-1.67694444

    -6.88888889-2.75722222

    -7.46222222-3.16055556

    -7.60388889-3.49555556

    Experiment II

    Figure 3. Head tilt as a function of aircraft bank and task type for experiment II.

    Solo Figure 8 VMC

    Formation Figure 8 VMC

    Formation Figure 8 IMC

    Chart4

    -12.03-10.574.299444448.57111111

    -11.72-9.936.461666677.91138889

    -10.97-9.565.585277787.64944444

    -9.86-7.686.511944447.28722222

    -9.54-7.346.044166677.255

    -6.44-8.755.226.71722222

    -7.33-7.144.881666676.59194444

    -5.58-64.634722225.97277778

    -5.5-5.374.026388894.68027778

    -4.95-3.243.354722224.01777778

    -3.89-3.513.133611113.98722222

    -3.82-4.392.195555563.62416667

    -0.27-2.191.348888892.61388889

    -1.82-0.43-0.077777781.56

    0.692.46-1.52833333-0.80305556

    1.721.89-2.86305556-2.64888889

    4.954.26-3.89083333-4.14944444

    6.11.96-4.54972222-4.01166667

    5.075.18-5.43944444-5.0525

    7.035.35-5.85583333-5.49555556

    7.726.74-6.54777778-5.735

    8.086.25-6.80861111-6.47611111

    8.617.83-7.58527778-6.17472222

    10.717.89-7.60305556-6.65805556

    10.688.15-9.09111111-6.56638889

    11.798.55-7.27555556-6.88888889

    12.049.55-6.97138889-7.46222222

    12.6110.15-5.60111111-7.60388889

    Solo Figure 8, 180 FOV

    Formation Flight, 180 FOV

    Solo Figure 8, 40-100 FOV

    Formation Flight, 40-100 FOV

    Aircraft Bank (Degrees)

    Head Tilt (Degrees)

    Sheet1

    Freds data was horizon role, so must reverse the sign on aircraft bank

    Fred Solo 8Fred FF8 VMCFred FF8 IMCFOV Aircraft bankFOV Solo 8FOV FF8 VMCFOV FF8 IMC

    aircraft bankTiltvariancestd devTiltVarianceStd devTiltVariancestd devTiltStd DeveTiltstd DevTiltStd Dev

    -7067.5-12.0319.134.3737855457-10.5722.424.7349762407-0.7617.534.1868842831-67.54.299444445.993704778.571111116.736421591.941666674.77465601

    -6562.5-11.7237.766.1449165983-9.9312.873.5874782229-0.4622.064.6968074263-62.56.461666677.984594637.911388896.323168351.194166674.02845123

    -6057.5-10.9721.194.6032597146-9.5620.864.56727489870.1626.125.1107729357-57.55.585277786.843511837.649444445.892474110.913333333.53209367

    -5552.5-9.8623.044.8-7.6810.763.2802438934-0.7525.965.0950956811-52.56.511944446.862468457.287222225.286030441.100277784.18953628

    -5047.5-9.5438.926.2385895842-7.3414.683.8314488121-0.3417.134.1388404173-47.56.044166674.696553377.2556.162759820.956111114.67680922

    -4542.5-6.4444.466.6678332313-8.7514.633.8249182998-1.6024.294.9284886121-42.55.224.519746526.717222224.884848651.478888894.06818442

    -4037.5-7.3332.765.7236352085-7.1410.913.303028913-1.4323.884.8867166891-37.54.881666674.574421746.591944444.865181730.357222224.07463976

    -3532.5-5.5815.023.875564475-6.0020.004.472135955-1.5418.724.3266615306-32.54.634722224.382979085.972777784.61508310.328888894.42870105

    -3027.5-5.5032.025.6586217403-5.3717.554.1892720131-0.4418.704.3243496621-27.54.026388893.802868964.680277783.922946771.218888895.13190234

    -2522.5-4.9519.524.4181444069-3.2442.796.54140657660.0517.994.2414620121-22.53.354722223.881712794.017777784.383053150.430277785.55657319

    -2017.5-3.8951.407.1693793316-3.5116.104.01248052950.9523.334.8301138703-17.53.133611113.600352483.987222223.645714990.183333334.64171951

    -1512.5-3.8212.183.4899856733-4.3917.454.1773197148-0.1955.657.4598927606-12.52.195555563.24786653.624166673.792491360.173055564.73557468

    -107.5-0.2713.433.6646964404-2.1936.436.0357269653-0.9039.336.2713634881-7.51.348888893.130383622.613888892.540873050.202777784.0842797

    -52.5-1.8215.543.9420806689-0.4325.895.0882216933-0.3544.266.6528189514-2.5-0.077777782.649161711.562.334395-0.413333333.75164193

    5-2.50.6913.633.69188298842.4615.303.9115214431-0.5040.476.36160357142.5-1.528333332.20990821-0.803055561.94693285-1.799444443.03067267

    10-7.51.7211.003.31662479041.8911.253.35410196620.0014.573.81706693687.5-2.863055562.5972511-2.648888892.55404752-1.911944443.68589653

    15-12.54.9516.234.02864741574.2610.633.26036807741.7722.274.719110085612.5-3.890833332.81633741-4.149444442.43361923-1.910833333.9771263

    20-17.56.1020.044.47660585711.9629.155.39907399470.627.812.794637722517.5-4.549722222.58510402-4.011666672.50438073-1.942777783.8613999

    25-22.55.079.473.07733651075.1812.503.5355339059-0.0616.894.109744517622.5-5.439444443.07161283-5.05253.15669843-2.768888894.81689869

    30-27.57.0315.793.97366329735.3517.344.1641325627-0.0710.583.252691193527.5-5.855833333.56232619-5.495555563.72937716-2.538888894.64811346

    35-32.57.7229.885.46626014756.7422.034.69361268111.1711.423.379349049732.5-6.547777783.70782733-5.7353.65744915-1.381944444.01473274

    40-37.58.086.332.51594912516.2535.435.95231047581.0814.313.782856063937.5-6.808611114.00386253-6.476111113.56648068-1.863055563.67519159

    45-42.58.6136.766.06300255657.8324.854.98497743220.5110.213.195309061742.5-7.585277784.27493123-6.174722223.69448894-2.115277783.64645384

    50-47.510.7111.973.45976877847.8932.405.69209978830.0114.523.810511776747.5-7.603055564.41592496-6.658055563.57667269-2.612777783.16202341

    55-52.510.6816.434.05339363998.1532.605.70964096940.336.682.584569596752.5-9.091111114.14708488-6.566388893.65714733-1.676944443.02691528

    60-57.511.7926.485.14587213218.5535.395.94894948710.834.472.114237451257.5-7.275555565.59429732-6.888888893.38195951-2.757222222.26007536

    65-62.512.0416.804.09878030649.5545.346.73349834781.674.632.151743479162.5-6.971388896.2782232-7.462222224.38083822-3.160555563.02711078

    70-67.512.6131.165.582114294810.1542.566.52380257212.213.941.984943324167.5-5.601111116.65204406-7.603888894.75931284-3.495555563.60228693

    75-72.572.5-4.511666674.89948365-8.298888896.0652508-3.654.10332687

    Average or right bank-2.3724074073Average for right banks

    Left average0.671037038Average for left banks

    Fred's data for experiment I

    Sheet2

    Sheet3

    Department of Biomedical, Human Factors, & Industrial Engineering

    Reversal ErrorTendency for pilots to mistake motion of the artificial horizon as a relative motion of the wings.Pilots roll or pitch the aircraft in opposite direction.Researchers who have documented this errorFitts and Jones (1947)Johnson and Roscoe (1972)Roscoe and Williges (1975)Roscoe (1986) - Boeing 747 accident

    Department of Biomedical, Human Factors, & Industrial Engineering

    Sensory-Spatial Conflict and Control Reversal Error (Patterson et al findings)Control reversal error during IMC out to in visual transition.Experienced U.S. military rated pilots commit 25-65% reversal errors.Likelihood of reversal errors by general aviation pilots is probably even greater.A reversal error can lead to flight into terrain or a graveyard spiral.This is likely what happened to the pilot of Air India and to John F. Kennedy, Jr.

    References on reversal errors:Patterson, et al, 1997Braithwaite,et al, 1998Gallimore, et al., (1999)Liggett & Gallimore (in press)

    Department of Biomedical, Human Factors, & Industrial Engineering

    Number and Magnitude of Reversal ErrorsGallimore, et al findings40 Degrees

    60 Degrees100 DegreesVMCIMC8 errors out of 246 errors out of 249 errors out of 244(17.39%)1(.04%)5(20.83%)4(17.39%)5(20.83%)4(17.39%)Average reversalerror magnitude 28.96 o

    Average reversalerror magnitude 9.30 oAverage reversalerror magnitude 9.34 oCombined

    Department of Biomedical, Human Factors, & Industrial Engineering

    TransitionsWhat happens during the transition from visual to instruments?The pilots view of the cockpit suddenly becomes stationary as his view of the displays artificial horizon begins moving.Pilots must instantly reverse their orientation strategy.Pilots sensory-spatial compatibility between the control stick motion and visual feed back.

    Department of Biomedical, Human Factors, & Industrial Engineering

    SummaryPilots reflexively tilt heads toward horizon during VMC roll maneuvers.Head movement acts to stabilize retinal image.Generated by motion on retina, not vestibular.Stabilized horizon is the primary visual cue.Peripherally viewed cockpit structures secondary cues.Secondary cues move with airframe.Control movement compatible with secondary cues.

    Department of Biomedical, Human Factors, & Industrial Engineering

    Summary (Cont.)Beyond 40 degrees of aircraft roll there is a decrease in head displacement, so pilots can not stabilize the horizon.Horizon acceleration, stabilization of secondary cues.Sudden switch may lead to false perceptions.When transitioning from visual to instrumentsmotion reversal b/w outside and inside visual cuescontrol display incompatibility need to switch cognitive model

    Department of Biomedical, Human Factors, & Industrial Engineering

    How does OKCR affect current display technologies?Head down Attitude IndicatorReversal errorsHUDHead may tilt out of the HUD eye box and pilot may not see a pull up X.

    Department of Biomedical, Human Factors, & Industrial Engineering

    HUDThe Head Up Display (HUD) presents symbols to the pilot, displaying them over the real world.

    Department of Biomedical, Human Factors, & Industrial Engineering

    HUD Symbology is Conformal

    Department of Biomedical, Human Factors, & Industrial Engineering

    HUD Symbology

    Department of Biomedical, Human Factors, & Industrial Engineering

    How does OKCR affect current display technologies? (cont)NVGHUD symbology on the NVG. Head movements are not tracked. As pilot changes head position, display horizon line is no longer conformal to the real horizon. Pilots see HUD information designed for fixed on-axis aircraft viewing regardless of head position. Pilots may not realize they are not flying in the direction they are looking.

    Department of Biomedical, Human Factors, & Industrial Engineering

    Research IssuesWhat frames of reference are important for a pilot to maintain orientation?World - world is fixed and everything moves within it.Aircraft - aircraft is fixed and everything moves around it.Pilot - pilot is fixed and everything moves in relation to him.

    Department of Biomedical, Human Factors, & Industrial Engineering

    Research IssuesWhat symbology is appropriate for HMDs?HUD symbology is being considered for use on HMDs.HUD symbology is being used on NVGs.How do sensory reflexes affect perceived frame of reference? OKCR, under VMC pilots align their head with the horizon.

    Department of Biomedical, Human Factors, & Industrial Engineering

    Research IssuesHow do visual frames of reference interact with vestibular and proprioceptive inputs to provide the pilot with an "awareness" of their orientation?What contributing cognitive factors affect spatial orientation?How will HMD attitude symbology affect frames of reference in VMC and IMC?How will transitions be impacted?How can we detect when a pilot is spatially disoriented?

    Department of Biomedical, Human Factors, & Industrial Engineering

    Research Issues for HMD Symbology DesignWhat spatial sensory reflexes and visual illusions influence pilots perception of frame of reference?Will cognitive capture affect pilots perceptions of frame of reference? Will cognitive capture result in more transitions between symbology and the real world?When pilots transition between a perceived stationary horizon (real world cues) to a moving symbol horizon on the HMD, do they perceive the horizon symbol as stationary? What type of symbology will help provide the perception of a stationary horizon?

    Department of Biomedical, Human Factors, & Industrial Engineering

    Research Issues for HMD Symbology DesignIf HMD symbology is used for attitude information as well as targeting, how will switching between these tasks affect frame of reference?Will pilots have a greater risk of spatial disorientation if they look off-axis more often?How will secondary flight cues be affected by use of HMDs?What current or new measures should be employed to determine if a pilot is spatially disoriented?

    Department of Biomedical, Human Factors, & Industrial Engineering

    HMD Research and the OKCRExperiment I Test adequacy of Mil-Std HUD symbology presented on a see-through HMD during various tasks.VMC flight taskPilots were instructed to bank at specific angles, rather than to bank around a waypoint.12 SubjectsHMD Kaiser Pro Binocular HMD, 40o circular FOV, 100% overlap, 1280 x 1024 resolution.

    Department of Biomedical, Human Factors, & Industrial Engineering

    HMD Research and the OKCRExperiment IIInvestigate visual cues in an immersed HMD simulation system using HUD symbology. VMC Flight taskVaried resolution (640 x 480 & 800 x 600), HUD symbol size (small and large)Pilots instructed to follow a yellow track line over Pensacola, FL6 subjectsVirtual Research V8 HMD system, 48o H x 32o V, 100% overlap

    Department of Biomedical, Human Factors, & Industrial Engineering

    HMD Research and the OKCRExperiment III Investigate the effects of non-congruent motion on performance in an immersive HMD system.VMC flight task flown on land and on Navy mind sweeper in Pensacola Bay.Pilots instructed to follow a yellow track line over Pensacola, FL9 subjectsSony i-glasses , 24o H x 18o V, 100% overlap, 789 x 230 Resolution

    Department of Biomedical, Human Factors, & Industrial Engineering

    HMD Results

    Chart1

    1.86609463646.837721839.07666666679.1546666667

    2.38714681826.373331138.47655555568.5921111111

    2.17127563645.520668337.75211111118.5746666667

    0.93617463646.163908717.18033333339.0153333333

    1.0182136.212401257.50833333338.8976666667

    1.37424072736.362572887.78222222228.1317777778

    0.90817681826.422908387.71633333337.5614444444

    1.30152109095.553750256.5427.1108888889

    0.8428234.922165296.00566666677.1813333333

    0.71916954555.185866756.10588888896.579

    0.79584754554.380531335.57677777785.8924444444

    0.26576854553.872159794.51144444445.618

    0.13683354553.730739213.95988888895.1084444444

    0.23293245452.945747423.42833333334.4506666667

    0.47035572731.214518382.98888888893.5912222222

    0.34212236360.368963422.2252.8961111111

    -0.3190106364-0.473961791.47822222222.4305555556

    -0.1868773636-1.44557350.89377777781.7294444444

    -0.1552912727-1.972536370.05255555560.9051111111

    -0.1877172727-2.68924379-0.7632222222-0.2427777778

    -0.0877361818-3.09517104-1.4095555556-0.3686666667

    -0.4681113636-2.60404883-2.2622222222-1.1092222222

    -0.2434646364-2.54632233-2.5884444444-1.7142222222

    -0.0699982727-2.20293254-3.4008888889-2.6144444444

    -0.0132085455-2.57533563-4.2337777778-3.1041111111

    -0.0687576364-3.37199663-4.838-3.6214444444

    0.1506674545-3.5106425-5.0908888889-3.6575555556

    0.0023947273-3.1972415-5.305-3.9015555556

    0.2712509091-2.80344413-5.6045555556-4.4898888889

    0.3446696364-3.00053854-6.625-5.0374444444

    0.3879754545-2.7848795-6.2727777778-5.6556666667

    -0.3573169091-2.64205846-6.5786666667-5.6801111111

    HMD Experiment I

    HMD Experiment II

    HMD Experiment III (Land)

    HMD Experiment III (Ship)

    Aircraft Roll (Degrees)

    Head Tilt (Degrees)

    Chart2

    1.8660946364

    2.3871468182

    2.1712756364

    0.9361746364

    1.018213

    1.3742407273

    0.9081768182

    1.3015210909

    0.842823

    0.7191695455

    0.7958475455

    0.2657685455

    0.1368335455

    0.2329324545

    0.4703557273

    0.3421223636

    -0.3190106364

    -0.1868773636

    -0.1552912727

    -0.1877172727

    -0.0877361818

    -0.4681113636

    -0.2434646364

    -0.0699982727

    -0.0132085455

    -0.0687576364

    0.1506674545

    0.0023947273

    0.2712509091

    0.3446696364

    0.3879754545

    -0.3573169091

    HMD Experiment I

    Aircraft Bank (Degrees)

    Head Tilt (Degrees)

    Sheet1

    shipland

    AverageAverageGallimore 99

    -909.810.0

    Level of ACROLLNMeanSD-859.18.9

    -80246.8377218312.6075297-77.5-809.29.1-8010.0208333

    -75246.3733311310.4114086-72.5-758.68.510.5797222

    -70245.5206683310.6092668-67.5-708.67.89.8725

    -65246.1639087110.1133488-62.5-659.07.29.6883333

    -60246.212401259.0006559-57.5-608.97.59.0202778

    -55246.362572888.674526-52.5-558.17.88.7402778

    -50246.422908389.0607916-47.5-507.67.78.9416667

    -45245.553750256.9979423-42.5-457.16.58.4391667

    -40244.922165295.9436444-37.5-407.26.08.4066667

    -35245.185866755.961863-32.5-356.66.17.4027778

    -30244.380531335.3056324-27.5-305.95.66.8866667

    -25243.872159794.7737227-22.5-255.64.55.9011111

    -20243.730739215.83737-17.5-205.14.05.0013889

    -15242.945747425.4720233-12.5-154.53.43.9177778

    -10241.214518381.1427268-7.5-103.63.02.6275

    -5240.368963420.4651435-2.5-52.92.21.2461111

    524-0.473961790.68700042.502.41.5-0.9572222

    1024-1.44557351.20754947.551.70.9-3.27

    1524-1.972536371.310549312.5100.90.1-4.7522222

    2024-2.689243792.607218517.515-0.2-0.8-6.0572222

    2524-3.095171043.550258322.520-0.4-1.4-7.3480556

    3024-2.604048835.473088827.525-1.1-2.3-7.8577778

    3524-2.546322336.190925332.530-1.7-2.6-8.6980556

    4024-2.202932546.965473637.535-2.6-3.4-9.7088889

    4524-2.575335636.404140742.540-3.1-4.2-10.0072222

    5024-3.371996636.111454847.545-3.6-4.8-10.6127778

    5524-3.51064256.071449352.550-3.7-5.1-10.8555556

    6024-3.19724156.389971157.555-3.9-5.3-10.7141667

    6524-2.803444138.427133362.560-4.5-5.6-10.6419444

    7024-3.000538548.560257467.565-5.0-6.6-10.6841667

    7524-2.784879510.01942472.570-5.7-6.3-10.4219444

    8024-2.642058469.418760977.575-5.7-6.6-10.4983333

    80-6.3-6.1-9.7633333

    85-5.3-7.5

    Kristen's data

    1.8660946364-77.5

    2.3871468182-72.5

    2.1712756364-67.5

    0.9361746364-62.5

    1.018213-57.5

    1.3742407273-52.5

    0.9081768182-47.5

    1.3015210909-42.5

    0.842823-37.5

    0.7191695455-32.5

    0.7958475455-27.5

    0.2657685455-22.5

    0.1368335455-17.5

    0.2329324545-12.5

    0.4703557273-7.5

    0.3421223636-2.5

    -0.31901063642.5

    -0.18687736367.5

    -0.155291272712.5

    -0.187717272717.5

    -0.087736181822.5

    -0.468111363627.5

    -0.243464636432.5

    -0.069998272737.5

    -0.013208545542.5

    -0.068757636447.5

    0.150667454552.5

    0.002394727357.5

    0.271250909162.5

    0.344669636467.5

    0.387975454572.5

    -0.357316909177.5

    Hudsize 1

    Hudsize 1 ACROLLNMeanSD

    512-0.533274670.8209152

    -5120.387174170.4502209

    1012-1.431786831.3530343

    1512-1.80986750.9945871

    2012-2.098430752.4459714

    2512-2.761839582.0497727

    3012-1.693038425.8648525

    3512-0.73412057.5965567

    4012-0.509648428.5904938

    4512-1.171101338.0015078

    5012-2.56795857.2286735

    5512-2.803677336.6364248

    6012-2.467902087.8036379

    6512-1.565034510.0306741

    7012-1.9109046710.7182248

    7512-2.33419959.6228969

    8012-1.6107649.8948632

    -10121.374343171.3926532

    -15124.263435587.5626191

    -20124.778460837.9252503

    -25124.684841426.2882064

    -30124.686607586.5693309

    -35125.587412426.5379019

    -40124.674106585.6818872

    -45125.259406086.1791695

    -50127.286534429.6636658

    -55126.152719758.3623255

    -60125.617356089.2740837

    -65125.172229928.7899067

    -70124.456262258.9105731

    -75125.859745928.0960662

    -80125.772432177.9321081

    Hudsize 1

    00.82091520.8209152

    00.45022090.4502209

    01.35303431.3530343

    00.99458710.9945871

    02.44597142.4459714

    02.04977272.0497727

    05.86485255.8648525

    07.59655677.5965567

    08.59049388.5904938

    08.00150788.0015078

    07.22867357.2286735

    06.63642486.6364248

    07.80363797.8036379

    010.030674110.0306741

    010.718224810.7182248

    09.62289699.6228969

    09.89486329.8948632

    01.39265321.3926532

    07.56261917.5626191

    07.92525037.9252503

    06.28820646.2882064

    06.56933096.5693309

    06.53790196.5379019

    05.68188725.6818872

    06.17916956.1791695

    09.66366589.6636658

    08.36232558.3623255

    09.27408379.2740837

    08.78990678.7899067

    08.91057318.9105731

    08.09606628.0960662

    07.93210817.9321081

    ACROLL

    Hudsize 1

    Hudsize As A Function of ACROLL

    Hudsize 2

    Hudsize 2 ACROLLNMeanSD

    512-0.414648920.5525108

    -5120.350752670.4989624

    1012-1.459360171.1035379

    1512-2.135205251.5950806

    2012-3.280056832.7329065

    2512-3.42850254.6808682

    3012-3.515059255.1405528

    3512-4.358524173.9072377

    4012-3.896216674.625369

    4512-3.979569924.174697

    5012-4.176034754.9427712

    5512-4.217607675.6518602

    6012-3.926580924.8288803

    6512-4.041853756.6729767

    7012-4.090172425.9788654

    7512-3.235559510.8102115

    8012-3.673352929.2337482

    -10121.054693580.8574061

    -15121.628059251.27541

    -20122.683017582.4582257

    -25123.059478172.5818614

    -30124.074455083.9367538

    -35124.784321085.5877475

    -40125.1702246.4379546

    -45125.848094428.001447

    -50125.559282338.7547469

    -55126.5724269.3440304

    -60126.807446429.0888481

    -65127.155587511.5952446

    -70126.5850744212.3885137

    -75126.8869163312.6699401

    -80127.903011516.3387647

    Hudsize 2

    00.55251080.5525108

    00.49896240.4989624

    01.10353791.1035379

    01.59508061.5950806

    02.73290652.7329065

    04.68086824.6808682

    05.14055285.1405528

    03.90723773.9072377

    04.6253694.625369

    04.1746974.174697

    04.94277124.9427712

    05.65186025.6518602

    04.82888034.8288803

    06.67297676.6729767

    05.97886545.9788654

    010.810211510.8102115

    09.23374829.2337482

    00.85740610.8574061

    01.275411.27541

    02.45822572.4582257

    02.58186142.5818614

    03.93675383.9367538

    05.58774755.5877475

    06.43795466.4379546

    08.0014478.001447

    08.75474698.7547469

    09.34403049.3440304

    09.08884819.0888481

    011.595244611.5952446

    012.388513712.3885137

    012.669940112.6699401

    016.338764716.3387647

    ACROLL

    Hudsize 2

    Hudsize 2 As A Function of ACROLL

    Resol 1

    1 = HIGH RESOLUTION

    Resol 1 ACROLLNMeanSD

    512-0.67852780.9215566

    -5120.45557180.5716433

    1012-1.72179851.3754143

    1512-1.9945220.7094941

    2012-2.3297092.5066187

    2512-2.37476323.1310845

    3012-1.58148237.211545

    3512-1.82107288.5215637

    4012-1.41048839.6521786

    4512-1.24824038.6538506

    5012-2.00898968.2883067

    5512-2.38804738.0489749

    6012-2.05185568.6049739

    6512-1.234314811.4416132

    7012-0.932162611.4498761

    7512-0.546234313.6329602

    8012-1.071805612.8618475

    -10121.64501381.4035036

    -15124.63813337.4038066

    -20125.52584817.8504181

    -25125.51781685.9822789

    -30126.59658096.1380858

    -35127.50325077.1633568

    -40127.39839726.6079208

    -45128.5538797.9341228

    -50129.905928810.9027565

    -551210.01267019.7321124

    -601210.02807839.352538

    -65129.977951310.8846068

    -70129.48980410.8471416

    -751210.197386211.8214791

    -801211.231219115.4893939

    Resol 1

    00.92155660.9215566

    00.57164330.5716433

    01.37541431.3754143

    00.70949410.7094941

    02.50661872.5066187

    03.13108453.1310845

    07.2115457.211545

    08.52156378.5215637

    09.65217869.6521786

    08.65385068.6538506

    08.28830678.2883067

    08.04897498.0489749

    08.60497398.6049739

    011.441613211.4416132

    011.449876111.4498761

    013.632960213.6329602

    012.861847512.8618475

    01.40350361.4035036

    07.40380667.4038066

    07.85041817.8504181

    05.98227895.9822789

    06.13808586.1380858

    07.16335687.1633568

    06.60792086.6079208

    07.93412287.9341228

    010.902756510.9027565

    09.73211249.7321124

    09.3525389.352538

    010.884606810.8846068

    010.847141610.8471416

    011.821479111.8214791

    015.4893939

    ACROLL

    Resolution 1

    Resolution 1 As A Function of ACROLL

    Resol 2

    2 = LOW RESOLUTION

    Resol 2 ACROLLNMeanSD

    512-0.26939580.2151182

    -5120.2823550.3305207

    1012-1.16934850.9953264

    1512-1.95055081.7569242

    2012-3.04877862.7654961

    2512-3.81557893.9266385

    3012-3.62661542.8887321

    3512-3.27157192.5248329

    4012-2.99537682.6290096

    4512-3.9024312.6500535

    5012-4.73500372.3121029

    5512-4.63323783.0887801

    6012-4.34262742.9098994

    6512-4.37257343.4938075

    7012-5.06891453.5754413

    7512-5.02352473.6210656

    8012-4.21231133.8319863

    -10120.78402290.5968162

    -15121.25336161.2420641

    -20121.93563031.6086341

    -25122.22650282.4396925

    -30122.16448183.2353983

    -35122.86848283.3597988

    -40122.44593344.1015157

    -45122.55362154.4503895

    -50122.93988795.1303666

    -55122.71247575.7924642

    -60122.39672427.0818367

    -65122.34986617.9777449

    -70121.55153279.127572

    -75122.54927617.4159428

    -80122.44422467.0931678

    Resol 2

    00.21511820.2151182

    00.33052070.3305207

    00.99532640.9953264

    01.75692421.7569242

    02.76549612.7654961

    03.92663853.9266385

    02.88873212.8887321

    02.52483292.5248329

    02.62900962.6290096

    02.65005352.6500535

    02.31210292.3121029

    03.08878013.0887801

    02.90989942.9098994

    03.49380753.4938075

    03.57544133.5754413

    03.62106563.6210656

    03.83198633.8319863

    00.59681620.5968162

    01.24206411.2420641

    01.60863411.6086341

    02.43969252.4396925

    03.23539833.2353983

    03.35979883.3597988

    04.10151574.1015157

    04.45038954.4503895

    05.13036665.1303666

    05.79246425.7924642

    07.08183677.0818367

    07.97774497.9777449

    09.1275729.127572

    07.41594287.4159428

    07.09316787.0931678

    ACROLL

    Resolution 2

    Resolution 2 As A Function Of ACROLL

    Department of Biomedical, Human Factors, & Industrial Engineering

    OKCR DifferencesDifferent visual scenes/cues cause difference in pilot OKCR responseReducing FOVManipulating altitudeAmount of head tilt depends on amount of retinal movement.Reduction in peripheral vision may play a roleReducing FOV may reduce how compelling the visual horizon appears

    Department of Biomedical, Human Factors, & Industrial Engineering

    OKCR DifferencesImmersive HMD simulation studies did not provide any secondary visual cues (cockpit structures).Do pilots reduce head movements when they lack a stabilizing cue?If experiencing simulator sickness may reduce head movements.

    Department of Biomedical, Human Factors, & Industrial Engineering

    Control Reversal Errors HMDLiggett and Gallimore findings

    Overall CRE rate 28%, similar to previous studies.Magnitude range: 6 degrees to 201 degreesA conformal horizon symbol did not reduce CREs.Because we know they were not tilting in IMC, they still had to change frames of reference from world to aircraft.

    Department of Biomedical, Human Factors, & Industrial Engineering

    Control Reversal Errors HMDLiggett and Gallimore findingsDependent measure: Altitude ChangeSignificant differenceCRE group average: 3382 ft MSLNo CRE group average: 1810 ft MSLPilots with CREs obviously confused.Focusing on pitch and bank information in central part of symbology.Fail to scan airspeed and altitude information.

    Department of Biomedical, Human Factors, & Industrial Engineering

    Department of Biomedical, Human Factors, & Industrial Engineering

    Spatial disorientation factor Perspective (moon) illusion

    Department of Biomedical, Human Factors, & Industrial Engineering

    Example: Perspective Illusion

    Department of Biomedical, Human Factors, & Industrial Engineering

    Department of Biomedical, Human Factors, & Industrial Engineering

    References Aviation Research Jenkins, J. C., and Gallimore, J.J. (2008). Configural display design features to promote pilot situation awareness in helmet-mounted displays. Aviation, Space and Environmental Medicine, 79, 397-407 Stephens, M., Gallimore, J., and Albery, W. (2002) Spectral Analysis of Electroencephalographic Response to Spatial Disorientation. Proceedings of the 12th International Symposium on Aviation Psychology: Dayton OH. (pp. 1131-1136).Liggett, K.K. and Gallimore, J.J. (2002). The effects of frame of reference and HMD symbology on control reversal errors. Aviation, Space, and Environmental Medicine;73:102-111.Gallimore, J.J., Liggett, K.K. and Patterson, F.R. (2001). The Opto-Kinetic Cervical Reflex in Flight Simulation. Proceedings of the American Institute of Aeronautics and Astronautics Modeling and Simulation Conference and Exhibit, Aug 6-9, 2001, Montreal, Canada, Paper No: 2001-4191: pp 1-7. * Best Paper.

    Department of Biomedical, Human Factors, & Industrial Engineering

    References Aviation Research Liggett, K. and Gallimore, J.J. (2001) The OKCR and Pilot Performance During Transitions Between Meteorological Conditions Using HMD Attitude Symbology. In Proceedings of the Human Factors and Ergonomics Society 45th Annual Meeting, (pp. 115-119) Santa Monica. CA HFES. Gallimore, J.J., Patterson, F.R., Brannon, N.G., and Nalepka, J.P. (2000). The opto-kinetic cervical reflex during formation flight. Aviation, Space and Environmental Medicine 2000;71:812-821Gallimore J. J., Brannon, N. G., Patterson, F.R., and Nalepka, J.P. (1999). Effects of FOV and aircraft bank on pilot head movement and reversal errors during simulated flight. Aviation, Space and Environmental Medicine, 70(12):1152-60.Gallimore, J.J., Brannon, N.G., and Patterson F.R. (1998). The Effects of Field-of-View on Pilot Head Movement During Low Level Flight. In Proceedings of the Human Factors and Ergonomics Society 42nd Annual Meeting, Chicago, IL (pp. 6-10). Patterson F. R., Cacioppo, A.J., Gallimore, J.J., Hinman, G.E., and Nalepka, J.P. (1997). Aviation spatial orientation in relationship to head position and attitude interpretation. Aviation, Space and Environmental Medicine, 68(6), 463-471.

    Department of Biomedical, Human Factors, & Industrial Engineering

    Other ResearchA Predictive Model Of Cognitive Performance Under Acceleration StressSubmitted to Aviation, Space, Environmental Medicine, June 09Three-Dimensional Technology for Space Operation ApplicationsMulti-modal Displays for Portraying Meta-Info to Support Net-Centric C2Process Control DisplaysVirtual PatientsCollaborative Computer Agents with Personality

    Department of Biomedical, Human Factors, & Industrial Engineering

    AcknowledgementsCDR Frederick Patterson, Ph.D., RetiredNaval Aerospace Medical Research LaboratoryUnited States Navy

    Department of Biomedical, Human Factors, & Industrial Engineering

    Thank You

    *

    This is an example of the current attitude indicator in US aircraft. It is the display that is used to kept the pilot oriented with respect to the world. In this figure our perspective is from behind the aircraft. The figure on the left shows the plane(the yellow symbol) level with the horizon. The figure on the right shows the plane in a right bank. The aircraft symbol is still level, but the horizon is rolled to the left.

    The idea behind the original 1930s design of this instrument was that the horizon on the display would provide the pilot with a pictorial representation of what the pilot would see if they were looking out of the cockpit at the horizon. Lets look at this more closely.

    *In the real world the frame of reference pilots use to keep oriented includes a static horizon and and moving airplane.

    On the indicator, the plane (the yellow line in the center) remains fixed, and the moving element is the horizon. If you move the control stick to the right to put the plane in a right bank, the display moves to the left. Therefore, there is no control-display compatibility. But the idea was that when the aircraft is in a bank (such as in this right bank) the real horizon would appear tilted as you looked out. However, this idea was based on the untested assumption that your head remains fixed with the aircraft axis. We have recently learned through research conducted at WSU, that when the plane is banked, the pilot tilts his head in the opposite direction to keep the horizon level and fixed on his visual system. This head tilt is a reflex, that most pilots are unaware of, and is called the opto-kinetic cervical reflex. So in all US aircraft, pilots fly with an attitude indicator with no display control compatability, and without an accurate pictorial representation.

    When transitioning from looking outside at the stable horizon to the instrument (with a moving horizon, that is tilted) the pilot must instantly switch his cognitive frame of reference. This can lead to disorientation and control reversal errors. Control reversal errors are when a pilot pushes the stick in the wrong direction.In the diagram above, if the pilot lost sight of the horizon and pushed the stick to the right in order to level the display, he would roll the airplane over, and may be uaable to recover. Highly trained pilots with thousands of hours of flight time commit control reversal errors. Less experience general aviation pilots such as JFK, probably commit even more. *To understand what may have happened to JFK, lets look at pilot spatial awareness models. The attitude indicator is the display you see at the bottom of the picture on the left. It is the display that is used to kept the pilot oriented with respect to the word. Is is composed of a pictorial representation of the ground and the sky. There is an aircraft symbol in the middle. This was developed back in the 1930s under the idea that the attitude indicator provides the pilot with a pictorial replica of what he sees when looking out of the cockpit In this display, the aircraft is fixed and the horizion moves as the plane banks. If the pilot keeps his head aligned with the aircraft, then he will see the representation in the middle of the figure, which you notice matches the picture on the attitude indicator. Here is a video which illustrates this concept. It is a Navy hornet flying and banking. From this perspective the idea is that the plane stays fixed and the horizon moves. One problem that was noted with the design of this display early on is that the movement of the control is not compatible with the movement of the display. In other words when you move the stick to the right to put the plane in a right bank, the movement on the display is to the left. But it was felt that since it was pictorially accurate, that over rode the disadvantage of display control incompatability.Again this theory of pictorial reality is true if the pilot keeps his or her head aligned with the aircraft. Now we will look at a C130 pilot who is banking his plane to the left. Notice how he tilts his head with the horizon. Well that is fine, but someone pulling Gs would certainly not be able to tilt their head! Lets watch a blue angel!

    **What the pilot sees when he looks out of the cockpit is a fixed horizon, and his plane is moving. With this perspective, there is control/display compatibility. The cockpit structures move in the direction of the bank, and the horizon is stable. So what does this mean?But notice, the view is opposite that of the attitude indicator. So what we really have in all aircraft in the US is an attitude indicator that does not represent pictorial reality and it also has no control display compatibility. *The tilting of the head to keep the horizon stable, was termed the OKCR, and the was investigated for the first time at WSU back in 1994. Because of this reflex:Pilots align their heads toward the horizon during Visual Meteorological Conditions (VMC) flight.Pilots do not move their heads during Instrument Meteorological Conditions (IMC) flight.Therefore:Visual to Instrument transition can cause reversal errors. *********During transition, when the cognitive switch between those spatial strategies switches, pilots make reversal errors. That is, they put in a stick movement opposite to that which they need to level the plane. Here is an example of a military pilot performing a control reversal error in a simulator. In this exercise, the pilot was flying behind a lead aircraft. The lead aircraft was moving into an unusual attitude, and we took away the lead aircraft. The pilot must look at their instruments and return to level flight as quickly as possible when they lose the lead. You will hear the experimenter say ok take it away which means the lead is removed. What you see is the attitude indicator go in one direction, reverse, then reverse again and the pilot does a roll to recover.This was not the fastest way to return to wings level. *****One of the most fundamental issues of maintaining spatial orientation (SO) is to identify the most desirable frame of reference for establishing a correct attitude in a pilots internal model of SO. There have been numerous studies to characterize a visual reflex called the optokinetic cervical reflex (OKCR) that implies that pilots use a world frame of reference to orient themselves when looking at real world visual cues. When pilots use instruments to determine orientation, the information is portrayed in an aircraft frame of reference. This change in frames of reference when pilots transition from visual meteorological conditions (real-world cues) to instrument meteorological conditions (instrument cues) may be directly affecting their SO model, leading to spatial disorientation (SD) **EXP IAnalysis of the data and pilot comments indicated that subjects did not tilt their head because they were using the bank scale symbology on the HMD to determine and hold their bank angle prescribed during the task via a verbal command to bank their aircraft to a certain bank angle and to maintain that bank until instructed to level out. Pilots did not have to rely on any outside visual cues to conduct the task resulting in an instrument-oriented task. In all previous studies pilots were flying tasks that required them to maintain awareness of the real-world visual scene in order to bank the aircraft.

    EXP IIThere was a significant difference in head tilt as a function of aircraft bank, indicating an OKCR response under VMC as illustrated in Figure 3. While the OKCR response is obvious, the magnitude of the response is much smaller than previous studies using low level flight tasks. The OKCR response is very similar to results found by Gallimore et al. (2000)5 (Figure 2) in which pilots flew at higher altitudes.

    EXP IIIAs indicated in the figure, both land and shipboard HMD simulations produced significant OKCR responses. The OKCR differences between ship and land conditions were not significant. The results are very similar to results from Experiment II. Preliminarily results indicate that individuals who reported higher scores on their motion sickness surveys exhibited less OKCR during the shipboard simulation compared to the land based condition. *Avoidance and recognition of visual illusions. *For the AVIANO mishap, I dont have time to go over all the issues, but I would like to show you one factor that affected the pilots spatial awareness. This information comes from expert witnesses at the trial.

    This is an example of the Perspective (or Moon) illusion. Some of you may have experienced it before. When the moon is low and just over the horizon it appears to be very large. But if you took a picture, it would be the normal size.

    In this illusion, the box in the back looks larger than the one in the front, yet they are actually the same size.Things on the horizon are thrown out of perspective. Even it you know it is an illusion, you cant turn it off. It cant be trained away. It is very compelling.

    *This is a tape of the valley in AVIANO where the mishap took place. This tape was recorded by flying a helicopter over the valley at the same altitude that the plane flew. The prosecution recorded this tape. The cables were gone, and they put up two white weather balloons to show where he cables were located.

    Some basic information. The pilot was practicing a low level flight. He must keep his view outside the aircraft. It is mountainous terrain. It only takes 30 seconds to get from one end of the valley to the next. The mishap happens about 20 seconds into the valley. This tape is from a point in the valley when there is only 12 seconds before the pilot (flying 500 knots 900 feet per sec) reached the mishap site. The helicopter is flying at 400 knots.

    *This is the same tape. But on it is a line which indicates the horizontal reference that the pilot would be fixating on or looking at in order to fly through the valley.

    The balloons are highlighted in red so you can see them.

    What do you see? As you start out it appears that the balloons are below the horizontal reference point, but as we proceed the balloons appear to rise. Are you below the balloons? You experienced the perspective illusion. The red balloons are not rising. The horizontal reference point is changing. Which you can see if I put my cursor at the place were we see the red ball, then when it is finished they are still level with my cursor. At all times the plane is actually 100 feet above the balloons. We never go below them. But to the pilot it appears as if you are going to hit the balloons. He sees the first cable, thinks he is going to hit it. He has a few seconds to respond, he pushes the nose down to go under it because the aircraft cant go above in that time period, he missing the first cable, but hits the second on that is lower than the first.

    *I would like to acknowledge Cmd Fred Patterson of the Naval Aeromedical Research Laboratory, who has funded some of this research and has provided some materials for this presentation.*