Harnessing the Use of Ordinary Monte Carlo Simulation

Embed Size (px)

Citation preview

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    1/57

    InCiTe 2012 (BAYLON &GARCIANO)

    Click to edit Master subtitle style

    8/20/12 inCiTe 2012 (BAYLON & GARCIANO)

    Harnessing Ordinary Monte Carlo Simulation inComputing the Performance of a TransportationLifeline in the Philippines, the Light Rail TransitSystem under a large magnitude earthquake

    Michael B. BAYLONInstructorFar Eastern University East Asia College

    Lessandro Estelito O. GARCIANOAssociate ProfessorDe La Salle University

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    2/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Introduction

    Assessment

    Mass Railway Transit

    Serviceability

    Retrofitting

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    3/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Specific Objectives

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    4/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Objective

    Assessment of a Transportation Lifelinein Manila

    Reliability IndexOrdinary Monte Carlo Simulation

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    5/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Technology

    Software:

    MatLab Script for Newmark Method

    MatLab Script for Ordinary MonteCarlo Simulation

    Hardware:

    Reinforced Concrete ColumnConfinement Model

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    6/57

    InCiTe 2012 (BAYLON &GARCIANO)

    Click to edit Master subtitle style

    8/20/12 inCiTe 2012 (BAYLON & GARCIANO)

    methodology

    Preliminaries & Case Study

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    7/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Flow of Methodology

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    8/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Contents

    Preliminaries

    Case Study

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    9/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Preliminaries

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    10/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Case Study

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    11/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Performance Function, g

    a.k.a. limit state function

    where:

    R = resistance or capacity

    S = load or demand

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    12/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Probability of Failure

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    13/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Sample of R vs. S plot

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    14/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Probability of Failure

    Alternatively,

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    15/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Reliability Index

    Hasofer-Lind Reliability Index of 1974

    or

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    16/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Limit State Function (2D)

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    17/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Crushing Failure vs BucklingFailure

    I CiT 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    18/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Confinement Model

    I CiT 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    19/57

    InCiTe 2012 (BAYLON &GARCIANO)

    Click to edit Master subtitle style

    8/20/12 inCiTe 2012 (BAYLON & GARCIANO)

    Case study

    I CiT 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    20/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Structural Plans

    Figure 2. A Typical Elevation View of LRT 1 Pier

    I CiT 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    21/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Structural Plans

    Figure3. A Typical Section View of LRT 1 Pier

    I CiT 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    22/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    General Notes

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    23/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Resistance, R

    a.k.a. capacity

    Ultimate Axial Strength, Pu

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    24/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Resistance

    Property Mean value coeff.of

    variation

    standard

    deviation

    Concrete compressive strength

    fc = 3 ksi 2.760 ksi 0.18

    fc = 4 ksi 3.390 ksi 0.18

    fc' = 5 ksi 4.028 ksi 0.15

    1 ksi = 6900 Pa; 1 in = 25.4 mm

    A range of values is presented in some instances because data from multiple sourceswere used.

    Source: Ellingwood, Galambos, MacGregor, and Cornell, 1980.

    Statistical parameters of material properties and dimensions

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    25/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Buckling

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    26/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Confined vs. Unconfined

    Stress-Strain Diagram of Confined and Unconfined Concrete Column. (Source: Miller, 2006)

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    27/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Load, S

    1 Dead Load + 2 Seismic Load

    Dead Load = self-weight of the pier

    Deterministic

    Seismic Load (Probabilistic)

    Level 1: Imperial Valley Eq (El Centro of 1940)

    Level 2: Tohoku-Kanto Eq of March 2011.

    Mean & Std. Deviation of Spectral Acceleration byNewmark Beta Method

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    28/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Newmark Beta Method

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    29/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Table3. Summary of parameters of variables

    1Using Newmark Beta Method for Tohoku-Kanto Earthquake2Using Newmark Beta Method for El Centro Earthquake

    Parameters of Variables

    Variable Distribution Mean Standard

    Deviation

    Coefficient

    of Variance

    RESISTANCE

    fco Normal 23.734 MPa --- 0.18

    fyh Normal 312.33 MPa 36.542 MPa 0.116

    s Normal 1.171E-03 1E-06 ---

    LOAD

    1PEQ Lognormal 4580 kN 4001 kN ---

    2PEQ Lognormal 2442 kN 2440 kN ---

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    30/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Performance Function, g

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    31/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Ordinary Monte CarloSimulation

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    32/57

    InCiTe 2012 (BAYLON &GARCIANO)

    Click to edit Master subtitle style

    8/20/12 inCiTe 2012 (BAYLON & GARCIANO)

    RESULTS

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    33/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Simulation Results (1E5 data points)

    Unconfined Confined % diff Unconfined Confined % diff

    Tohoku-Kanto Earthquake ( M9.0) El Centro

    Pf 0.00122 0.00045 63% 0.00026 0.00005 81%

    3.03 3.32 10% 3.47 3.89 12%

    Mean s, mm - - - 300

    - - - 299.9

    Mean fco, MPa 23.74 23.76 23.73 23.75

    Mean fyh, MPa 312.3 312.4 312.2 312.4

    Mean rho 0.017107 0.017107 0.017107 0.017107

    Q, Newtons 6097894 6092409 3450067 3459735

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    34/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Load vs. Resistance of Unconfined Column(Tohoku - Kanto EQ), Pf=0.001220, =3.03

    0 0 0 0 0 00 00

    x 000

    0

    0

    0

    0

    0

    00

    00x 00

    0

    Resistance

    Load

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    35/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Load vs. Resistance of Confined Column(Tohoku - Kanto EQ), Pf=0.000450, =3.32

    0 0 0 0 0 00 00

    x 000

    0

    0

    0

    0

    0

    00

    00

    00x 00

    0

    Resistance

    Load

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    36/57

    InCiTe 2012 (BAYLON &GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Load vs. Resistance of Unconfined Column(El Centro EQ), Pf=0.000260, =3.47

    0 0 0 0 0 00 00

    x 000

    0

    0

    0

    0

    0

    00

    00x 00

    0

    Resistance

    Load

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    37/57

    (GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Load vs. Resistance of Confined Column(El Centro EQ), Pf=0.000050, =3.89

    0 0 0 0 0 00 00

    x 000

    0

    0

    0

    0

    0

    00

    00x 00

    0

    Resistance

    Load

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    38/57

    (GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    Specification of Machine Used inMCS & NBM Implementation

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    39/57

    (GARCIANO)

    Click to edit Master subtitle style

    8/20/12 inCiTe 2012 (BAYLON & GARCIANO)

    ANALYSIS

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    40/57

    (GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    ANALYSIS

    there is a significant decrease ofPf

    From 122% to 0.045%,

    per cent difference of 63%,

    Introduction of confinement model to the RC Pier

    Tohoku-Kanto Earthquake simulation

    For El Cenro Earthquake simulation:

    higher per cent difference of 81%

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    41/57

    (GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    ANALYSIS

    In the ordinary MCS of the Tohoku-KantoEarthquake,

    Resistance range of approx. 2x107 N to

    8x107 N has changed to a range of 3x107N to 9x107 N

    Due to the change RC column

    configuration, i.e. confinement.

    Approx. same with El Centro

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    42/57

    GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    ANALYSIS

    In terms of the load range

    from approx. zero magnitude

    As high as 11x107 N on both earthquakesimulations.

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    43/57

    GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    ANALYSIS

    For the software side

    ordinary MCS and Newmark Beta Method (NBM)

    Made possible and relatively easier to compute

    MatLab built-in functions

    Inherent matrix or vector manipulation

    Specifications of the machine used for fast computing.

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    44/57

    GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    ANALYSIS

    MatLab Built-in Function/Syntax

    Description Task

    normrnd(mu,sigma) generates random numbers from the

    normal distribution with mean

    parameter and standard deviation

    parameter .

    Used in simulation of values for

    parameters, e.g. tie spacing, specified

    concrete strength, steel yield strength,

    steel ratio

    lognrnd(mu,sigma) returns an array of random numbers

    generated from the lognormal

    distribution with parameters and .

    Used in simulation of values for load

    function, e.g. Tohoku-Kanto Earthquake

    induced inertial force

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    45/57

    GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    ANALYSIS

    MatLab Built-in Function/Syntax

    Description Task

    norminv(P,mu,sigma) computes the inverse of the normal cdf

    using the corresponding mean and

    standard deviation at the

    corresponding probabilities in P.

    Used in computing the Holzen-Lind

    reliability index, , from the computed

    probability of failure, Pf.

    plot(X1,Y1,...,Xn,Yn) plots each vector Yn versus vector Xn

    on the same axes.

    Used in plotting the Load-Resistance

    relationship which is important in

    determining the Failure and Safe zonesby visualization.

    InCiTe 2012 (BAYLON &

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    46/57

    GARCIANO)

    Click to edit Master subtitle style

    8/20/12 inCiTe 2012 (BAYLON & GARCIANO)

    Discussion

    Conclusion & Recommendations

    InCiTe 2012 (BAYLON &GARCIANO)

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    47/57

    GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    CONCLUSIONS

    The reliability indices:

    3.03 (unconfined) and 3.32 (confined)

    simulated under a Tohoku-Kanto Earthquake.

    3.47 (unconfined) and 3.89 (confined).

    the simulation of El Centro Earthquake

    effectiveness of the confinement model used in

    this simulation

    average of 11.5% improvement of confinement in thereinforced concrete pier.

    InCiTe 2012 (BAYLON &GARCIANO)

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    48/57

    GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    CONCLUSIONS

    Efficient use of MatLab in carrying out theimplementation of MCS and Newmark BetaMethod.

    MatLabs built-in functions generating random values for the simulation process

    Inherent matrix and vector operations

    Produce 2D plot of important Load-Resistancerelationship

    The capacity of computer used in the source coderuns while using the software MatLab

    number of iterations reached an order of 5.

    InCiTe 2012 (BAYLON &GARCIANO)

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    49/57

    GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    CONCLUSIONS

    Based from the ordinary Monte CarloSimulation, the light railway transit, in itsmaiden structural form, can withstand

    seismic forces. IT IS SAFE.

    InCiTe 2012 (BAYLON &GARCIANO)

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    50/57

    GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    RECOMMENDATIONS

    A more sophisticated method ofstructural reliability is suggested toobtain the value of reliability index or

    probability of failure of the structure

    InCiTe 2012 (BAYLON &GARCIANO)

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    51/57

    GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    RECOMMENDATIONS

    A series of known ground motion data,specifically ground acceleration whichtaking into account the soil type, must

    be used to compute for the reliabilityindex.

    InCiTe 2012 (BAYLON &GARCIANO)

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    52/57

    GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    RECOMMENDATIONS

    Instead of a simple SDOF lumpedmass model, structural modeling thruthe use of finite element methods must

    be used for an accurate account of thephysical properties of one of the LRTsreinforced concrete pier.

    InCiTe 2012 (BAYLON &GARCIANO)

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    53/57

    GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    RECOMMENDATIONS

    Since this research dealt only one partof the structural system, i.e. column, amore detailed structural reliability study

    of the system can be implementedusing the as-built plans of a certain lineof the LRT System.

    InCiTe 2012 (BAYLON &GARCIANO)

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    54/57

    GARCIANO)

    Click to edit Master subtitle style

    8/20/12 inCiTe 2012 (BAYLON & GARCIANO)

    REFERENCES

    InCiTe 2012 (BAYLON &GARCIANO)

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    55/57

    GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    [1] ORETA A.W.C. and KAWASHIMA K., Neural Network Modeling of confinedCompressiveStrength and Strain of Circular Concrete Columns,ASCE Journal of

    Structural Engineering, Vol. 129, No. 4, April 2003.

    [2] NOWAK, A.S. and COLLINS, K.R., Reliability of Structures, McGraw-Hill International

    Editions, New York, 2000.

    [3] ANG, A.H-S. and TANG, W.H., Probability Concepts in Engineering: Emphasis on

    Applications in Civil & Environmental Engineering (2nd ed.), John Wiley & Sons, Inc.,New York,2007.

    [4] JIN-KEUN KIM and JOO-KYOUNG YANG, Buckling Behaviour of Slender High-StrengthConcrete Columns, Engineering Structures, Vol 17, No. 1, November 1993, pp 39 51.

    [6] SZERSZEN, M.M. and NOWAK, A.S., Reliability-Based Sensitivity Analysis of RCColumns Resistance, ICOSSAR 2005, Millpress, Rotterdam, ISBN 90 5966 040 4, pp 2525 to2530.

    [7] AMERICAN CONCRETE INSTITUTE 318 COMMITTEE, STRUCTURAL BUILDING CODE,Building Code Requirements For Structural Concrete (ACI 318-02) and Commentary (ACI318R-02),ACI, (c) 2002

    [8] SADEGHI, K. and NOUBAN, F., A New Stress-Strain Law For Confined Concrete UnderCyclic Loading, International Journal of Academic Research, Vol. 2, No. 4, July 2010, pp 6-15.

    [9] MICHAEL, A.P., HAMILTON, H.R., and ANSLEY, M.H., Concrete Confinement Using

    Carbon Fiber Reinforced Polymer Grid, pp 991 1009.

    InCiTe 2012 (BAYLON &GARCIANO)

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    56/57

    GARCIANO)

    8/20/12 InCiTe 2012 (BAYLON & GARCIANO)

    [11] YAMAZAKI, F. and SHINOZUKA, M., Safety Analysis of Stochastic Finite Element Systems ByMonte Carlo Simulation, Proceedings of Japan Society of Civil Engineers, Structural Engineering /Earthquake Engineering, Vol. 5, No. 2, October 1988, pp 313-323.

    [12] PAULTRE, P. and Lgeron, F., Confinement Reinforcement Design for Reinforced ConcreteColumns, Journal of Structural Engineering, (c) ASCE, May 2008, pp 738-749.

    [13] CHUNG, W.Y-M, LAM, E.S-S, and WONG, Y-L, Confinement Action of Reinforced ConcreteColumns With Non-Seismic Detailing, 4th International Conference on Earthquake Engineering,Taipei, Taiwan, Paper No. 304.

    [14] FRANGOPOL, D.M., IDE, Y., SPACONE, E., and IWAKI, I., A New Look At Reliability ofReinforced Concrete Columns, Structural Safety, Vol. 18, No.2/3, Elsevier Sciece Ltd., (c) 1996, pp123 - 150

    [15] MITROPOULOU, CH.CH., LAGAROS, N.D., and PAPADRAKAKIS, M., Life-Cycle CostAssessment of Optimally Designed Reinforced Concrete Buildings Under Seismic Actions, ReliabilityEngineering and System Safety, 2011, pp 1311-1331.

    [16] TORREGOSA, R., SUGITO, M., and NOJIMA, N., Assessment of Seismic Hazard andMicrozoning in the Philippines, Journal of Structural Mechanics and Earthquake Engineering,

    [17] RIEDERER, K.A., Assessment of Confinement Models For Reinforced Concrete ColumnsSubjected To Seismic Loading, Masters Thesis, University of British Columbia, (c) 2006.

    [18] DER KIUREGHIAN, A., HAUKAAS, T., and FUJIMURA, K., Structural Reliability Software At TheUniversity of California, Berkeley, Structural Safety 28, (c) 2006, pp 44-67.

    [19] GARCIANO, L. E. and YOSHIDA, I., Reliability analysis of a brittle fracture due to crackinstability using sequential Monte Carlo simulation, Proceedings of the Internationl

    Conference on the Applications of Statistics and Probability, pp 2949 -2956, 2011.

    InCiTe 2012 (BAYLON &GARCIANO)

  • 7/31/2019 Harnessing the Use of Ordinary Monte Carlo Simulation

    57/57

    GARCIANO)

    Click to edit Master subtitle style

    THANK YOU!

    NextIABSE @ seoul, south korea