20
Hardy-Littlewood maximal operator in weighted Lorentz spaces Elona Agora IAM-CONICET Based on joint works with: J. Antezana, M. J. Carro and J. Soria Function Spaces, Differential Operators and Nonlinear Analysis Prague (Czech Republic), 4-9 July, 2016

Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

Hardy-Littlewood maximal operatorin weighted Lorentz spaces

Elona Agora

IAM-CONICET

Based on joint works with: J. Antezana, M. J. Carro and J. Soria

Function Spaces, Differential Operators and Nonlinear AnalysisPrague (Czech Republic), 4-9 July, 2016

Page 2: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=white

Classical results

Page 3: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=whiteHardy-Littlewood maximal operator

DefinitionThe Hardy-Littlewood maximal operator is defined by:

Mf (x) = supx∈I

1|I|

∫I|f (y)|dy,

where I is an interval of the real line and the supremum is considered overall intervals containing x ∈ R.

ProblemCharacterize the weights u ∈ L1

loc(R) so that M : Lp(u)→ Lp(u), that is;find necessary and sufficient conditions on the weight u so that

||Mf ||Lp(u) . ||f ||Lp(u).

Page 4: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=white(I) The case of weighted Lebesgue spaces Lp(u)

Recall u ∈ Ap : supI⊂R

(1|I|

∫Iu(x)dx

)(1|I|

∫Iu−1/(p−1)(x)dx

)p−1

<∞.

Theorem (Muckenhoupt 1972)For p > 1, the following statements are equivalent:

(i) M : Lp(u)→ Lp(u);

(ii) u ∈ Ap;

(iii)u(I)u(S)

.

(|I||S|

)p−ε

, for every interval I and S ⊂ I and some ε > 0.

Page 5: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=whiteWeak-type Lebesgue space Lp,∞(u)

Recall that the space Lp,∞(u) is defined by{f ∈M(R) : ||f ||pLp,∞(u) = sup

λ>0λpu({x ∈ R : |f (x)| > λ}) <∞

}.

It has been also studied the boundedness M : Lp(u)→ Lp,∞(u), equivalently

||Mf ||Lp,∞(u) . ||f ||Lp(u).

Theorem (Muckenhoupt 1972)For p > 1, the following statements are equivalent:

(i) M : Lp(u)→ Lp(u);

(ii) M : Lp(u)→ Lp,∞(u);

(iii) u ∈ Ap.

Page 6: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=whiteMotivation for introducing the classical Lorentz spaces

Note that:

‖f‖pLp =

∫R|f (x)|pdx =

∫ ∞0

pλp−1|{x ∈ R : |f (x)| > λ}|dλ =∫ ∞

0(f ∗(t))pdt,

where

f ∗(t) = inf{s > 0 : |{|f | > s}| ≤ t},

and‖f‖p

Lp,∞ = supλ>0

λp|{x ∈ R : |f (x)| > λ}| = supt>0

t(f ∗)p(t).

Page 7: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=whiteClassical Lorentz spaces

Definition (Lorentz, 1950)Let p > 0, w ∈ L1

loc(R+). The classical Lorentz spaces are:

Λp(w) = {f ∈M(R) : ||f ||pΛp(w) =∫ ∞

0(f ∗(t))pw(t)dt <∞},

Λp,∞(w) = {f ∈M(R) : ||f ||pΛp,∞(w) = supλ>0

λpW(|{x : f (x) > λ}|) <∞},

where f ∗(t) = inf{s > 0 : |{x ∈ R : |f (x)| > s}| ≤ t} and W(t) =∫ t

0 w.

Examples:

(i) If w = 1, we recover Λp(1) = Lp and Λp,∞(1) = Lp,∞;(ii) If w = tq/p−1, we obtain Lp,q.

Page 8: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=white(II) The case of classical Lorentz spaces Λp(w)Boundedness of M

It is known that (Mf )∗(t) ≈ Pf ∗(t), where

Pf (t) =1t

∫ t

0f (r)dr =

∫ ∞1

f (t/s)dss2 =

∫ ∞1

Es f (t)dss2 ,

where Es f (t) = f (t/s). For s ∈ [1,∞), define

‖Es‖pΛp(w)→Λp(w) = sup

‖f∗‖Lp(w)≤1‖Es f ∗‖p

Lp(w) = supt>0

W(st)W(t)

=: W(s).

By Minkowski inequality we obtain

||M||Λp(w)→Λp(w) = sup‖f‖Λp(w)≤1

‖Mf‖Λp(w) ≈ sup‖f∗‖Lp(w)≤1

‖Pf ∗‖Lp(w)

= sup‖f∗‖Lp(w)≤1

∥∥∥∥∫ ∞1

Es f ∗dss2

∥∥∥∥Lp(w)

≤∫ ∞

1W1/p(s)

dss2 .

Proposition

If∫ ∞

1W1/p(s)

dss2 <∞, then M : Λp(w)→ Λp(w).

Page 9: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=whiteThe case of classical Lorentz spaces Λp(w)Lorentz-Shimogaki and Ariño-Muckenhoupt theorem for Λp(w)

Theorem (Lorentz-Shimogaki 1960, Ariño-Muckenhoupt 1990)Let p > 1. Then the following are equivalent:

(i) M : Λp(w)→ Λp(w);

(ii) M : Λp(w)→ Λp,∞(w);

(iii)∫ ∞

1W1/p(s)

dss2 <∞;

(iv) There exists s ∈ [1,∞) so that W(s) < sp;

(v)W(t)W(r)

.( t

r

)p−ε, t ≥ r, for some ε > 0.

Define

w ∈ Bp ifW(t)W(r)

.( t

r

)p−ε, t ≥ r,

for some ε > 0.

Page 10: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=white

Weighted Lorentz spaces

Page 11: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=whiteWeighted Lorentz spaces

Definition (Lorentz, 1950)Let p > 0, u ∈ L1

loc(R), w ∈ L1loc(R+). The weighted Lorentz spaces are:

Λpu(w) = {f ∈M(R) : ||f ||p

Λpu(w)

=∫ ∞

0(f ∗u (t))pw(t)dt <∞},

Λp,∞u (w) = {f ∈M(R) : ||f ||Λp,∞

u (w) = supλ>0

λpW(u({x : f (x) > λ})) <∞},

wheref ∗u (t) = inf{s > 0 : u({x ∈ R : |f (x)| > s}) ≤ t},

u(E) =∫

Eu(x)dx and W(t) =

∫ t

0w(s)ds.

Examples:

(i) If w = 1, we recover Λpu(1) = Lp(u) and Λp,∞

u (1) = Lp,∞(u);(ii) If u = 1, we obtain Λp(w) and Λp,∞(w).

Page 12: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=whiteCharacterization of M : Λpu(w)→ Λp,∞

u (w)

Problem IFind necessary and sufficient conditions on u ∈ L1

loc(R) and w ∈ L1loc(R+):

M : Λpu(w)→ Λp

u(w),

equivalently ||Mf ||Λpu(w) ≤ C||f ||Λp

u(w).

Problem IIFind necessary and sufficient conditions on u ∈ L1

loc(R) and w ∈ L1loc(R+):

M : Λpu(w)→ Λp,∞

u (w),

equivalently ||Mf ||Λp,∞u (w) ≤ C||f ||Λp

u(w).

Page 13: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=whiteWeak-type boundedness of Mon the weighted Lorentz spaces

Theorem (Carro-Raposo-Soria 2007)Let p > 1. The following statements are equivalent:

M : Λpu(w)→ Λp

u(w);

There exists ε > 0 so that:

W(u(⋃

j Ij))

W(u(⋃

j Sj))

. max1≤j≤J

(|Ij||Sj|

)p−ε

, (1)

for every finite family of disjoint intervals (Ij)Jj=1, and every family of

measurable sets (Sj)Jj=1, so that Sj ⊂ Ij, for every j.

If w = 1, the above condition is equivalent to Ap :u(I)u(S)

.

(|I||S|

)p−ε

.

If u = 1, it is equivalent to Bp :W(t)W(r)

.( t

r

)p−ε, t ≥ r.

OpenCharacterization of the weak-type boundedness M : Λp

u(w)→ Λp,∞u (w).

Page 14: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=whiteWeak-type boundedness of M

Theorem (A-Antezana-Carro 2016)Let p > 1, then

M : Λpu(w)→ Λp,∞

u (w)⇔ M : Λpu(w)→ Λp

u(w).

Known case w = 1: The implication

M : Lp(u)→ Lp,∞(u)⇒ M : Lp(u)→ Lp(u)

is proved using reverse Hölder’s inequality: if u ∈ Ap, then ∃ γ > 0 so that(1|I|

∫Iu1+γ(t)dt

) 11+γ

≤ C1|I|

∫Iu(t)dt.

Then, if u ∈ Ap we have that u ∈ Ap−ε for some ε > 0. Using interpolation

M : Lp−ε(u)→ Lp−ε,∞(u) and M : L∞ → L∞

we get the strong type boundedness.

Page 15: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=whiteWeak-type boundedness of MCase u = 1: M : Λp(w)→ Λp,∞(w)⇒ M : Λp(w)→ Λp(w). Let s > 1 and

f (x) =

1, if 0 ≤ x ≤ a;ax, if a ≤ x ≤ sa;

0, if x > sa.

Since (Mf )∗ ≈ Pf , by the hypothesis

W(|{x : Pf (x) > y}|) ≤ C1yp

∫ ∞0

f p(x)w(x)dx. (2)

Note that Pf (as) =1 + log s

s. Taking y =

(1 + log s)s

we have

W(|(0, as)|) . W(|{x : Pf (x) > (1+log s)/s}|) ≤ C(1+log s)1−pspW(|(0, a)|).

Hence,W(as)W(a)

≤ C(1 + log s)1−psp. (3)

Thus M : Λp(w)→ Λp(w).

Page 16: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=whiteWeak-type boundedness of M

Theorem (A-Antezana-Carro 2015)

M : Λpu(w)→ Λp,∞

u (w)⇒ M : Λpu(w)→ Λp

u(w).

General case: Let S ⊂ I ⊂ R. Construct fS,I , so that for every λ ∈ [|S|/|I|, 1]

so that |S| = λ|Eλ|, where Eλ = {x : fS,I(x) > λ}. Then, for s = |I||S|

||MfS,I ||pΛp,∞u (w)

≤ C ||fS,I ||pΛpu(w)⇒ W(u(I))

W(u(S))≤ C (1 + log s)1−psp,

which “implies” that M : Λpu(w)→ Λp

u(w).

Page 17: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=whiteWeak-type boundedness of M

If S = S1 ∪ S2 ⊂ I ⊂ R, the function fS,I can be:

Several dimensions: We consider the function

χ{MχS>λ}MχS,

for any measurable set S ⊂ Rd.

Page 18: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=whitePossible problem to study

Recall that the Riesz transforms are given by

Rj f (x) =Γ( d+1

2 )

πd+1

2

limε→0

∫Rd\Bε(x)

xj − yj

|x− y|d+1 f (y) dy,

for j = 1, . . . , d, whenever they are well defined. Study theboundedness of the Riesz transforms on weighted Lorentz spaces.

Page 19: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=whiteSome references

1. E. Agora, J. Antezana, and M. J. Carro, The complete solution to theweak-type boundedness of Hardy-Littlewood maximal operator onweighted Lorentz spaces, To appear in J. Fourier Anal. Appl. (2016)

2. E. Agora, J. Antezana, M. J. Carro and J. Soria, Lorentz-Shimogaki andBoyd Theorems for weighted Lorentz spaces, J. London Math. Soc. 89(2014) 321-336.

3. E. Agora, M. J. Carro and J. Soria, Complete characterization of theweak-type boundedness of the Hilbert transform on weighted Lorentzspaces, J. Fourier Anal. Appl. 19 (2013) 712-730.

4. M. J. Carro, J. A. Raposo and J. Soria, Recent developments in thetheory of Lorentz Spaces and Weighted Inequalities, Mem. Amer.Math. Soc. 187 (2007) no. 877, xii+128.

5. G. Lorentz, Some new functional spaces, Ann. of Math. 51 (1950) no 2,37–55.

Page 20: Hardy-Littlewood maximal operator in weighted Lorentz spacesfsdona.karlin.mff.cuni.cz/Talks/Agora.pdf · 2016. 7. 25. · Hardy-Littlewood maximal operator in weighted Lorentz spaces

bg=whiteThank you for your attention!