22
Handbook of Practical X-Ray Fluorescence Analysis

Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

Handbook of Practical X-Ray Fluorescence Analysis

Page 2: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

B. Beckhoff B. KanngießerN. Langhoff R. Wedell H. Wolff(Eds.)

Handbookof PracticalX-Ray FluorescenceAnalysis

123

With 385 Figures and 53 Tables

Page 3: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

Dr. Burkhard Beckhoff

Abbestr. 2–12, 10587 Berlin, GermanyE-mail: [email protected]

Technische Universitat Berlin, Fakultat 2, Institut fur Atomare Physik und FachdidaktikHardenbergstr. 36, 10623 Berlin, GermanyE-mail: [email protected]

Dr. sc. nat. Helmut WolffInstitut fur Angewandte Photonik e.V.Rudower Chaussee 29/31, 12489 Berlin, Germany

Library of Congress Control Number:

ISBN-10 3-540-28603-9 Springer Berlin Heidelberg New YorkISBN-13 978-3-540-28603-5 Springer Berlin Heidelberg New YorkThis work is subject to copyright. All rights are reserved, whether the whole or part of the materialis concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication ofthis publication or parts thereof is permitted only under the provisions of the German Copyright Lawof September 9, 1965, in its current version, and permission for use must always be obtained fromSpringer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media.

© Springer-Verlag Berlin Heidelberg 2006Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does notimply, even in the absence of a specific statement, that such names are exempt from the relevant pro-tective laws and regulations and therefore free for general use.

Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN 10755097 57/3141/SPI 5 4 3 2 1 0

springer.com

macro package

Physikalisch-Technische Bundesanstalt, X-ray Spectrometry

Professor Dr. Norbert Langhoff

2005934096

Berlin, GermanyE-mail: [email protected]

E-mail: [email protected], [email protected]

Instruments GmbHIfG-Institute for Scientific

Rudower Chaussee 29/31, 12489

Dr. habil. Birgit Kanngießer

Dr. sc. nat. Reiner Wedell

A ELT XTypesetting by the Authors and SPI Publisher Services using a Springer

Page 4: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

Preface

X-Ray fluorescence analysis (XRF) has developed into a well-establishedmulti-elemental analysis technique with a very wide field of practical appli-cations, especially those requiring nondestructive analytical methods. Over along period of time, steady progress of XRF was made, both methodologicaland instrumental. Within the last decade, however, advancements in tech-nology, software development, and methodologies for quantification have pro-vided an impetus to XRF research and application, leading to striking newimprovements. The recent technological advances, including table-top instru-ments that take advantage of novel low-power micro-focus tubes, novel X-rayoptics and detectors, as well as simplified access to synchrotron radiation,have made it possible to extend XRF to low Z elements and to obtain two-and three-dimensional information from a sample on a micrometer-scale. Thedevelopment of portable and hand-held devices has enabled a more flexibleuse of XRF in a variety of new situations, such as archaeometry and processcontrol. Furthermore, synchrotron radiation provides high excitation flux andeven speciation capabilities due to energetically tunable radiation.

Because of these recent advancements, the editors decided to compile apractical handbook of XRF as a resource for scientists and industrial users thatprovides enough information to conceive and set up modern XRF experimentsfor use in a wide range of practical applications. Additionally, selected sectionsconsist of a concise summary of background information for readers who wishto gain a more in-depth understanding of the topics without conducting alengthy search of the literature. The present handbook is not intended tobe a textbook with interdependent chapters, rather a reference in which theinformation in each section is largely self-contained. In this way, the reader isnot required to read the handbook from cover to cover, but can refer to anysection without a lot of additional background.

The handbook is organized as follows. The first chapter provides a histor-ical account of XRF and an introduction reflecting the extension of XRF tomodern fields of methodology and applications. Chapters 2, 3, and 4 followthe path of a photon in an XRF instrument, originating at a source (2), being

Page 5: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

VI Preface

modified by an optic (3), and registered by a detector (4). Chapter 5 deals withthe various aspects of quantifying the spectra obtained from a sample by thisinstrument. Expert information on how to prepare the sample is the themeof Chapter 6. Chapter 7 is devoted to a variety of applications: micro-, trace,and layer analysis; environmental, geological, archaeometric, forensic, and bio-medical applications; and process control. The handbook concludes with adiscussion on safety regulations and useful links to physical data (Chapter 8).

We would like to take this opportunity to express our gratitude to all ofthe authors, especially those who completed their contributions at an earlystage in the preparation of this book and patiently awaited its completion.Our thanks also go to Katherine Roegner of the Technical University, Berlinfor her support in matters of language.

We hope you enjoy this practical handbook and that it contributes to thecontinued development of XRF. We also hope that it encourages and inspiresnewcomers to the field in exploring the multifaceted aspects of XRF.

Burkhard Beckhoff,Birgit Kanngießer,Norbert Langhoff,

Berlin, Reiner WedellNovember 2005 and Helmut Wolff

Page 6: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

Contents

1 IntroductionT. Arai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 The Discovery of X-Rays and Origin

of X-Ray Fluorescence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Historical Progress of Laboratory X-Ray Fluorescence

Spectrometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Measurement of Soft and Ultrasoft X-Rays . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 X-Ray Tubes for Soft and Ultrasoft X-Rays . . . . . . . . . . . . . . . 81.3.2 Scientific Research Work on Soft and Ultrasoft X-Rays . . . . . 91.3.3 Synthetic Multilayer Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . 91.3.4 Total Reflection Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Analytical Precision and Accuracyin X-Ray Fluorescence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.4.1 Correction of Matrix Element Effects . . . . . . . . . . . . . . . . . . . . 161.4.2 Quantitative Analysis of Heat Resistance

and High Temperature Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.4.3 Segregation Influencing Analytical Accuracy . . . . . . . . . . . . . . 25

1.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 X-Ray Sources2.1 IntroductionN. Langhoff and A. Simionovici . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.2 X-Ray TubesV. Arkadiev, W. Knupfer and N. Langhoff . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Basic Physical Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.2.2 Technology of the Components . . . . . . . . . . . . . . . . . . . . . . . . . . 382.2.3 Vacuum Envelope of X-Ray Tubes . . . . . . . . . . . . . . . . . . . . . . . 462.2.4 Tube Housing Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Page 7: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

VIII Contents

2.2.5 Modern X-Ray Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472.2.6 Some Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Radioisotope SourcesT. Cechak and J. Leonhardt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.1 Basic Physical Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552.3.2 Radioisotope Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572.3.3 Production of Radioactive Sources . . . . . . . . . . . . . . . . . . . . . . . 632.3.4 Radiation Protection Regulations . . . . . . . . . . . . . . . . . . . . . . . . 64

2.4 Synchrotron Radiation SourcesA. Simionovici and J. Chavanne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.4.1 SR Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662.4.2 Storage Ring Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672.4.3 Generation of SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682.4.4 SRW Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3 X-Ray Optics3.1 IntroductionA. Erko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853.2 Mirror OpticsV. Arkadiev and A. Bjeoumikhov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2.1 Total External Reflection Mirrors . . . . . . . . . . . . . . . . . . . . . . . . 893.2.2 Capillary Optical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3 Diffraction Optics – Elements of Diffraction TheoryA. Erko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.3.1 Electromagnetic Wave Propagation . . . . . . . . . . . . . . . . . . . . . . 1113.3.2 Fraunhofer Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133.3.3 Fresnel Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133.3.4 Bragg Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.4 Optics for MonochromatorsA. Antonov, V. Arkadiev, B. Beckhoff, A. Erko, I. Grigorieva,B. Kanngießer and B. Vidal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.4.1 Diffraction Gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153.4.2 Multilayers for X-Ray Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . 1293.4.3 HOPG-based Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1433.4.4 Laterally Graded SiGe Crystals . . . . . . . . . . . . . . . . . . . . . . . . . 157

3.5 Focusing Diffraction OpticsA. Erko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

3.5.1 Zone Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1673.5.2 Reflection Zone Plate and Bragg–Fresnel Optics . . . . . . . . . . . 1793.5.3 Bragg–Fresnel Holographic Optics . . . . . . . . . . . . . . . . . . . . . . . 185

3.6 Refraction X-Ray OpticsA. Erko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

3.6.1 Compound Refractive Lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Page 8: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

Contents IX

4 X-Ray Detectors and XRF Detection Channels4.1 IntroductionF. Scholze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1994.2 X-Ray Detectors and Signal ProcessingA. Longoni and C. Fiorini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2034.2.2 Basic Properties of X-Ray Detectors . . . . . . . . . . . . . . . . . . . . . 2034.2.3 Classification of the Most Commonly Used X-Ray

Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2164.2.4 Semiconductor Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2184.2.5 Silicon Drift Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2224.2.6 Basics of Signal Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2354.2.7 Shape Factors of some Filtering Amplifiers . . . . . . . . . . . . . . . 2494.2.8 Auxiliary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2524.2.9 Appendix 1 – The Laplace Transform . . . . . . . . . . . . . . . . . . . . 2564.2.10 Appendix 2 – Calculation of the ENC . . . . . . . . . . . . . . . . . . . . 2574.2.11 Appendix 3 – Digital Pulse Processing . . . . . . . . . . . . . . . . . . . 259

4.3 High Resolution Imaging X-Ray CCD SpectrometersL. Struder, N. Meidinger and R. Hartmann . . . . . . . . . . . . . . . . . . . . . . . . . 262

4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2624.3.2 Fully Depleted Backside Illuminated pn-CCDs . . . . . . . . . . . . 2644.3.3 Frame Store pn-CCDs for ROSITA, and XEUS. . . . . . . . . . . . 2774.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

4.4 Wavelength Dispersive XRF and a Comparison with EDSN. Kawahara and T. Shoji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

4.4.1 Dispersion Materials for WDXRF . . . . . . . . . . . . . . . . . . . . . . . 2854.4.2 Detectors and Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2884.4.3 Optics Used for the WD Spectrometer and its

Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2934.4.4 Types of WDXRF Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 2964.4.5 Selected Applications Suitable for WDXRF . . . . . . . . . . . . . . . 2994.4.6 Comparison of WDXRF and EDXRF . . . . . . . . . . . . . . . . . . . . 301

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

5 Quantitative Analysis5.1 OverviewM. Mantler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3095.2 Basic Fundamental Parameter EquationsM. Mantler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

5.2.1 Fundamental Parameter Equations for Bulk Materials . . . . . . 3125.2.2 Direct Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3175.2.3 Indirect Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3225.2.4 Use of Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Page 9: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

X Contents

5.3 Matrix Correction Methods and Influence Coefficients . . . . . . . . . . . . 3275.3.1 The Nature of Influence CoefficientsM. Mantler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3275.3.2 The Lachance–Traill AlgorithmJ.P. Willis, G.R. Lachance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3355.3.3 The Claisse–Quintin AlgorithmJ.P. Willis, G.R. Lachance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3405.3.4 The COLA AlgorithmJ.P. Willis, G.R. Lachance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3435.3.5 The de Jongh AlgorithmB.A.R. Vrebos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3455.3.6 The Broll–Tertian AlgorithmK.-E. Mauser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3475.3.7 The Japanese Industrial Standard MethodN. Kawahara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3495.3.8 The Fundamental AlgorithmR.M. Rousseau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

5.4 Compensation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358B.A.R. Vrebos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

5.4.1 Internal Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3585.4.2 Standard Addition Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3615.4.3 Dilution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3625.4.4 Scattered Radiation – Compton Scatter . . . . . . . . . . . . . . . . . . 363

5.5 Thin and Layered SamplesP.N. Brouwer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

5.5.1 Direct Excitation by Polychromatic Sources . . . . . . . . . . . . . . . 3695.5.2 Indirect Excitation by Polychromatic Sources . . . . . . . . . . . . . 3715.5.3 Back-Calculation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3755.5.4 Solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3765.5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

5.6 Complex Excitation Effects and Light ElementsN. Kawahara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

5.6.1 Indirect Excitation Processes in the Low Energy Region . . . . 3795.6.2 Secondary Excitation by Electrons . . . . . . . . . . . . . . . . . . . . . . . 3795.6.3 Cascade Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

5.7 Standardless MethodsK.-E. Mauser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

5.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3845.7.2 Semiquantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3845.7.3 Requirements for a Standardless Method . . . . . . . . . . . . . . . . . 385

5.8 Monte Carlo MethodsM. Mantler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3945.9 Errors and Reliability IssuesM. Mantler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

5.9.1 Mathematical Treatment of Statistical Errors . . . . . . . . . . . . . 397

Page 10: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

Contents XI

5.9.2 Counting Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3985.9.3 Detection Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

5.10 Standardized MethodsK.-E. Mauser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

5.10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4005.10.2 General Features of Standardized Methods . . . . . . . . . . . . . . . 4005.10.3 Standardized Methods Versus Universal Calibrations

and Standardless Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4035.10.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

Symbols and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

6 Specimen PreparationJ. Injuk, R. Van Grieken, A. Blank, L. Eksperiandova and V. Buhrke . . 4116.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4116.2 Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

6.2.1 Direct Analysis of Liquids and Solutions . . . . . . . . . . . . . . . . . . 4126.2.2 Conversion of Liquids into Quasi-Solid Specimens . . . . . . . . . 4136.2.3 Conversion of Liquids into Organic Glassy

Polymer Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4146.2.4 Conversion of Liquids into Thin Films . . . . . . . . . . . . . . . . . . . 4146.2.5 Analysis of Solutions after Preconcentration

of Microimpurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4156.3 Solid Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

6.3.1 Metallic Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4196.3.2 Powder Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4216.3.3 Fused Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

6.4 Biological Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4266.5 Aerosol and Dust Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4276.6 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

7 Methodological Developments and Applications7.1 Micro X-Ray Fluorescence SpectroscopyB. Kanngießer and M. Haschke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

7.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4337.1.2 General Description of Micro-XRF Laboratory Units . . . . . . . 4347.1.3 Applications of Micro X-Ray Fluorescence Analysis . . . . . . . . 4427.1.4 3D Micro X-Ray Fluorescence Spectroscopy . . . . . . . . . . . . . . 462

7.2 Micro-XRF with Synchrotron RadiationA. Simionovici and P. Chevallier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

7.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4747.2.2 The General Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4757.2.3 Quantitative Aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4817.2.4 Elemental Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4847.2.5 Examples of Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Page 11: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

XII Contents

7.3 Total-Reflection X-Ray Fluorescence (TXRF) Wafer AnalysisC. Streli, P. Wobrauschek, L. Fabry, S. Pahlke, F. Comin, R. Barrett,P. Pianetta, K. Luning and B. Beckhoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4987.3.2 Analysis of Metallic Surface Contamination

by Means of TXRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5007.3.3 Historic Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5007.3.4 Instrumentation of Total Reflection X-Ray

Fluorescence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5027.3.5 Quantification of TXRF Analysis . . . . . . . . . . . . . . . . . . . . . . . . 5037.3.6 Surface Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5087.3.7 Statistical Process Control (SPC) . . . . . . . . . . . . . . . . . . . . . . . 5167.3.8 Automated Vapor Phase Decomposition (VPD)

Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5177.3.9 Low Z Determination – Problems – Solutions

and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5197.3.10 Synchrotron Radiation Induced TXRF . . . . . . . . . . . . . . . . . . . 5227.3.11 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

7.4 Analysis of LayersV. Roßiger and B. Nensel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

7.4.1 Introduction to the Analysis of Layers . . . . . . . . . . . . . . . . . . . 5547.4.2 Theory of the Quantitative Layer Analysis:

Yield Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5557.4.3 Calculation of the Unknown Measurement Quantities Xij . . 5637.4.4 The WinFTM� Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5677.4.5 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5797.4.6 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5867.4.7 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600

7.5 Environmental StudiesS. Kurunczi, J. Osan, S. Torok and M. Betti . . . . . . . . . . . . . . . . . . . . . . . . 601

7.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6017.5.2 Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6047.5.3 Atmospheric Aerosol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6207.5.4 Monte Carlo Based Quantitative Methods for Single

Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6277.5.5 Radionuclides and Radioactive Materials . . . . . . . . . . . . . . . . . 635

7.6 Geology, Mining, MetallurgyD. Rammlmair, M. Wilke, K. Rickers, R.A. Schwarzer,A. Moller and A. Wittenberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

7.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6407.6.2 Macroscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6427.6.3 Mesoscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6487.6.4 Microscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6687.6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

Page 12: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

Contents XIII

7.7 Application in Arts and ArchaeologyO. Hahn, I. Reiche and H. Stege . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687

7.7.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6877.7.2 Materials Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6897.7.3 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 700

7.8 XRF-Application in NumismaticsJ. Engelhardt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700

7.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7007.8.2 History of XRF Investigations of Coins . . . . . . . . . . . . . . . . . . . 7017.8.3 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7017.8.4 Preparation of Coins for Surface and Bulk Analysis . . . . . . . . 7057.8.5 Metals and Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7067.8.6 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7067.8.7 Some Examples of Typical Questions of the Numismatist . . . 7077.8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7117.8.9 Recommended Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712

7.9 Analysis for Forensic InvestigationsJ. Zieba-Palus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712

7.9.1 The Specificity of Forensic Research . . . . . . . . . . . . . . . . . . . . . 7127.9.2 The XRF Method in Forensic Research . . . . . . . . . . . . . . . . . . 7147.9.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728

7.10 X-Ray Fluorescence Analysis in the Life SciencesG. Weseloh, S. Staub and J. Feuerborn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728

7.10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7287.10.2 X-Ray Fluorescence Analysis by Means of X-Ray Tubes

and Radioisotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7297.10.3 Total Reflection X-Ray Fluorescence Analysis (TXRF) . . . . . 7367.10.4 Synchrotron Radiation Induced TXRF . . . . . . . . . . . . . . . . . . . 7487.10.5 X-Ray Fluorescence Analysis Using Synchrotron Radiation . 751

7.11 Non-Invasive Identification Of Chemical Compounds by EDXRSP. Hoffmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

7.11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7697.11.2 Experimental Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7707.11.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7717.11.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783

8 Appendix8.1 X-Ray Safety and ProtectionP. Ambrosi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835

8.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8358.1.2 Radiation Protection Quantities . . . . . . . . . . . . . . . . . . . . . . . . . 8368.1.3 Health Hazards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839

Page 13: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

XIV Contents

8.1.4 Measuring Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8418.1.5 System of Radiation Protection . . . . . . . . . . . . . . . . . . . . . . . . . 843

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8458.2 Useful Data Sources and LinksR. Wedell and W. Malzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849

Page 14: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

List of Contributors

Dr. Peter AmbrosiPhysikalisch-TechnischeBundesanstalt (National MetrologyInstitute) Department of RadiationProtection DosimetryBundesallee 10038116 Braunschweig, Germany

Dr. Alexander AntonovOptigraph GmbHRudower Chaussee 29/3112489 Berlin, Germany

Dr. Tomoya AraiRigaku CorporationX-Ray Research LabAkaoji 14-8, TakatsukiOsaka 569-1146, Japan

Dr. Vladimir ArkadievInstitut fur angewandtePhotonik e.V.Rudower Chaussee 29/3112489 Berlin, Germany

Dr. Ray BarrettEuropean Synchrotron RadiationFacility (ESRF)BP 22038043 Grenoble, France

Dr. Burkhard BeckhoffPhysikalisch-TechnischeBundesanstalt (National MetrologyInstitute) X-Ray Spectrometry groupAbbestraße 2-1210587 Berlin, Germany

Dr. Maria BettiEuropean CommissionJRC, Institute for TransuraniumElementsP.O. Box 234076125 Karlsruhe, Germany

Dr. Aniouar BjeoumikhovIfG – Institute for ScientificInstruments GmbHRudower Chaussee 29/3112489 Berlin, Germany

Prof. Dr. Avram BlankInstitute for Single Crystals of theNational Academy of Sciencesof UkraineAve. Lenin 60Kharkov, 6001, Ukraine

Ir. Peter N. BrouwerPANalytical B.V.Lelyweg 1, 7602 EA AlmeloThe Netherlands

Page 15: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

XVI List of Contributors

Dr. Victor BuhrkeThe Buhrke Company10 Sandstone, Portola ValleyCalifornia 94028, USA

Dr. Tomas CechakCzech Technical UniversityFaculty of Nuclear Sciences andPhysical EngineeringV Holesovickach 218000 Prague 8, Czech Republic

Dr. Joel ChavanneEuropean Synchrotron RadiationFacility (ESRF)Insertion GroupBP 22038043 Grenoble, France

Dr. Pierre ChevallierLPS, CEA/CNRS, CE Saclay91191 Gif-sur-YvetteFrance, and LURECentre Universitaire Paris-SudBP34, 91898 Orsay, France

Dr. Fabio CominEuropean Synchrotron RadiationFacility (ESRF)BP 22038043 Grenoble, France

Dr. Jorg EngelhardtLandesanstalt fur Personendosime-trie und Strahlenschutzausbildungim Innovationspark WuhlheideHaus 41, Kopenicker Straße 32512555 Berlin, Germany

Dr. Lyudmyla EksperiandovaInstitute for Single Crystals of theNational Academy of Sciences ofUkraineAve. Lenin 60Kharkov, 6001, Ukraine

Prof. Dr. Alexei ErkoSenior ScientistBerliner Elektronenspeicherring-Gesellschaft fur Synchrotron-strahlung mbH (BESSY)Albert-Einstein-Straße 1512489 Berlin, Germany

Dr. Laszlo FabrySiltronic AGCentral Research & Development84479 Burghausen, Germany

Dipl.-Chem. Joachim FeuerbornHeußweg 10220255 Hamburg, Germany

Prof. Dr. Carlo FioriniPolitecnico di MilanoDipartimento di Elettronica eInformazioneVia Ponzio 34/520133 Milano, Italy

Prof. Dr. Rene Van GriekenUniversity of AntwerpenDepartment of Chemistry2610 Wilrijk-Antwerpen, Belgium

Dr. Inna GrigorievaOptigraph GmbHRudower Chaussee 29/3112489 Berlin, Germany

Dr. Oliver HahnBundesanstalt fur Materialprufung(BAM)Labor IV.22 Unter den Eichen 44-4612203 Berlin, Germany

Dr. Robert HartmannPNSensor GmbHRomerstraße 2880803 Munchen and MPIHalbleiterlaborOtto-Hahn-Ring 681739 Munchen, Germany

Page 16: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

List of Contributors XVII

Dr. Michael HaschkeIfG – Institute for Scientific Instru-ments GmbHRudower Chaussee 29/3112489 Berlin, Germany

Dr. Peter HoffmannTechnical University DarmstadtDepartment of Materialsand Earth SciencesChemical AnalyticsPetersenstraße 2364287 Darmstadt, Germany

Dr. Jasna InjukUniversity of AntwerpenDepartment of Chemistry2610 Wilrijk-Antwerpen, Belgium

Dr. habil. Birgit KanngießerTechnische Universitat BerlinInstitut fur Atomare Physik undFachdidaktikAnalytical X-Ray SpectroscopygroupSekr. PN 3-2, Hardenbergstraße 3610623 Berlin, Germany

MSc. Naoki KawaharaRigaku CorporationX-Ray Research LaboratoryAkaoji 14-8, TakatsukiOsaka 569-1146, Japan

Prof. Dr. Wolfgang KnupferSiemens AGMedizinische TechnikHenkestraße 12791052 Erlangen, Germany

Dr. Sandor KuruncziKFKI Atomic Energy ResearchInstituteP.O. Box 49H-1525 Budapest, Hungary

Gerald LachanceSt-Felix, 1100K0A 2A0, HammondOntario, Canada

Prof. Dr. Norbert LanghoffIfG – Institute for ScientificInstruments GmbHRudower Chaussee 29/3112489 Berlin, Germany

Prof. Dr. Jurgen LeonhardtIUT Institut fur UmwelttechnologienGmbHVolmerstraße 9b12489 Berlin, Germany

Prof. Dr. Antonio LongoniPolitecnico di MilanoDipartimento di Elettronica eInformazioneVia Ponzio 34/520133 Milano, Italy

Dr. Katharina LuningStanford Synchrotron RadiationLaboratory (SSRL)2575 Sand Hill Road, Menlo ParkCA 94025, USA

Dr. Wolfgang MalzerTechnische Universitat Berlin,Institut fur Atomare Physik undFachdidaktikAnalytical X-Ray SpectroscopygroupSekr. PN 3-2Hardenbergstraße 3610623 Berlin, Germany

Prof. Dr. Michael MantlerVienna University of TechnologyWiedner Hauptstraße 8-10/138A-1040 Vienna, Austria

Dr. Karl-Eugen MauserBruker AXS GmbH,Ostliche Rheinbruckenstraße 4976187 Karlsruhe, Germany

Page 17: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

XVIII List of Contributors

Dr. Norbert MeidingerMax-Planck-Institut furextraterrestrische Physik85741 Garching and MPIHalbleiterlaborOtto-Hahn-Ring 681739 Munchen, Germany

Dr. Andreas MollerInstitut fur GeowissenschaftenUniversitat PotsdamPostfach 60155314415 Potsdam, Germany

Dr. Bernd NenselHelmut Fischer GmbH & Co KGR&D, Industriestraße 2171069 Sindelfingen, Germany

Dr. Janos OsanKFKI Atomic Energy ResearchInstituteP.O. Box 49H-1525 Budapest, Hungary

Dipl.-Ing. Siegfried PahlkeSiltronic AGCentral Research & Development84479 Burghausen, Germany

Prof. Dr. Pietro PianettaStanford Synchrotron RadiationLaboratory (SSRL)2575 Sand Hill Road, Menlo ParkCA 94025, USA

Dr. Dieter RammlmairBundesanstalt fur Geowissenschaftenund RohstoffeStilleweg 230655 Hannover, Germany

Dr. Ina ReicheCentre de recherche et de restaura-tion des musees de France (CRRMF)rue de Pyramides 6F-75041 Paris CEDEX 01, France

Dr. Karen RickersGeoForschungsZentrum PotsdamP.B. 4.1, Telegrafenberg14473 Potsdam, Germany

Dr. Volker RoßigerHelmut Fischer GmbH & Co KGR&D, Industriestraße 2171069 Sindelfingen, Germany

Richard M. Rousseau, Ph. D.Geological Survey of Canada601 Booth St., OttawaOntario, K1A 0E8, Canada

Dr. Frank ScholzePhysikalisch-TechnischeBundesanstalt (National MetrologyInstitute), EUV Radiometry groupAbbestraße 2-1210587 Berlin, Germany

Prof. Dr. Robert A. SchwarzerInstitut fur Physik und PhysikalischeTechnologienTU Clausthal, Leibnizstraße 438678 Clausthal-Zellerfeld, Germany

BSc. Takashi ShojiRigaku CorporationX-Ray Research LabAkaoji 14-8, TakatsukiOsaka 569-1146, Japan

Dr. Alexandre SimionoviciLST, Ecole Normale Superieure deLyon46 Allee d’Italie69007 Lyon, France

Dr. Susanne StaubZolltechnische Prufungs- undLehranstalt HamburgBaumacker 322532 Hamburg, Germany

Page 18: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

List of Contributors XIX

Dr. habil. Heike StegeDoerner-InstitutBayrische StaatsgemaldesammlungenBarer Straße 2980799 Munchen, Germany

Prof. Dr. Christina StreliAtominstitut der OsterreichischenUniversitatenStadionallee 2A-1020 Wien, Austria

Prof. Dr. Lothar StruderMax-Planck-Institut furextraterrestrische Physik85741 Garching and MPIHalbleiterlaborOtto-Hahn-Ring 681739 Munchen, Germany

Dr. habil. Szabina TorokKFKI Atomic Energy ResearchInstituteP.O. Box 49H-1525 Budapest, Hungary

Dr. Bernard VidalDirecteur de Recherche au CNRSL2MP, UMR 6137Faculte des Sciences de St. Jerome13397 Marseille CEDEX 20, France

Dr. Bruno A. R. VrebosPANalytical B.V.Lelyweg 17602 EA AlmeloThe Netherlands

Dr. sc. nat. Reiner WedellInstitut fur angewandte Photonike.V.Rudower Chaussee 29/31, 12489Berlin, Germany

Dr. Gundolf WeselohMax Planck Institute of Colloids andInterfaces14424 Potsdam, Germany

Dr. Max WilkeInstitut fur GeowissenschaftenMineralogie – PetrologieUniversitat PotsdamKarl-Liebknecht-Str. 2414476 Golm, Germany

Prof. Dr. James WillisDepartment of Geological SciencesUniversity of Cape TownPrivate Bag7701, Rondebosch, South Africa

Dr. Antje WittenbergBundesanstalt fur Geowissenschaftenund RohstoffeStilleweg 230655 Hannover, Germany

Prof. Dr. Peter WobrauschekAtominstitut der OsterreichischenUniversitatenStadionallee 2A-1020 Wien, Austria

Dr. Janina Zieba-PalusInstitute of Forensic ResearchWesterplatte Street 931-033 Krakow, Poland

Page 19: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

List of selected abbreviations used in thehandbook

ADC analog to digital converterAD Alzheimer’s diseaseALS amyothrophic lateral sclerosisAPDC ammonium pyrrolidine-dithiocarbamateAPP analog pulse processingAPS active pixel sensorAPS Argonne Photon SourceBFL Bragg-Fresnel lensBLR baseline restorerBM bending magnet (synchrotron ID)CAMEX pn-CCD camera on XMM and ABRIXAS space missionsCL cathodoluminescenceCMC carboxymethyl celluloseCNS central nervous sytemCRL compound refractive lensCRM certified reference materialCVD chemical vapour depositionDAC digital to analog converterDAC diamond anvil cellDefMA definition of measurement and application conditionsDL detection limitDPP digital pulse processingDSP digital signal processingDDTC sodium diethyldithio-carbamateDU depleted uraniumEDS energy dispersive system (spectroscopy)EDXRS energy-dispersive X-ray spectroscopyEDXRF energy-dispersive X-ray fluorescenceEDXRD energy-dispersive X-ray diffractionEFEM equipment front end moduleEIC empirical influence coefficientEMMA (see

micro-XRF)energy dispersive miniprobe multielement analyzer

Page 20: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

XXII List of selected abbreviations used in the handbook

ENC equivalent noise chargeEPMA electron probe micro analysisEMPA electron microprobe analyserEXAFS extended X-ray absorption fine structureFAAS flameless atomic absorption spectrometryFEL free electron laserFET field effect transistorFOUP front opening unified pods (plastic box used

for wafers)F-PC flow proportional counterFP fundamental parameterFWHM full width at half maximumGEXRF grazing emission X-ray fluorescenceGPS global positioning systemGPSC gas proportional scintillation counterHCA hierarchical cluster analysisHDAC hydrothermal diamond anvil cellHPGe high purity germaniumHOPG highly oriented pyrolytic graphiteICP-AES inductively coupled plasma - Auger electron

spectroscopyICP-MS inductively coupled plasma - mass spectroscopyIEF isoelectric focusingID insertion device (synchrotron, e.g. wiggler, bending

magnet)IDX 4’-iodo-4’-deoxydoxorubicin (anticancer drug)LA-ICP-MS Laser Ablation – Inductively Coupled Plasma –

Mass SpectrometryLOD limit of detectionLLD lower level of detectionMDL minimum detection limitMIBK methylisobutylketonemicro-PIXE see PIXEmicro-XRF (µ-XRF) micro-X-ray fluorescence (analysis)micro-SRXRF (also

SXRF)micro-synchrotron X-ray fluorescence

ML grating multilayer gratingNDXRF non-dispersive X-ray fluorescenceNaDDTC sodium diethyldithiocarbamateNDXRF nondispersive X-ray fluorescenceNEXAFS near edge extended X-ray absorption fine structurePHA pulse height analyzerpoly-CCC polycapillary conical collimatorPCA principle component analysisPCs principal componentsPD Parkinson’s diseasePIN-diode positive /intrinsic/negative detectorPIXE proton induced X-ray emissionpn-CCD pn-charge coupled device

Page 21: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

List of selected abbreviations used in the handbook XXIII

PSD position sensitive detectorPSPC position sensitive proportional counterPTFE polytetrafluorethyleneP-Z pole-zero compensatorQXAS quantitative X-ray analysis system (spectroscopy)RDA regularized discriminant analysisREE rare earth elementRI refraction (refractive) indexRM reference materialROI region of interestROSITA, XEUS,

XMM, ABRIXASspace missions of ESA

RTM rhenium-tungsten-molybdenum composite materialSAXS small angle X-ray scatteringSDD silicon drift detectorSDS-PAGE sodium dodecyl sulphate polyacrylamide gel

electrophoresisSEM scanning electron microscopySEM/WDX scanning electron microscopy/wavelength-dispersive

X-ray analysisSEM/EDX scanning electron microscopy/energy-dispersive X-ray

analysisSIMS secondary ion mass spectrometrySHA shaping amplifierSMIF standard mechanical interface (plastic box used for

wafers)SML synthetic multilayerS-PC sealed proportional counterSPC statistical process controlSPE solid phase extractionSR synchrotron radiationSRXRF (SR-XRF) synchrotron radiation X-ray fluorescenceSRXRFA synchrotron radiation X-ray fluorescence analysisSR-TXRF,

(SRTXRF)synchrotron radiation total reflection X-ray fluorescence

SRW software package for synchrotrons ‘SRW’ developed byESRF

STJ superconducting tunnel junctionTIC theoretical influence coefficientTXRF total reflection X-ray fluorescenceTXRFA total reflection X-ray fluorescence analysisTZM-anode Mo + W anode with admixtures of Ti and ZrVLS grating variable line spacing gratingVPD vapour phase decompositionVPD-SR-TXRF vapour phase decomposition - synchrotron radiation -

total reflection X-ray fluorescenceWDXRF wavelength dispersive X-ray fluorescenceWDS wavelength dispersive systemWDX wavelength dispersive X-ray analysisXAFS X-ray absorption edge fine structure

Page 22: Handbook of Practical X-Ray Fluorescence Analysis978-3-540-36722-2/1.pdf · vided an impetus to XRF research and application, leading to striking new improvements. The recent technological

XXIV List of selected abbreviations used in the handbook

XANES X-ray absorption near-edge structureXAS X-ray analysis system (spectroscopy)XPS X-ray photo electron spectroscopyXRD X-ray diffractionXRF X-ray fluorescenceXRFA X-ray fluorescence analysisXRGS X-ray geo scanner (geoscanner)XSI X-ray scanning instrumentADP, EDDT, KAP,

PET, RAP, TlAPSpecial crystals used in X-ray diffraction and WDS: (see

Eugene P. Bertin, Principles and Practice of X-RaySpectrometric Analysis, Plenum Press New York 1975(ISBN: 0-306-30809-6))