30
HANDBOOK OF POSITION LOCATION Theory, Practice, and Advances Edited by SEYED A. (REZA) ZEKAVAT and R. MICHAEL BUEHRER A JOHN WILEY & SONS, INC., PUBLICATION IEEE PRESS

HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

HANDBOOK OF POSITION LOCATIONTheory, Practice, and Advances

Edited by

SEYED A. (REZA) ZEKAVAT and R. MICHAEL BUEHRER

A JOHN WILEY & SONS, INC., PUBLICATION

IEEE PRESS

Page 2: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED
Page 3: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

HANDBOOK OF POSITION LOCATION

Page 4: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

IEEE Press 445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board Lajos Hanzo, Editor in Chief

R. Abhari M. El - Hawary O. P. Malik J. Anderson B - M. Haemmerli S. Nahavandi G. W. Arnold M. Lanzerotti T. Samad F. Canavero D. Jacobson G. Zobrist

Kenneth Moore, Director of IEEE Book and Information Services (BIS)

A complete list of titles in the IEEE Press Series on Digital and Mobile Communication appears at the end of this book.

Page 5: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

HANDBOOK OF POSITION LOCATIONTheory, Practice, and Advances

Edited by

SEYED A. (REZA) ZEKAVAT and R. MICHAEL BUEHRER

A JOHN WILEY & SONS, INC., PUBLICATION

IEEE PRESS

Page 6: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

Copyright © 2012 by the Institute of Electrical and Electronics Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.Published simultaneously in Canada

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trade marks. The MathWorks Publisher Logo identifi es books that contain MATLAB® content. Used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book or in the software downloadable from http://www.wiley.com/WileyCDA/WileyTitle/productCd-047064477X.html and http://www.mathworks.com/matlabcentral/fi leexchange/?term=authored%3A80973. The book’s or downloadable software’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular use of the MATLAB® software or related products.

For MATLAB® and Simulink® product information, in information on other related products, please contact:

The MathWorks, Inc.3 Apple Hill DriveNatick, MA 01760-2098 USATel: 508-647-7000Fax: 508-647-7001E-mail: [email protected]: www.mathworks.com

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifi cally disclaim any implied warranties of merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profi t or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Position location : theory, practice, and advances / editors, Seyed A. (Reza) Zekavat, R. Michael Buehrer. p. cm. – (LEEE series on digital & mobile communication) ISBN 978-0-470-94342-7 (hardback) 1. Location-based services. 2. Mobile geographic information systems. 3. Wireless communication systems. 4. Electronics in navigation. I. Zekavat, Seyed A. II. Buehrer, R. Michael. TK5105.65.P665 2011 621.384'191–dc22 2011010970

Printed in Singapore

oBook ISBN: 9781118184750ePub ISBN: 9781118604767ePDF ISBN: 9781118104774

10 9 8 7 6 5 4 3 2 1

Page 7: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

BRIEF CONTENTS

PREFACE xxxiii

CONTRIBUTORS xxxv

PART I FUNDAMENTALS OF POSITION LOCATION

CHAPTER 1 WIRELESS POSITIONING SYSTEMS: OPERATION, APPLICATION, AND COMPARISON 3

Seyed A. (Reza) Zekavat, Michigan Tech UniversityStuti Kansal, Michigan Tech UniversityAllen H. Levesque, Worcester Polytechnic Institute

CHAPTER 2 SOURCE LOCALIZATION: ALGORITHMS AND ANALYSIS 25

H. C. So, City University of Hong Kong

CHAPTER 3 SECURITY ISSUES FOR POSITION LOCATION 67

Jeong Heon Lee, Virginia TechR. Michael Buehrer, Virginia Tech

CHAPTER 4 CHANNEL MODELING AND ITS IMPACT ON LOCALIZATION 105

Seyed A. (Reza) Zekavat, Michigan Technological University

CHAPTER 5 COMPUTATIONAL METHODS FOR LOCALIZATION 137

Fardad Askarzadeh, Worcester Polytechnic InstituteYunxing Ye, Worcester Polytechnic InstituteUmair I. Khan, Worcester Polytechnic InstituteFerit Ozan Akgul, Worcester Polytechnic InstituteKaveh Pahlavan, Worcester Polytechnic InstituteSergey N. Makarov, Worcester Polytechnic Institute

v

Page 8: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

vi BRIEF CONTENTS

PART II TOA- AND DOA-BASED POSITIONING

CHAPTER 6 FUNDAMENTALS OF TIME-OF-ARRIVAL-BASED POSITION LOCATION 175

R. Michael Buehrer, Virginia TechSwaroop Venkatesh, Virginia Tech

CHAPTER 7 A REVIEW ON TOA ESTIMATION TECHNIQUES AND COMPARISON 213

Mohsen Pourkhaatoun, Michigan TechSeyed A. (Reza) Zekavat, Michigan Tech

CHAPTER 8 WIRELESS LOCALIZATION USING ULTRA-WIDEBAND SIGNALS 245

Liuqing Yang, Colorado State UniversityHuilin Xu, QUALCOMM Incorporated

CHAPTER 9 AN INTRODUCTION TO DIRECTION-OF-ARRIVAL ESTIMATION TECHNIQUES VIA ANTENNA ARRAYS 279

Seyed A. (Reza) Zekavat, Michigan Tech

CHAPTER 10 SMART ANTENNAS FOR DIRECTION-OF-ARRIVAL INDOOR POSITIONING APPLICATIONS 319

Stefano Maddio, University of FlorenceAlessandro Cidronali, University of FlorenceGianfranco Manes, University of Florence

PART III RECEIVED SIGNAL STRENGTH-BASED POSITIONING

CHAPTER 11 FUNDAMENTALS OF RECEIVED SIGNAL STRENGTH-BASED POSITION LOCATION 359

Jeong Heon Lee, Virginia TechR. Michael Buehrer, Virginia Tech

CHAPTER 12 ON THE PERFORMANCE OF WIRELESS INDOOR LOCALIZATION USING RECEIVED SIGNAL STRENGTH 395

Jie Yang, Stevens Institute of TechnologyYingying Chen, Stevens Institute of TechnologyRichard P. Martin, Rutgers UniversityWade Trappe, Rutgers UniversityMarco Gruteser, Rutgers University

Page 9: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

BRIEF CONTENTS vii

CHAPTER 13 IMPACT OF ANCHOR PLACEMENT AND ANCHOR SELECTION ON LOCALIZATION ACCURACY 425

Yingying Chen, Stevens Institute of TechnologyJie Yang, Stevens Institute of TechnologyWade Trappe, Rutgers UniversityRichard P. Martin, Rutgers University

CHAPTER 14 KERNEL METHODS FOR RSS-BASED INDOOR LOCALIZATION 457

Piyush Agrawal, University of UtahNeal Patwari, University of Utah

CHAPTER 15 RF FINGERPRINTING LOCATION TECHNIQUES 487

Rafael Saraiva Campos, Universidade do Estado do Rio de JaneiroLisandro Lovisolo, Universidade do Estado do Rio de Janeiro

PART IV LOS/NLOS LOCALIZATION–IDENTIFICATION–MITIGATION

CHAPTER 16 AN INTRODUCTION TO NLOS IDENTIFICATION AND LOCALIZATION 523

Wenjie Xu, Michigan Technological UniversityZhonghai Wang, Michigan Technological UniversitySeyed A. (Reza) Zekavat, Michigan Technological University

CHAPTER 17 NLOS MITIGATION METHODS FOR GEOLOCATION 557

Joni Polili Lie, Nanyang Technological UniversityChin-Heng Lim, Nanyang Technological UniversityChong-Meng Samson See, DOS National Laboratories

CHAPTER 18 MOBILE POSITION ESTIMATION USING RECEIVED SIGNAL STRENGTH AND TIME OF ARRIVAL IN MIXED LOS/NLOS ENVIRONMENTS 583

Bamrung Tau Sieskul, University of VigoFeng Zheng, Leibniz University HannoverThomas Kaiser, University of Duisburg Essen

PART V MOBILITY AND TRACKING USING THE KALMAN FILTER

CHAPTER 19 IMPLEMENTATION OF KALMAN FILTER FOR LOCALIZATION 629

Ossama Abdelkhalik, Michigan Technological University

Page 10: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

viii BRIEF CONTENTS

CHAPTER 20 REMOTE SENSING TECHNOLOGIES FOR INDOOR APPLICATIONS 649

Seong-hoon Peter Won, University of WaterlooWilliam Wael Melek, University of WaterlooFarid Golnaraghi, Simon Fraser University

CHAPTER 21 MOBILE TRACKING IN MIXED LINE-OF-SIGHT/NON-LINE-OF-SIGHT CONDITIONS: ALGORITHMS AND THEORETICAL LOWER BOUND 685

Liang Chen, Tampere University of TechnologySimo Ali-Löytty, Tampere University of TechnologyRobert Piché, Tampere University of TechnologyLenan Wu, Southeast University

CHAPTER 22 THE KALMAN FILTER AND ITS APPLICATIONS IN GNSS AND INS 709

Emanuela Falletti, Istituto Superiore Mario BoellaMarco Rao, Università di PalermoSimone Savasta, Politecnico di Torino

PART VI NETWORK LOCALIZATION

CHAPTER 23 COLLABORATIVE POSITION LOCATION 755

R. Michael Buehrer, Virginia TechTao Jia, Virginia Tech

CHAPTER 24 POLYNOMIAL-BASED METHODS FOR LOCALIZATION IN MULTIAGENT SYSTEMS 813

Iman Shames, The Australian National University and National ICT AustraliaBaris Fidan, University of WaterlooBrian D. O. Anderson, The Australian National University and National ICT AustraliaHatem Hmam, Electronic Warfare Radar Division, Defence Science & Technology Organisation

CHAPTER 25 BELIEF PROPAGATION TECHNIQUES FOR COOPERATIVE LOCALIZATION IN WIRELESS SENSOR NETWORKS 837

Vladimir Savic, Polytechnic University of MadridSantiago Zazo, Polytechnic University of Madrid

CHAPTER 26 ERROR CHARACTERISTICS OF AD HOC POSITIONING SYSTEMS 871

Dragos Niculescu, University Politehnica of BucharestBdri Nath, Rutgers University

Page 11: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

BRIEF CONTENTS ix

CHAPTER 27 SELF-LOCALIZATION OF UAV FORMATIONS USING BEARING MEASUREMENTS 899

Iman Shames, The Australian National University and National ICT AustraliaBaris Fidan, University of WaterlooBrian D. O. Anderson, The Australian National University and National ICT AustraliaHatem Hmam, Electronic Warfare Radar Division, Defence Science & Technology Organisation

PART VII APPLICATIONS

CHAPTER 28 OVERVIEW OF GNSS SYSTEMS 923

Fabio Dovis, Politecnico di TorinoPaolo Mulassano, Istituto Superiore Mario BoellaFabrizio Dominici, Istituto Superiore Mario Boella

CHAPTER 29 DIGITAL SIGNAL PROCESSING IN GNSS RECEIVERS 975

Maurizio Fantino, Istituto Superiore Mario BoellaLetizia Lo Presti, Politecnico di TorinoMarco Pini, Istituto Superiore Mario Boella

CHAPTER 30 RFID-BASED AUTONOMOUS MOBILE ROBOT NAVIGATION 1023

Sunhong Park, Korea Automotive Technology InstituteGuillermo Enriquez, Waseda UniversityShuji Hashimoto, Waseda University

CHAPTER 31 CELLULAR-BASED POSITIONING FOR NEXT-GENERATION TELECOMMUNICATION SYSTEMS 1055

Po-Hsuan Tseng, National Chiao Tung UniversityKai-Ten Feng, National Chiao Tung University

CHAPTER 32 POSITIONING IN LTE 1081

Ari Kangas, Ericsson ABIana Siomina, Ericsson ABTorbjörn Wigren, Ericsson AB

CHAPTER 33 AUTOMATED WILDLIFE RADIO TRACKING 1129

Robert B. MacCurdy, Cornell UniversityRichard M. Gabrielson, Cornell UniversityKathryn A. Cortopassi, Cornell University

Page 12: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

x BRIEF CONTENTS

CHAPTER 34 AN INTRODUCTION TO THE FUNDAMENTALS AND IMPLEMENTATION OF WIRELESS LOCAL POSITIONING SYSTEMS 1169

Seyed A. (Reza) Zekavat, Michigan Tech

INDEX 1195

MATLAB codes for various chapters in this book can be found online at ftp://ftp.wiley.com/public/sci_tech_med/matlab_codes.

Page 13: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

DETAILED CONTENTS

PREFACE xxxiii

CONTRIBUTORS xv

PART I FUNDAMENTALS OF POSITION LOCATION

CHAPTER 1 WIRELESS POSITIONING SYSTEMS: OPERATION, APPLICATION, AND COMPARISON 3

1.1 Introduction 3

1.2 Basic Methods Used in Positioning Systems 5

1.2.1 TOA Estimation 5

1.2.2 Time-Difference-of-Arrival (TDOA) Estimation 7

1.2.3 DOA Estimation 8

1.2.4 RSSI 8

1.2.5 LOS versus NLOS 8

1.2.6 Positioning, Mobility, and Tracking 8

1.2.7 Network Localization 9

1.3 Overview of Positioning Systems 9

1.3.1 GPS 9

Distance Measurement 10

Satellite Positions 12

1.3.2 Assisted Global Positioning System (AGPS or Assisted GPS) 12

1.3.3 INS 13

INS Classifi cation 14

1.3.4 Integrated INS and GPS 14

1.3.5 RFID 14

RFID as a Positioning System 15

1.3.6 WLPS 15

1.3.7 TCAS 17

1.3.8 WLAN 17

1.3.9 Vision Positioning System 18

1.3.10 Radar 18

1.4 Comparison of Basic Methods and Positioning Systems 18

1.5 Conclusion, Summary, and Future Applications 19

References 21

xi

Page 14: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

xii DETAILED CONTENTS

CHAPTER 2 SOURCE LOCALIZATION: ALGORITHMS AND ANALYSIS 25

2.1 Introduction 26

2.2 Measurement Models and Principles for Source Localization 28

2.2.1 TOA 28

2.2.2 TDOA 30

2.2.3 RSS 31

2.2.4 DOA 33

2.3 Algorithms for Source Localization 34

2.3.1 Nonlinear Approaches 34

NLS 34

ML 40

2.3.2 Linear Approaches 44

LLS 44

WLLS 50

Subspace 53

2.4 Performance Analysis for Localization Algorithms 55

2.4.1 CRLB Computation 56

2.4.2 Mean and Variance Analysis 58

2.5 Conclusion 63

Acknowledgment 64

References 64

Appendix 66

CHAPTER 3 SECURITY ISSUES FOR POSITION LOCATION 67

3.1 Introduction and Motivation 67

3.1.1 Why Is Location Security Important? 68

3.1.2 Defi nition of Position Location Security 69

3.1.3 Relationship to Network Security 69

3.2 Types of Position Location Attacks 69

3.2.1 APS 70

Modifi cation of Attack Position 70

Disruption of Attack Position 72

Recent Work 73

3.2.2 ASS 73

Modifi cation of Legitimate Position 74

Disruption of Legitimate Position 74

Recent Work 74

3.2.3 Location Disclosure 75

Recent Work 76

3.3 Impact and Analysis of Location Attacks 76

3.3.1 Adversary and Simulation Models 77

3.3.2 Optimality Criterion (Risk Measure) 80

3.3.3 Estimator Error Behavior under Attack 80

Impact of Location Attacks 81

Impact of Incorrect PL Estimation 83

3.3.4 Analysis of the Estimator Error Behavior 84

3.4 Attack Detection and Localization 86

3.4.1 Exploiting Geometric Features of Location Error 89

Residual Error Map and Node Convex Hull (NCH) 89

GF 92

Page 15: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

DETAILED CONTENTS xiii

3.4.2 Attack Detection 92

Statistical Detection Technique 93

Geometric Pattern Matching for Attack Detection 95

Performance Evaluation 96

3.4.3 Adversary Localization 98

Noncooperative Position Location 98

Handling Position Outliers 99

Performance Evaluation 99

3.5 Conclusion and Continuing Work 102

References 102

CHAPTER 4 CHANNEL MODELING AND ITS IMPACT ON LOCALIZATION 105

4.1 Introduction 105

4.2 Channel Model 107

4.3 Important Statistics for Received Signal Strength (RSS) 109

4.4 Important Statistics for TOA, TDOA, and DOA 113

4.4.1 PDP Statistics and Impact on Localization and Radio Design 114

4.4.2 PSP Statistics and Impact on Localization and Radio Design 120

4.4.3 PAP Statistics and Impact on Localization and Radio Design 124

4.5 Summary of Different Channel Categories 125

4.6 Statistics of Amplitude, Phase, and TOA 126

4.6.1 Fade Amplitude 126

4.6.2 Fade-Phase Statistics 127

4.6.3 TOA 128

4.7 Other Channel Models 129

4.7.1 Geometric-Based Single-Bounce Statistical Channel Modeling 129

4.7.2 Circular and Elliptical Geometric Models 129

4.7.3 Rough Surface Channel Modeling 130

4.7.4 Near-Ground Channel Modeling 130

4.7.5 Foliage Effects 132

4.8 Conclusions 133

Acknowledgments 133

References 133

CHAPTER 5 COMPUTATIONAL METHODS FOR LOCALIZATION 137

5.1 Importance of Channel Modeling 137

5.2 Important Channel Model Parameters for Localization 140

5.3 TOA-Based Techniques 142

5.3.1 Challenges for TOA Techniques 142

5.3.2 Simulation and Measurement Techniques 144

5.3.3 Channel Measurement Technology 146

5.3.4 RT Algorithm 147

5.3.5 FDTD Method 148

5.4 Computational Method and the Effect of Micrometals 151

5.4.1 FDTD and the Effects of Micrometals 151

5.4.2 2-D FDTD Simulation Scenarios 153

5.4.3 Comparison of Computation with Empirical Results 156

5.4.4 Ray Optics and Effects of Micrometals 157

Analysis of Diffraction around the Edges 159

Comparison of Computation with Empirical Results 160

Page 16: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

xiv DETAILED CONTENTS

5.5 FDTD and the Effects of the Human Body 163

5.5.1 Measurement of Wideband Characteristics 164

5.5.2 Computational Analysis of the Effects of the Human Body 166

An Overview of Ansoft HFSS 167

Analysis of Path Loss Models 167

Experimental Procedure Using the Ansoft HFSS Suite 168

5.6 Conclusion 170

Acknowledgments 170

References 171

Appendix 172

PART II TOA- AND DOA-BASED POSITIONING

CHAPTER 6 FUNDAMENTALS OF TIME-OF-ARRIVAL-BASED POSITION LOCATION 175

6.1 Introduction 175

6.2 TDOA Positioning 176

6.2.1 Geometric Interpretation 177

6.2.2 Uplink versus Downlink Measurements 180

6.3 TOA Positioning 180

6.3.1 Geometric Interpretation 181

6.4 TDOA versus TOA 183

6.5 TOA versus TDOA in the Presence of Noise 184

6.6 Linearization 187

6.6.1 Taylor Series Approximation 187

6.6.2 Differencing 189

6.6.3 Linearization of TDOA 196

6.7 Pseudorange 196

6.8 The Impact of NLOS Propagation 199

6.8.1 Impact of NLOS Bias Errors 199

6.8.2 Discarding NLOS Range Estimates 200

6.8.3 NLOS Identifi cation 202

6.8.4 NLOS Mitigation 205

6.9 Handling NLOS Errors: a Linear Programming Approach 206

6.9.1 LOS Range Estimates 206

6.9.2 NLOS Range Estimates 207

6.9.3 Combining the LOS and NLOS Range Information 208

6.10 Conclusions 211

References 211

CHAPTER 7 A REVIEW ON TOA ESTIMATION TECHNIQUES AND COMPARISON 213

7.1 Introduction 213

7.2 TOA Estimation Methods 216

7.2.1 Conventional Correlation-Based Techniques 220

Pros and Cons 221

7.2.2 Deconvolution Methods 222

Pros and Cons 224

Page 17: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

DETAILED CONTENTS xv

7.2.3 ML-Based Methods 225

Pros and Cons 226

7.2.4 Subspace-Based Techniques 226

Pros and Cons 228

7.2.5 BSS-Based Algorithms 229

Pros and Cons 233

7.3 Comparison of TOA Estimation Techniques 233

7.4 Range Estimation System Design 235

7.4.1 Single-Band Range Estimation Architecture 235

7.4.2 Multiband Range Estimation: General Architecture 236

7.4.3 Noncontiguous Multiband Scenario 238

7.5 Conclusion 240

References 240

CHAPTER 8 WIRELESS LOCALIZATION USING ULTRA-WIDEBAND SIGNALS 245

8.1 Introduction to UWB 245

8.1.1 Regularization 245

8.1.2 Transmission Approaches 246

8.1.3 Standards 247

8.1.4 UWB Channels 248

8.2 UWB Localization Techniques 250

8.2.1 Fingerprinting Localization 250

8.2.2 Geometric Localization 252

TOA Estimation 253

Position Estimation 253

8.2.3 NLOS Issues 254

8.3 TOA Estimation for IR UWB 255

8.3.1 System Model 255

8.3.2 ML TOA Estimation 257

8.3.3 Energy Detection-Based TOA Estimation 258

8.3.4 TDT 260

8.3.5 Discussions on IR-Based TOA Estimation 262

8.4 TOA Estimation for MB-OFDM UWB 263

8.4.1 System Model 265

8.4.2 Correlation-Based TOA Estimator 266

8.4.3 Energy Detection-Based TOA Estimator 267

8.4.4 TOA Estimation by Suppressing Energy Leakage 269

8.4.5 Discussions on MB-OFDM-Based TOA Estimation 273

8.5 Conclusions 274

References 275

CHAPTER 9 AN INTRODUCTION TO DIRECTION-OF-ARRIVAL ESTIMATION TECHNIQUES VIA ANTENNA ARRAYS 279

9.1 Introduction 279

9.2 Antennas and Their Parameters 280

9.2.1 Antenna HPBW 282

9.2.2 First Side Lobe to the Main Lobe Power Ratio 283

9.2.3 Non-Main Lobe Power (All Side Lobe Power) to Main Lobe Power Ratio 283

Page 18: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

xvi DETAILED CONTENTS

9.2.4 Antenna Impedance 283

9.2.5 Antenna Return Loss 284

9.2.6 Antenna Bandwidth 285

9.2.7 Antenna Gain 285

Antenna Gain Is Usually Measured in dBi 286

9.2.8 Antenna Polarization 287

9.3 Antenna Arrays 287

9.3.1 Smart Antennas 288

9.3.2 Important Parameters of Antenna Arrays 289

Array Vector 289

Array Factor 290

Mutual Coupling 291

9.4 DOA Estimation Methods 293

9.4.1 DAS 297

9.4.2 MUSIC and Root MUSIC 299

MUSIC 299

Root MUSIC 301

Complexity Analysis 302

Comparison of MUSIC and Root MUSIC 304

9.4.3 DAS and Root MUSIC Fusion 306

Simulations and Performance Analysis 308

9.4.4 Comparison 309

9.5 DOA Estimation for Periodic Sense Transmission 310

9.6 Conclusion 315

Acknowledgments 315

References 316

CHAPTER 10 SMART ANTENNAS FOR DIRECTION-OF-ARRIVAL INDOOR POSITIONING APPLICATIONS 319

10.1 Introduction 319

10.2 Principles of Indoor Positioning Based on SA 321

10.2.1 Positioning Estimation Techniques 321

10.2.2 DOA Principle of Operations 323

10.3 Antenna Technology and Design Principles 326

10.3.1 Radiation Pattern 326

10.3.2 Circular Polarization 328

10.3.3 Antenna Selector 328

10.3.4 Signal Detection Circuit 329

10.4 DOA Estimation Accuracy for SAs 330

10.4.1 Information Theory Elements 330

10.4.2 Derivation of the CRB for 1-D Case Using SAs 331

Effect of Number of Antenna Elements Nr 335

Effect of the Directivity Coeffi cient m 335

Effect of the RSSI Variance σ 2RSSI 336

10.4.3 Derivation of the CRB for 2-D DOA Using SAs 337

10.5 Algorithm for Indoor DOA Estimations 340

10.5.1 1-D DOA Estimation Methods 340

Strongest RSSI–Sector Partition 341

LSE 341

The MUSIC Estimator 343

Page 19: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

DETAILED CONTENTS xvii

10.5.2 2-D DOA Estimation Methods 344

10.5.3 2-D DOA Simulated Experiments 345

10.6 Prototype of SA Suitable for Indoor DOA Positioning Applications 346

10.6.1 Six Switching Beams Antenna Prototype: Characteristics and Performance 346

10.6.2 Prototype DOA Estimation Performance 349

Strongest RSSI 350

Fingerprinting 351

MUSIC 352

10.6.3 Experimental Results and Conclusions 352

10.7 Discussion and Conclusions 353

References 354

PART III RECEIVED SIGNAL STRENGTH-BASED POSITIONING

CHAPTER 11 FUNDAMENTALS OF RECEIVED SIGNAL STRENGTH-BASED POSITION LOCATION 359

11.1 Introduction and Motivation 359

11.1.1 Why Is RSS Attractive for Localization? 360

11.1.2 Problem Statement and Outline 360

11.2 Sources of Location Error and Mitigation 362

11.2.1 Multipath Fading and NLOS Propagation 362

11.2.2 Shadow Fading 363

11.2.3 Systematic Bias or Error 363

11.2.4 Geometric Node Confi guration 363

11.3 Techniques Using RSS for Position Location 363

11.3.1 Range-Based Positioning 364

Statistical Model for RSS 364

Basics of Differential RSS 365

Spatial Correlation of Shadow Fading 367

11.3.2 RF Fingerprinting 368

11.3.3 Proximity-Based Positioning 370

Dimensionality Reduction Using Geographical Proximity 370

11.4 Geometric Interpretations of RSS/DRSS Positioning 372

11.4.1 RSS-Based Lateration 375

11.4.2 DRSS-Based Lateration 377

Geometry of Relative DRSS Positioning 377

Geometry of Absolute DRSS Positioning 379

Geometric Solution of DRSS Location 380

11.5 Location Estimators 380

11.5.1 Theoretical Limits for Location Estimation 381

Optimality Criterion 381

Cramer–Rao Lower Bound (CRLB) 381

11.5.2 ML Estimator 382

11.5.3 Nonlinear LS Estimator 383

LS Optimization Framework 383

11.5.4 Linear LS Estimator 385

Page 20: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

xviii DETAILED CONTENTS

11.6 Performance Evaluation 387

11.6.1 Simulation Settings 387

Numerical Optimization Algorithm Considered 388

11.6.2 Simulation Results 388

Impact of Number of Anchor Nodes and Spatial Correlation 388

Impact of Correlated Shadow Fading 389

Impact of PL and Spatial Correlation 389

11.7 Conclusion 391

References 392

CHAPTER 12 ON THE PERFORMANCE OF WIRELESS INDOOR LOCALIZATION USING RECEIVED SIGNAL STRENGTH 395

12.1 Introduction 396

12.2 RSS-based Localization Algorithms 397

12.2.1 Approach Overview 398

12.2.2 Lateration Methods 399

NLS 399

LLS 400

12.2.3 Classifi cation via Machine Learning 401

12.2.4 Probabilistic Approaches 403

12.2.5 Statistical Supervised Learning Techniques 404

12.2.6 Summary of Localization Algorithms 405

12.3 Localization Performance Study 407

12.3.1 Performance Metrics 407

12.3.2 Performance Investigation Using Real Wireless Networks 408

Experimental Scenarios 408

Performance Results 410

12.4 Enhancing the Robustness of Localization 413

12.4.1 Real-Time Infrastructure Calibration 413

12.4.2 Effects of Employing Multiple Antennas 414

12.4.3 Robust Statistical Methods 416

12.4.4 Revisiting Linear Regression 417

12.4.5 Exploiting Spatial Correlation 418

12.5 Conclusion and Applications 420

References 422

CHAPTER 13 IMPACT OF ANCHOR PLACEMENT AND ANCHOR SELECTION ON LOCALIZATION ACCURACY 425

13.1 Introduction 425

13.2 Anchor Placement 426

13.2.1 Overview 426

13.2.2 Impact of Anchor Placement 428

13.2.3 Heuristic Search 431

13.2.4 Acute Triangular-Based Deployment 433

13.2.5 Adaptive Beacon Placement 435

13.2.6 Optimal Placement via maxL–minE 436

Theoretical Analysis 436

Algorithm Overview and Experimental Evaluation 441

Page 21: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

DETAILED CONTENTS xix

13.3 Anchor Selection 445

13.3.1 Overview 445

13.3.2 Joint Clustering Technique 445

13.3.3 Entropy-Based Information Gain 447

13.3.4 Convex Hull Selection 447

13.3.5 Selection from High Density of Anchors 449

13.4 Discussion and Conclusion 453

References 453

CHAPTER 14 KERNEL METHODS FOR RSS-BASED INDOOR LOCALIZATION 457

14.1 Introduction 457

14.1.1 Outline of the Chapter 459

14.2 Kernel Methods 459

14.2.1 Problem Statement 460

14.2.2 General Mathematical Formulation 460

Determination of Kernel Parameters 461

Example Framework 462

14.2.3 LANDMARC Algorithm 464

Estimation of Parameters 464

14.2.4 Gaussian Kernel Localization Algorithm 465

Estimation of Parameters 466

14.2.5 Radial Basis Function-Based Localization Algorithm 468

Estimation of Parameters 469

14.2.6 Linear Signal-Distance Map Localization Algorithm 470

Estimation of Parameters 472

14.2.7 Summary 473

14.3 Numerical Examples 473

14.3.1 MLE 473

Estimating Coordinate from RSS 474

Implementation Details 474

14.3.2 Description of Comparison Example 475

14.4 Evaluation Using Measurement Data Set 481

14.4.1 Measurement Campaign Description 481

14.4.2 Evaluation Procedure 481

14.4.3 Results 482

Bias Results 482

RMSE Results 484

14.5 Discussion and Conclusion 484

References 485

CHAPTER 15 RF FINGERPRINTING LOCATION TECHNIQUES 487

15.1 Introduction 487

15.2 RF Fingerprints 489

15.3 CDB 490

15.3.1 CDB Structure 490

Uniform Grid 491

Indexed List 491

Page 22: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

xx DETAILED CONTENTS

15.3.2 Building the CDB 491

Field Measurements 491

Propagation Modeling 492

Mixing Predicted and Measured Values 498

15.4 Techniques to Reduce the Search Space 499

15.4.1 CDB Filtering 500

First Filtering Step 500

Second Filtering Step 501

Third Filtering Step 501

15.4.2 Optimized Search Using GAs 502

15.5 Pattern Matching of RF Fingerprints 504

15.5.1 Distance in N-Dimensional RSS Space 505

Particular Case 505

Generic Case with Penalty Term 506

15.5.2 Pattern Matching Using ANNs 508

15.5.3 Spearman Rank Correlation Coeffi cient 510

15.6 Experimental Performance 512

15.6.1 Outdoor 850-MHz GSM Network 512

15.6.2 Indoor Wi-Fi Networks 515

15.7 Conclusions 516

References 518

PART IV LOS/NLOS LOCALIZATION–IDENTIFICATION–MITIGATION

CHAPTER 16 AN INTRODUCTION TO NLOS IDENTIFICATION AND LOCALIZATION 523

16.1 Introduction 524

16.2 NLOS Identifi cation 525

16.2.1 Cooperative Methods 527

DOA Residual Testing 527

Time-Difference-of-Arrival (TDOA) Residual 528

Residual Distribution Testing 529

16.2.2 Single-Node Methods Based on the Range Statistics 530

Techniques Based on Range Measurements Over Time 530

Techniques Based on the Range Measurements over Different Frequency Bands 531

16.2.3 Single-Node Methods Based on Channel Characteristics 532

Narrow and Wideband Systems 533

UWB Systems 534

Systems Using Antenna Array 536

16.2.4 Single-Node Hybrid Approach 541

16.2.5 Comparison of NLOS Identifi cation Methods 543

16.3 NLOS Localization 543

16.3.1 RSSI 544

16.3.2 Bidirectional TOA–DOA Fusion 546

16.3.3 Single BN TOA–DOA Fusion with the Assistant Environment Map 547

Page 23: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

DETAILED CONTENTS xxi

16.3.4 Multinode TOA–DOA Fusion 548

16.3.5 Comparison 550

16.4 Conclusion 552

References 552

CHAPTER 17 NLOS MITIGATION METHODS FOR GEOLOCATION 557

17.1 Introduction 558

17.2 Geolocation System Model 559

17.3 A Review of NLOS Mitigation Techniques 560

17.3.1 ML-Based Techniques 560

Finding Nh ML Estimates of Unknown Parameters 562

Finding the Most Possible Hypothesis 562

17.3.2 LS-Based Techniques 562

17.3.3 Constrained Optimization Techniques 564

17.3.4 Robust Estimator Techniques 565

17.4 Application of the Single Moving Sensor Geolocation 566

17.4.1 Range Measurements Profi le-Based Trimming 567

17.4.2 Reconstruction of Trimmed TOA Profi le 571

17.4.3 Robust Trimming with Nonparametric Noise Density Estimator 572

17.4.4 Performance Analysis 574

17.5 Conclusions 579

References 579

CHAPTER 18 MOBILE POSITION ESTIMATION USING RECEIVED SIGNAL STRENGTH AND TIME OF ARRIVAL IN MIXED LOS/NLOS ENVIRONMENTS 583

18.1 Introduction 584

18.1.1 Background 584

18.1.2 Literature Review 584

LOS/NLOS Detection 585

Wireless Geolocation 586

18.1.3 Merits 587

18.1.4 Organization 587

18.2 System Model 588

18.2.1 Existing Techniques for Mobile Position Estimation 588

LLS Based on First-Order Taylor Series 589

LLS with Additional Parameterization 590

AML 591

18.2.2 Path Loss Model 593

18.3 Mobile Position Estimation 594

18.3.1 TOA Estimation 594

LOS Suffi ciency 595

18.3.2 LS 596

18.3.3 WLS 596

18.3.4 ML 596

LS Error Variance 596

18.4 CRB for Mobile Position Estimation 597

18.4.1 FIM of TOA Estimation 597

18.4.2 CRB for TOA Estimation 598

18.4.3 CRB for Mobile Position Estimation 598

Page 24: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

xxii DETAILED CONTENTS

18.5 Numerical Examples 598

18.6 Conclusions 607

References 608

Appendix 611

PART V MOBILITY AND TRACKING USING THE KALMAN FILTER

CHAPTER 19 IMPLEMENTATION OF KALMAN FILTER FOR LOCALIZATION 629

19.1 Introduction 629

19.2 The Estimation Problem 631

19.3 Formulation of Localization as an Estimation Problem 632

19.4 Discrete Linear Kalman Filter 633

19.4.1 Kalman Filter Derivation 633

19.4.2 Discussion and Implementation 635

19.5 Continuous Kalman Filter 641

19.6 Extended Kalman Filter 643

19.7 Further Reading 646

References 646

CHAPTER 20 REMOTE SENSING TECHNOLOGIES FOR INDOOR APPLICATIONS 649

20.1 Position Sensing Technology 650

20.1.1 Vision-Based Position Sensors 650

20.1.2 Non-Vision-Based Position Sensor 653

20.1.3 Inertial Sensors 657

Orientation Calculation Using Quaternion 657

Position Calculation Using Inertial Sensors 660

IMU 662

20.1.4 Applications 665

20.2 Bayesian Estimators 667

20.2.1 Bayes Filter 668

20.2.2 KF 670

20.2.3 Extended KF 671

20.2.4 PF 673

20.2.5 Filter Comparison Example 675

20.2.6 Filter Applications 677

20.3 Summary 679

References 680

CHAPTER 21 MOBILE TRACKING IN MIXED LINE-OF-SIGHT/NON-LINE-OF-SIGHT CONDITIONS: ALGORITHMS AND THEORETICAL LOWER BOUND 685

21.1 Introduction 685

21.2 System Description 686

21.2.1 General Problem Formulation 686

21.2.2 Example of the State Model 688

21.2.3 Example of the Measurement Model 688

Page 25: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

DETAILED CONTENTS xxiii

21.3 Tracking Algorithm Based on GMF 689

21.3.1 The Development of GMF 689

Forgetting Components 692

Merging Components 692

Convergence Result of GMF 693

21.3.2 The Modifi ed EKF Banks 693

Algorithm Description 693

21.4 Tracking Method Based on ARBPF 695

21.4.1 Generic PF 695

21.4.2 Approximated RBPF 696

21.5 Lower Bound of Performance 699

21.6 Numerical Results 702

21.6.1 Performance Comparison with Different Algorithms 703

21.6.2 Comparison with Posterior CRLB 704

21.6.3 Complexity Comparison 705

21.7 Conclusions 706

References 706

CHAPTER 22 THE KALMAN FILTER AND ITS APPLICATIONS IN GNSS AND INS 709

22.1 Introduction 710

22.2 Review of Kalman Filtering and Extended Kalman Filtering for Navigation 711

22.2.1 State-Space Models 711

22.2.2 Continuous Time to Discrete-Time Transformation 714

22.2.3 Recursive Estimation and Initial Conditions 716

22.2.4 Extended KF 718

Linearized and Extended Architectures 720

22.3 EKF-Based PVT Computation in a Stand-Alone GNSS Receiver 721

22.3.1 State-Space Model 722

22.3.2 Linearization of the Measurement Equation 724

Pseudorange and Pseudorange Rate Prediction 726

22.3.3 Error Covariance Matrices 727

22.4 Inertial Navigation Fundamentals 728

22.4.1 Structure of an IMU 729

22.4.2 The Coriolis Theorem 730

22.4.3 Mechanization Equations 730

Computation and Tracking of the Body Attitude: The Direction Cosine Matrix (DCM) 731

Computation and Tracking of the Velocity 732

Computation and Tracking of the Position 732

22.5 IMU Alignment 733

22.5.1 GNSS-INS Hybridization: State-Space Models 735

22.6 General Architecture for the Loose Integration 735

22.6.1 Loose Integration: State-Space Model 735

Space Equation 736

Velocity Equation 737

Attitude Misalignment Equation 738

Accelerometers Bias Equation 739

Gyroscopes Bias Equation 739

Page 26: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

xxiv DETAILED CONTENTS

22.6.2 Loose Integration: State Transition Matrix 740

22.6.3 Loose Integration: Measurement Equation 741

22.7 General Architecture for the Tight Integration 741

22.7.1 Tight Integration: State-Space Model 742

Clock Misalignment Equation 743

Clock Drift Equation 743

22.7.2 Tight Integration: State Transition Matrix 743

22.7.3 Tight Integration: Measurement Equation 744

22.8 General Architecture for the Ultra-Tight Integration 745

22.8.1 Ultra-Tight Integration: State-Space Model 746

22.8.2 Ultra-Tight Integration: State Transition Matrix 746

22.8.3 Ultra-Tight Integration: Measurement Equation 746

22.9 Conclusions 747

References 748

Appendix A 749

PART VI NETWORK LOCALIZATION

CHAPTER 23 COLLABORATIVE POSITION LOCATION 755

23.1 Introduction 755

23.2 Problem Defi nition 758

23.3 Performance Bounds 760

23.3.1 CRLB 760

23.3.2 MLE/Weighted LS 763

The Branch-and-Bound (BB)/Reformulation-Linearization Technique (RLT) Algorithm 764

Reformulation and Linearization of the MLE 765

Partitioning Variables, Relaxation Errors, and Partitioning Strategies 768

23.3.3 Numerical Results 768

23.4 An Overview of Suboptimal Algorithms 771

23.4.1 A Taxonomy of Existing Algorithms 774

Type of Measurement Data: Distance, Angle of Arrival (AOA), and RSS Fingerprinting 774

Where the Computation Is Performed: Centralized or Distributed 774

How the Computation Is Performed: Sequential or Concurrent 774

How the Problem Is Formulated: Probabilistic or Nonprobabilistic 775

23.5 Specifi c Suboptimal Approaches 775

23.5.1 Sequential LS 776

23.5.2 Optimization-Based Approaches 778

23.5.3 MDS 780

23.5.4 Set-Theoretic Approach: Iterative Parallel Projection Method (IPPM) 783

The Modifi ed Parallel Projection Method (MPPM) 783

IPPM for Collaborative Position Location 788

23.6 Numerical Comparison of Approaches 793

23.6.1 Localization Accuracy 793

23.6.2 Computational Complexity 799

Page 27: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

DETAILED CONTENTS xxv

23.7 NLOS Propagation 800

23.7.1 Knowledge about the NLOS Propagation 801

23.7.2 NLOS Mitigation Example 801

23.7.3 Simulation Results 803

23.8 Summary 807

References 808

CHAPTER 24 POLYNOMIAL-BASED METHODS FOR LOCALIZATION IN MULTIAGENT SYSTEMS 813

24.1 Introduction 813

24.2 Polynomial Function Optimization 815

24.2.1 Polynomial Continuation (Homotopy) Methods 816

24.2.2 SOS and SDP Approaches 817

24.3 Noisy Target Localization 819

24.4 Relative Reference Frame Determination 822

24.4.1 Relative Reference Frame Determination with Distance Measurements 823

24.4.2 Relative Reference Frame Determination with Relative Angle Measurements 824

24.4.3 Noisy Relative Reference Frame Determination 826

24.4.4 Algorithmic Comparison with Some Existing Methods 829

Comments on the Complexity of SOS Methods 830

24.4.5 Colinear Anchors 831

24.5 An Extension of the SOS Approach 832

24.6 Conclusions 833

Acknowledgment 833

References 833

CHAPTER 25 BELIEF PROPAGATION TECHNIQUES FOR COOPERATIVE LOCALIZATION IN WIRELESS SENSOR NETWORKS 837

25.1 Introduction to Cooperative Localization in WSNs 838

25.1.1 Classifi cation of Cooperative Localization Methods 838

Range-Based versus Range-Free Methods 838

Centralized versus Distributed Methods 839

Anchor-Based versus Anchor-Free Methods 839

Probabilistic versus Deterministic Methods 839

25.1.2 Measurement Techniques 840

25.1.3 Motivating Applications 841

25.2 Probabilistic Localization Based on BP 842

25.2.1 Introduction to Probabilistic Localization 842

Statistical Framework for Probabilistic Localization 842

25.2.2 Belief Propagation 843

Graphical Model 844

Description of the Algorithm 847

25.2.3 NBP 848

Computing Messages 848

Computing Beliefs 849

Convergence of NBP 850

Page 28: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

xxvi DETAILED CONTENTS

25.2.4 NBBP 850

Modifi cations 850

Performance Analysis 851

25.3 Generalized BP Methods 855

25.3.1 Correctness of BP 856

25.3.2 GBP-K 857

25.3.3 NGBP-JT 857

Defi nition 857

Example Network 858

Nonparametric Approximation 860

25.3.4 NBP-ST 861

Spanning Tree Formation 861

Performance Analysis 864

25.4 Conclusions 867

Acknowledgments 867

References 867

CHAPTER 26 ERROR CHARACTERISTICS OF AD HOC POSITIONING SYSTEMS 871

26.1 Introduction 871

26.2 APS Algorithms 873

26.2.1 DV-Hop Propagation Method 874

26.2.2 DV-Euclidean and DV-Radial 876

26.2.3 DV-Position 877

26.3 Positioning Error Analysis 878

26.3.1 Trilateration Review 878

26.3.2 CRLB for Trilateration 879

26.3.3 DV-Hop Range Error 879

26.3.4 CRLB for DV-Hop Positioning 883

26.3.5 DV-Position Error 885

26.4 Discussion 888

26.5 Related Work 890

26.6 Conclusion 891

References 891

Appendices 892

CHAPTER 27 SELF-LOCALIZATION OF FORMATIONS OF AUTONOMOUS AGENTS USING BEARING MEASUREMENTS 899

27.1 Introduction 899

27.2 Problem Setup 901

27.3 A Rigid Graph Theoretical Framework for Formation Localization 903

27.4 Four-Bar Linkage Mechanisms 906

27.5 A Localization Algorithm Based on Four-Bar Linkage Mechanisms 908

27.6 Localization of Larger Formations 914

27.7 Localization with Extra Landmarks 916

27.8 Availability of More Angle Measurements for Three Agents 917

27.9 Conclusions 918

Acknowledgments 919

References 919

Page 29: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

DETAILED CONTENTS xxvii

PART VII APPLICATIONS

CHAPTER 28 OVERVIEW OF GLOBAL NAVIGATION SATELLITE SYSTEMS 923

28.1 Introduction 923

28.1.1 What Is Radio Navigation? 924

28.1.2 Spherical Systems 924

Two-Way Measurements 925

One-Way Measurement 926

28.1.3 Evolution Programs of GNSS Constellations 926

28.2 Principles of Satellite Navigation 927

28.2.1 Geometry and Measurement Errors 929

28.2.2 Impact of Measurement Errors on User Position 930

28.3 The Impact of Geometry 932

28.3.1 GDOP as a Function of Position and Time 934

28.4 Overview on Reference Systems 939

28.4.1 Conventional Inertial Reference System 939

28.4.2 Conventional Terrestrial Reference System 940

28.4.3 Ellipsoidal Coordinates 941

28.4.4 The Geoid 942

28.4.5 The Global Datum 942

28.4.6 East-North-Up (ENU) Reference Frame 943

28.5 Structure of the Signal In Space (SIS) 943

28.5.1 GNSS Frequency Plan 944

28.5.2 The Binary Offset Carrier (BOC) Modulation 944

BOC Power Spectral Density 946

Correlation Properties 946

BOC versus BOCcos 948

28.5.3 The GNSS Transmitted Signal 949

28.6 Current and Modernized GPS Signals 950

28.6.1 Multiplexed BOC (MBOC) Signal Baseline 951

28.6.2 TMBOC Modulation 952

28.7 Galileo System and SIS 953

28.7.1 E1 CBOC Modulation 954

28.7.2 CASM Multiplexing Scheme 958

28.7.3 AltBOC Modulation and Multiplexing Scheme 960

The AltBOC Concept 961

28.8 Error Sources for the Position Evaluation 965

28.8.1 GNSS Positioning 966

Impact of Ranging Errors on Position Metrics 966

28.9 Augmentations 968

28.9.1 Local Area Differential Corrections 968

28.9.2 Wide Area Differential Corrections 969

The Integrity Concept 970

28.9.3 A-GNSS and Cooperative Navigation 971

28.9.4 Trend of GNSS-Related Augmentation Solutions and Technologies 972

28.10 Conclusions 972

Acknowledgment 973

References 973

Page 30: HANDBOOK OF POSITION LOCATION - Startseite · 2013. 7. 23. · Alessandro Cidronali, University of Florence Gianfranco Manes, University of Florence PART III RECEIVED SIGNAL STRENGTH-BASED

xxviii DETAILED CONTENTS

CHAPTER 29 DIGITAL SIGNAL PROCESSING IN GNSS RECEIVERS 975

29.1 Received Signal 976

29.1.1 The Doppler Effect in the Carrier 977

29.1.2 The Doppler Effect at Baseband 978

29.2 The General Receiver Structure 978

29.2.1 Sampling Frequency 979

29.2.2 The Digital IF Signal 980

Carrier-to-Noise Ratio and Signal-to-Noise Ratio (SNR) 980

29.3 Acquisition 985

29.3.1 Detection and Estimation Main Strategy 986

Parameter Estimation 986

Detection 987

29.3.2 Cross-Ambiguity Function (CAF) 988

The SS 989

Consideration on the Value of the Frequency Bin Size 990

Consideration on the Value of the Delay Bin Size 992

SNR at the CAF Peak 992

Coherent and Noncoherent Integration 993

29.3.3 Refi nement of the Estimation of the SIS Parameters 994

29.4 The Role of FFT in a GNSS Receiver 996

29.4.1 FFT in the Time Domain 997

29.4.2 FFT in the Doppler Domain 998

29.5 Estimation of the Propagation Delay 999

29.6 Methods for SIS Detection 1000

29.6.1 NP Approach 1000

NP Detection in GNSS 1002

29.6.2 Detection Based on the A Posteriori Probabilities 1003

29.6.3 Bayesian Sequential Detection 1003

Sequential Detection in GNSS 1005

29.7 Gradient Method for SIS Parameters Estimation 1006

29.7.1 Transient between Signal Acquisition and Tracking 1006

29.7.2 Fundamentals on the Gradient Theory 1007

29.7.3 Application to GNSS Signals 1009

29.8 Null Seeker and Tracking Loops 1011

29.8.1 DLL 1013

Discrimination Function 1014

29.8.2 Carrier Tracking 1016

29.8.3 Models of the Tracking Loops 1017

29.9 Conclusions 1018

References 1019

Appendix 1021

CHAPTER 30 AUTONOMOUS MOBILE ROBOT NAVIGATION SYSTEMS USING RFID AND THEIR APPLICATIONS 1023

30.1 Robust RFID-Based Navigation System 1023

30.1.1 Basic Navigation Concepts 1023

30.1.2 Estimating Robot’s Pose 1026

30.1.3 Experimental Verifi cation: Grid-Like Pattern 1028