30
Handbook of Engineering Practice of Materials and Corrosion

Handbook of Engineering Practice of Materials and Corrosion

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Handbook of Engineering Practice of Materials and Corrosion

Handbook of Engineering Practice of Materials and Corrosion

Page 2: Handbook of Engineering Practice of Materials and Corrosion

Jung-Chul (Thomas) Eun

Handbook of Engineering Practiceof Materials and Corrosion

Page 3: Handbook of Engineering Practice of Materials and Corrosion

Jung-Chul (Thomas) EunConsultant for Multi-CompaniesHouston, TX, USA

ISBN 978-3-030-36429-8 ISBN 978-3-030-36430-4 (eBook)https://doi.org/10.1007/978-3-030-36430-4

© Springer Nature Switzerland AG 2020, corrected publication 2020This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights oftranslation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or informationstorage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specificstatement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date ofpublication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for anyerrors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutionalaffiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AGThe registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Page 4: Handbook of Engineering Practice of Materials and Corrosion

Preface

For more than 38 years of experience as an engineer specialized in metallurgy in the oil and gas industry, I have been involvedin numerous project executions that are related to different industrial requirements. As I understand that identifying projectdefinition and developing the best engineering practice in compliance with the industrial requirements are laborious process, Ifound it necessary to have a book that provides an overview of all the requirements of materials and corrosion engineering anddecided to put my experience together.

This is a guide handbook (Engineering Practice of Materials and Corrosion-“EPMC”) for materials and corrosionengineering and could be useful to experienced engineers who work in the oil and gas, chemical, and petrochemical industries.This book provides background knowledge and rationale of the engineering data based on the industrial requirements, such ascodes, standards, local regulations, specifications, manuals, and common company guidelines. Throughout this book, Iintended to provide simplified applications, options, and comparisons of such requirements in an integrated view.

Engineers and technicians are often faced with several different factors when working on projects, such as safety, timeline,budgets, and cost management. To satisfy these objectives, the industrial requirements are often met as minimum, andexemptions or mitigations are commonly practiced. I hope this guideline and examples provided herein will support thereaders in executing the best engineering practice more effectively while meeting the project goals.

The requirements of codes, standards, and regulations will be continuously updated; however, the logical contents andrationale may rarely be changed. I also hope that the contents in this book may be useful to the readers for a long time.

Houston, TX, USA Jung-Chul (Thomas) Eun

Cover Photo: courtesy of SK Innovation, Ulsan, Korea Refinery and Petrochemical Plants

v

Page 5: Handbook of Engineering Practice of Materials and Corrosion

Preview

The main purpose of this guidebook is to suggest effective engineering data which are based on the requirements in severalindustrial codes, standards, regulations, specifications, and regulations, such as ASME, ASTM, API, ANSI, AWS, NACE,MSS, NFPA, TEMA, PIP, NBIC, OSHA, other American standards, CSA, and foreign standards including typical require-ments and recommendations in company/project specifications. One of the major purposes is to introduce practical referencesfor a checklist as well as more detailed engineering work in one location and to provide the following:

– Typically used project’s standards, guidelines, and application scope which are not covered in industrial codes andstandards

– Engineering practice and experience for the limitations of codes and standards– Engineering suggestions and test results from journals and papers with new technologies– Case studies and various reference resources– Correct recognition and effective spec deviation through various comparisons

All information in industrial codes and standards are based on the current version unless otherwise specified and exceptsome foreign standards. All mechanical data which are shown in this book are for reference only. Therefore, for detailengineering of mechanical design, it is advised to find the applicable codes and standards in accordance with the projectrequirement and/or process conditions. Most codes and standards have the section for the reference standards which arerelated with themselves. In some cases, the reference standards may indicate still old versions.

The unit conversions in this book are from conversion calculation or directly each code and standard. Therefore, someconverted values between the similar codes and standards may not show the same numbers in this book because thecommittees of codes and standards have been pursuing unit conversion by their own rounding-up system.

Many tables and figures are directly quoted from the codes and standards; however, some commentary notes which arebased on the author’s experience and lessons learned are added as footnotes under the tables and figures in order to optimizeengineering work, promote the successful use of the full contents, minimize error and mistake, and suggest for the nextversion. All specified para. (paragraphs), Fig. (figures), and tables are based on this book unless otherwise noted the directlyquoted code or standard. Users and readers may be able to apply “should or may” to “must/shall or should” for therequirements in this book when the user wants to utilize the contents for the project specifications.

The original version of this book was revised. The correction is available at https://doi.org/10.1007/978-3-030-36430-4_6

vii

Page 6: Handbook of Engineering Practice of Materials and Corrosion

Acknowledgments

This book was designed in accordance with industrial codes, standards, specifications, local regulations, manuals, many otherresources, and work experiences. Many contents are also come from the lessons learned from my work experience as well asother people’s experience. I greatly appreciate David Freier, Nasser Sheikhi, Andy Wen, Jingak Nam, Morteza Rahmanian,Tomoaki Kiso, Juan Vigil, Hundal Jung, Sooyoung Kim, Sora Han, Basim Muhidean, former co-workers, and my family(Helen, James, Eric, and Jaein) for their efforts for this book.

Thomas J.C. Eun

Work Experience with KBR, Bechtel, Foster Wheeler, Jacobs, Fluor, Exterran, Suncor Energy, GS E&C, and HyundaiHeavy Industries

P.E. for Metallic MaterialsP.E. for WeldingP.E. for Mechanical EngineeringNACE Corrosion SpecialistNACE Materials Selection/Design SpecialistMS and Doctorate course work achieved for Metallurgy and BS for Mechanical Engineering

ix

Page 7: Handbook of Engineering Practice of Materials and Corrosion

Introduction

This guide pursues not only to reduce the engineering time and mistake but also to provide one-stop sources of theapplications, options, rationales, backgrounds, various references, and comparisons in an overview including scope, bound-ary, schedule, cost management, and safety margin (see below figure).

It also provides commentary notes, alternative applications, future trends and directions, case studies, typical projectspecifications, and checklists for optimization.

It consists of five sections: first section contains the principle information for mechanical and metallurgical engineers,second section contains the principle and practical information for materials in the regulations, third section contains thepractical information for manufacturing and construction, fourth section contains the practical information for welding, andfifth section contains the practical information for test and inspection.

Appendices contain several other resources for design engineering and fabrication of facilities.

xi

Page 8: Handbook of Engineering Practice of Materials and Corrosion

Contents

1 Design Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Types and Procedure of Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.2 Consideration Prior to Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.1.3 History, Governing, Updating, and Interpreting of ASME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.1.4 Contents of ASME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.1.5 Scope of Application in ASME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.1.6 Limitations and Requirements for Wall Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231.1.7 ASME Code Stamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271.1.8 Check List for Materials in ASME Sec. VIII, Div. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311.1.9 Categorization of Services in Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311.1.10 Properties of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431.1.11 Minimum Design Metal Temperature (MDMT) and Design Minimum Temperature (DMT) . . . . . 541.1.12 Nominal Thickness and Governing Thickness (GT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551.1.13 Guidelines on the Approval of New Materials Unregistered in the ASME BPVC . . . . . . . . . . . . 571.1.14 Guidelines on Multiple Marking of Materials in the ASME BPVC . . . . . . . . . . . . . . . . . . . . . . . 58

1.2 Conventional Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581.2.1 Elastic Design and Plastic Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581.2.2 Equipment Life Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581.2.3 Stresses for Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591.2.4 Strength Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671.2.5 Maximum Allowable Working Pressure (MAWP) and Maximum Allowable Pressure (MAP) . . . 711.2.6 Design Factors and Pressure Vessel Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731.2.7 Joint Efficiency and Quality Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741.2.8 Pressure Relief Devices (PRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801.2.9 Design and Selection for Detail Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821.2.10 Transportation, Erection, and Field Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821.2.11 Comprehension of General Assembly/Notes Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821.2.12 Development of Piping Materials Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

1.3 Advanced Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831.3.1 Stress Analysis and Finite Element Analysis (FEA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831.3.2 Fatigue Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841.3.3 Creep and Rupture Requirements Including Compressive Stress Rules . . . . . . . . . . . . . . . . . . . . 931.3.4 Fracture Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991.3.5 Minimum Allowable Temperature (MAT) and Lowest Metal Temperature (LMT) . . . . . . . . . . . . 1031.3.6 MPT (Minimum Pressurizing Temperature) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

1.4 Standardization and Documentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051.4.1 Principal Engineering Execution Documents (PEED) for Facilities in PDP, FEED, EPC,

and Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051.4.2 Basic Documents for Materials and Corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051.4.3 Piping Materials Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061.4.4 Units of Dimension and Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061.4.5 Description and Locations of Major Activities in ASME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

1.5 Maintenance, Reliability, and Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xiii

Page 9: Handbook of Engineering Practice of Materials and Corrosion

1.6 Reiterative Engineering Mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151.6.1 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151.6.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151.6.3 Weight and Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151.6.4 Minimum, Maximum, and Average: ( ) for Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1161.6.5 Shall, Should, May, and Can . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1161.6.6 Applicable Standards and Reference Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2 Types and Requirements of Materials and Corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1172.1 Characteristics and Requirements of Raw Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.1.1 Classes and Properties of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1172.1.2 Forging Materials – Source: FIA (Forging Industry Association) and ASTM STG 903 . . . . . . . . 1402.1.3 Cast Iron, Ductile Iron, and Hot Isostatic Processing (HIP) Castings . . . . . . . . . . . . . . . . . . . . . . 1422.1.4 Carbon and Low-Alloy Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1462.1.5 High-Alloy (Stainless) Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1682.1.6 Frailties of Stainless Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1892.1.7 Nonferrous Alloy Metals (SB) – Ni/Cu/Al/Ti/Zr/Ta/W Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . 2122.1.8 Bonding of Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2492.1.9 Nonmetallic Materials: Plastic, Elastomer, Ceramic, and Composite Materials . . . . . . . . . . . . . . . 2522.1.10 P-No.-Gr. No./S-No./F-No./A-No./SFA No./AWS Class-UNS No. . . . . . . . . . . . . . . . . . . . . . . . 2622.1.11 ISO/TR 15608 (Welding-Guidelines for a Metallic Materials Grouping System)

and EN 13445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2882.1.12 API Materials Classes for Pumps and Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

2.2 Degradation and Requirements of Metals in Low Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3022.2.1 Characteristics of Materials in Low Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3022.2.2 Practical Requirements for Impact Test in Codes and Standards . . . . . . . . . . . . . . . . . . . . . . . . . 3152.2.3 Material Classes in Low-Temperature and Cryogenic Services (Table 2.120) . . . . . . . . . . . . . . . 3182.2.4 Summary of Code Applications for Low Temperature (Table 2.121) . . . . . . . . . . . . . . . . . . . . . 318

2.3 Metal Loss and Degradation of Metals in High Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3202.3.1 Graphitization and Spheroidization from Operation in Elevated Temperature . . . . . . . . . . . . . . . . 3202.3.2 Temper Embrittlement from Operation in Elevated Temperatures . . . . . . . . . . . . . . . . . . . . . . . . 3222.3.3 Sigma (σ) Phase Embrittlement from Operation in Elevated Temperature . . . . . . . . . . . . . . . . . . 3222.3.4 475 �C (885 �F) Embrittlement from Welding, Heat Treatment, and Operation in Elevated

Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3222.3.5 Degradation by Hot Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3222.3.6 Liquid Metal Embrittlement (LME) from Welding and Operation . . . . . . . . . . . . . . . . . . . . . . . . 3222.3.7 Solidification Crack (Hot Crack or Liquation Crack) from Welding . . . . . . . . . . . . . . . . . . . . . . 3242.3.8 Reheat Cracking (or Stress Relaxation Cracking-SRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3242.3.9 Creep and Rupture from Operation at Elevated Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 3242.3.10 Thermal Fatigue/Shock from Operation in Elevated Temperature . . . . . . . . . . . . . . . . . . . . . . . . 324

2.4 Corrosion Types and Their Prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3252.4.1 General/Localized Corrosion and Corrosion Allowance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3252.4.2 Environmentally Assisted Cracking (EAC) Corrosion and Prevention in Moderate

Temperature, <204 �C/(400 �F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3422.4.3 Local and Cracking Corrosion and Prevention in High Temperatures, �204 �C/(400 �F) . . . . . . . 3582.4.4 Test and Inspection for Metal Loss/Damage/Prevention due to Corrosion . . . . . . . . . . . . . . . . . . 3632.4.5 Erosion, Abrasion, Adhesive Wear, and Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

2.5 Test Reports (MTR) and Positive Materials Identification (PMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3902.5.1 Material Identification and PMI Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3902.5.2 Heat Analysis and Product Analysis – Table 2.160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3972.5.3 Comparison of (C)MTR and PMI (Table 2.170) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

2.6 Characteristics of ASTM/ASME Materials (Ferrous and Nonferrous Metals) . . . . . . . . . . . . . . . . . . . . . . . 4052.6.1 Sections, Volumes, and Application Guidelines of ASTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4052.6.2 ASTM/ASME Materials Well Used in Energy and Chemical Industries . . . . . . . . . . . . . . . . . . . 407

xiv Contents

Page 10: Handbook of Engineering Practice of Materials and Corrosion

3 Fabrication and Construction of Equipment and Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5073.1 Pressure Vessels and Heat Exchangers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

3.1.1 General Consideration of Fabrication and Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5073.1.2 Fabrications of Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5073.1.3 Fabrication Sequence and Weld Seam Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5073.1.4 Specific Requirements for Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5113.1.5 Packing, Shipping, and Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5183.1.6 Erection of Equipment and Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5183.1.7 Heat Exchangers (H/EX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

3.2 Piping and Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5233.2.1 Fabrications of Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5233.2.2 Cold Bending of Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5243.2.3 Induction Bending of Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5243.2.4 Cryogenic Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5273.2.5 Marking and Color Coding of Piping Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5283.2.6 Gasket Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

3.3 Other Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5343.3.1 Insulation, Refractory Lining, and Fireproofing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5343.3.2 Shop Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5383.3.3 Telltale and Vent Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5393.3.4 Hot Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5393.3.5 Bolts Tensioning and Torqueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

3.4 Cleaning, Finishes, and Coating of Metal Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5423.4.1 Mechanical or Physical Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5433.4.2 Chemical Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5463.4.3 Surface Preparation Before Coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5553.4.4 Paint Color Code Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5593.4.5 Surface Finish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5603.4.6 Thermal Spray Coating (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5663.4.7 Repair of Galvanized Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

3.5 Materials Protection During Transportation or Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5673.5.1 Rust Prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5673.5.2 Packing and Shipping for Oversea Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5673.5.3 Mothballing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5713.5.4 Winterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5723.5.5 External Coating on Metal Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5743.5.6 Corrosion Protection of Bolting Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

4 Welding and Heat Treatment Requirements in Shop and Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5774.1 Standards and Weldability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

4.1.1 Codes & Standards and Terms for Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5774.1.2 Definition and Comparison of Weldability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5804.1.3 Factors Affected to Weldability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5814.1.4 Alignment Tolerance and Reinforcement on Weldment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5814.1.5 Joint Details for Specific Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5824.1.6 Closure Seam Weld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

4.2 Deformation and Crack of Metal due to Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5884.2.1 General Defects by Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5884.2.2 Deformation and Crack of Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5904.2.3 Hardness Effect on Weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5904.2.4 Residual Stress on Weldments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5924.2.5 Cooling Time Control (T8/5) for Ferritic Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5934.2.6 Lamellar Tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5964.2.7 Solidification (Hot) Cracking of Carbon Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5974.2.8 Solidification (Hot) Cracking of Austenitic Stainless Steel (ASS) . . . . . . . . . . . . . . . . . . . . . . . 5984.2.9 Weld Crack Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

Contents xv

Page 11: Handbook of Engineering Practice of Materials and Corrosion

4.3 Hydrogen Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5994.3.1 Hydrogen-Induced Cracking in Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5994.3.2 Diffusible Hydrogen (DH) Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5994.3.3 Hydrogen Control During Welding Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6004.3.4 Hydrogen Control by Baking Out (Degassing) after Welding (Post-Heat) . . . . . . . . . . . . . . . . . 600

4.4 Preheat, Interpass Temperature, Post-Heat, Carbon Equivalent, and Heat Input . . . . . . . . . . . . . . . . . . . . 6014.4.1 Carbon Equivalent (Ceq, Pcm, and CEN) and the Related Preheat Requirements . . . . . . . . . . . . 6014.4.2 Preheat and Interpass Temperature for Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6044.4.3 Post-Heat After Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6164.4.4 Heat Input (Q) for Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616

4.5 Controlled Deposition Welding (CDW) and Buttering Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6184.5.1 Temper Bead Welding Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6184.5.2 Half Bead Welding Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6194.5.3 Buttering Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

4.6 Hot Tap Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6214.6.1 Characteristics of Hot Tapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6214.6.2 General Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6214.6.3 Consideration of Welding Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6224.6.4 Consideration of Service Flow Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6234.6.5 Welding Crack and Burn-Through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

4.7 Welding Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6264.7.1 Master Chart of Welding Processes (Fig. 4.43) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6264.7.2 Application of Arc Welding Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6264.7.3 Advanced Welding Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638

4.8 Designations of Welding Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6404.8.1 ASME Section II, Part C/AWS: Designations of Welding Consumable Materials . . . . . . . . . . . 6404.8.2 Designation of Chemical Composition and Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

4.9 Welding Procedure Specification (WPS) and Procedure Qualification Record (PQR) . . . . . . . . . . . . . . . . 6454.9.1 Variables for Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6454.9.2 WPS (Welding Procedure Specification) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6484.9.3 PQR (Procedure Qualification Record): See Tables 4.59 and 4.60 for Sample PQR . . . . . . . . . . 652

4.10 Production Tests and Acceptance Criteria for Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6524.10.1 Production Tests for Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6524.10.2 Acceptance Criteria for Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656

4.11 Welding of Several Metals and Special Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6584.11.1 Dissimilar Metal Welding (DMW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6604.11.2 Welding of Cast Iron (CI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6654.11.3 Welding of Cr-Mo Steels (Cr � 3%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6704.11.4 Welding of Low Temperature Nickel Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6734.11.5 Welding of Martensitic, Ferritic, and Precipitation Hardening Stainless Steels (MSS, FSS,

and PHSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6754.11.6 Welding of Austenitic Stainless Steels (ASS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6784.11.7 Welding of Duplex Stainless Steels (DSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6884.11.8 Welding of Nickel and Nickel-Based Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6914.11.9 Welding of Aluminum and Aluminum-Based Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6914.11.10 Welding of Copper and Copper-Based Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7094.11.11 Welding of Titanium and Titanium-Based Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7114.11.12 Welding of Zirconium and Zirconium-Based Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7114.11.13 Welding of Tantalum Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7134.11.14 Brazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7134.11.15 Weld Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7154.11.16 Explosion Cladding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7164.11.17 Specific Considerations for Heavy/Thin Wall Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

xvi Contents

Page 12: Handbook of Engineering Practice of Materials and Corrosion

4.12 Heat Treatment and Stress Relieving for Fabrication of Equipment and Piping . . . . . . . . . . . . . . . . . . . . . 7204.12.1 Roles and Purpose of Heat Treatment for Equipment and Piping . . . . . . . . . . . . . . . . . . . . . . . 7204.12.2 Classes of Heat Treatment for Equipment and Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7214.12.3 PWHT, Stress Relief, Annealing, and Solution Heat Treatment for Several Metals and

Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7214.12.4 Caution of Tempering After Normalizing or Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7664.12.5 Thermally Stabilizing Heat Treatment for Stabilized Stainless Steels . . . . . . . . . . . . . . . . . . . . . 7674.12.6 Local PWHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7674.12.7 Normalizing Treatment After Fabrication of Carbon and Low Alloy Steel Equipment

and Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7694.12.8 Cold and Sub-Zero Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7704.12.9 Peening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771

5 Test and Inspection Requirements in Codes and Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7735.1 Overview of Test and Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773

5.1.1 Activities and Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7735.1.2 Inspection Standards in API and NACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773

5.2 Destructive Examination (DE) for New Construction and Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . 7765.2.1 Classes and Characteristics of Special DE Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7765.2.2 Mechanical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7765.2.3 Toughness Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780

5.3 General Classification of Nondestructive Examination (NDE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7835.3.1 Classes of NDE: Advantage and Disadvantage See Table 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 7835.3.2 Characteristics and Applicable References of NDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7855.3.3 RT Requirements in ASME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7895.3.4 MT and PT Requirements in ASME Sec. VIII, Div. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7915.3.5 UT Techniques and Requirements in Codes and Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7915.3.6 NDE for OCTG and Offshore Structures (API) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7945.3.7 Summary of General Requirements and Acceptance Criteria of NDE in Codes

and Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7945.4 Functional Classification of NDE/NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805

5.4.1 Hardness Test and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8055.4.2 Metallurgy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8135.4.3 Inspection of H/EX Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8135.4.4 Specific Test and Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815

5.5 Hydrostatic (Hydrotest), Pneumatic, Vacuum, and Cryogenic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8185.5.1 Principle Concept of Hydrostatic and Pneumatic Tests (Table 5.42) . . . . . . . . . . . . . . . . . . . . . . 8185.5.2 Requirements for Hydrostatic and Pneumatic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8185.5.3 Vacuum Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8315.5.4 Gas/Bubble Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8325.5.5 Requirements for Hydrotest/Rinsing Water Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8325.5.6 Cryogenic Leakage Test of Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835

Useful Websites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836General References: Other Than Codes and Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836

Correction to: Handbook of Engineering Practice of Materials and Corrosion . . . . . . . . . . . . . . . . . . . . . . . . . C1

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859

Contents xvii

Page 13: Handbook of Engineering Practice of Materials and Corrosion

Abbreviations

ASHTO American Association of State Highway and Transportation OfficialsABS American Bureau of ShippingABS Acrylonitrile-Butadiene-StyreneA/C Air CoolerACCT ASNT Central Certification ProgramACFM Alternating Current Field MeasurementACI American Cast InstituteACSCC Alkaline Carbonate Stress Corrosion CrackingADI Austenitic Ductile IronAE Acoustic Emission Test/TestingAI Authorized Inspector (by ASME)AIA Aerospace Industries AssociationAir Cooler Air-Cooled Heat Exchanger (H/EX)AISI American Iron and Steel InstituteAMS Aerospace Material SpecificationALPEMA Brazed Aluminum Plate-Fin H/EX Manufacturers’ AssociationANSI American National Standards InstituteAPB Acid-Producing BacteriaAPI American Petroleum InstituteASCE American Society of Civil EngineersASME American Society of Mechanical EngineersASNT American Society for Nondestructive Testing(S)ASS (Super) Austenitic Stainless SteelsASSDA Australian Stainless Steel Development AssociationASTM American Society for Testing and Materialsatm (Atm) AtmosphereAWS American Welding SocietyAWWA American Water Works Associationbcc Body-Centered Cubicbct Body-Centered TetragonalBED Basic Engineering DesignBEDD Basic Engineering Design DataBHN (or HBW) Brinell HardnessBLR BoilerBPS Bonding Procedure SpecificationBPV(C) Boiler and Pressure Vessel (Code)BSEE Bureau of Safety and Environmental EnforcementCA Corrosion AllowanceCAB Cellulose Acetate ButyrateCAPP Canadian Association of Petroleum ProducersCOD Crack Opening DisplacementCDW Controlled Deposition WeldingCE (or Ceq) Carbon Equivalent

xix

Page 14: Handbook of Engineering Practice of Materials and Corrosion

CEN European Committee for StandardizationCET Critical Exposure TemperatureCFR Code of Federal RegulationsCGA Compressed Gas AssociationCGSB Canadian General Standards BoardCI Cast IronCINI Committee Industrial Insulation StandardsCML Condition (or Corrosion) Monitoring LocationCMMS Computerized Maintenance Management SoftwareCMRP Certified Maintenance and Reliability ProfessionalCPI Center for Public IntegrityCPVC Chlorinated Poly(vinyl chloride) PlasticsCR Corrosion RateCR Corrosion Resistance (for fitting grade)CRA Corrosion Resistant Alloys(K)CS (Killed) Carbon SteelsCSA Canadian Standards AssociationCSEF Creep Strength Enhanced FerriticCTOA Critical Crack Tip OpeningCTOD Crack Tip Opening DisplacementCMTR Certified Mill Test ReportCUI Corrosion Under InsulationCUF Corrosion Under FireproofingCVN Charpy V NotchdB Decibel (Noise Level)DBTT Ductile-Brittle Transition TemperatureHDPE High-Density PEDCP Direct Plasma (Emission Spectroscopy)DE Destructive Examination ($ NDE)DI Ductile IronDH Diffusible HydrogenDHT Dehydrogenation Heat TreatmentDMT Design Minimum Temperature (for Piping)DNV Det Norske VeritasDOE Department of EnergyDOT Department of TransportationD.P Design PressureDPDT Design Pressure Design Temperature(S)DSS (Super) Duplex Stainless SteelsD.T Design TemperatureDW(T)T Drop Weight (Tear) Test/TestingEAC Environmentally Assisted CrackingE-CTFE Ethylene-chlorotrifluoroethyleneECT Eddy Current Test/TestingEBW Electron Beam WeldingEFW Electric Fusion WeldedEHS Environment Health and SafetyEIGA European Industrial Gas AssociationEJMA Expansion Joint Manufacturers AssociationEN European Standards (French, Norme; German, Norm)End-User Party as Client, Investor, Operator, or OwnerEPA Environmental Protection AgencyEPC(M) Engineering, Procurement, and Construction (Management)EPEA Environmental Protection and Enhancement Act

xx Abbreviations

Page 15: Handbook of Engineering Practice of Materials and Corrosion

EPFM Linear Elastic Fracture MechanicsET Eddy Current Test/TestingEPRI Electric Power Research InstituteERW Electric Resistance WeldingESW Electroslag WeldingETFE Ethylene-Tetrafluoroethylene CopolymerEUB Energy and Utilities Board in CanadaEW Explosive WeldingFAA AC Federal Aviation Administration Advisory CircularsFATT Fracture Appearance Transition TemperatureFBE Fusion Bonded EpoxyFCAW Flux-Cored Arc Weldingfcc Face-Centered CubicFCC Fluid Catalytic CrackingFDIC Federal Deposit Insurance CorporationFEA Finite Element AnalysisFEED Front End Engineering DesignFEP Perfluoro (Ethylene-Propylene) CopolymerFERA The Fastener Engineering and Research AssociationFERC Federal Energy Regulatory CommissionFFS Fitness for ServiceFHWA Federal Highway AdministrationFIA Forging Industry AssociationFM Factory Manual (Insurance Company)FM(E)CA Failure Modes (Effects) and Criticality AnalysisFN Ferrite NumberFRP Fiber-Reinforced Plastics(S)FSS (Super) Ferritic Stainless SteelsFTA Free Trade AgreementGHG Greenhouse GasGMAW Gas Metal Arc WeldingGRP Glass Fiber-Reinforced PlasticGT Governing ThicknessHAZ Heat-Affected ZoneHAZID Hazard IdentificationHAZOP Hazard and OperabilityHBW (or BHN) Brinell HardnessHC (or HRC) Vickers Hardnesshcp Hexagonal Close-Packed StructureHDBS Hydrostatic Design Basis StressHDD Horizontal Directional DrillingMDTD Minimum Detectable Temperature Difference (Thermal Imaging)HDS Hydrostatic Design StressHE Hydrogen EmbrittlementH/EX Heat ExchangerHEAC Hydrogen Environmentally Assisted CrackingHF Hydrogen FluorideHHC Highly Hazardous ChemicalsHIC Hydrogen-Induced CrackingHJP Hollomon-Jaffee ParameterHMW High Molecular WeightHIP Hot Isostatic Pressing (Power Metallurgy)HISC Hydrogen-Induced Stress CrackingHPHT High Pressure-High Temperature

Abbreviations xxi

Page 16: Handbook of Engineering Practice of Materials and Corrosion

HRC (or Rc) Rockwell HardnessHSI High Silicon IronHSLA High Strength Low AlloyHTHA High-Temperature Hydrogen AttackHV Vickers HardnessHVAC Heating, Ventilation and Air ConditioningHydrotest Hydrostatic Test/TestingIACS International Annealed Copper StandardIAE Impact Absorbing EnergyIAEA International Atomic Energy AgencyIBC International Building CodeIDLH Immediately Dangerous to Life and HealthICP Inductively Coupled Plasma (Emission Spectroscopy)IEC International Electrotechnical CommissionIEEE Institute of Electrical and Electronics EngineersIFC International Fire CodeIFI Industrial Fasteners InstituteIHAC Internal Hydrogen-Assisted CrackingIIW International Institute of WeldingIOW Integrity Operating WindowsIP Incomplete PenetrationIP Intellectual PropertyIQI Image Quality IndicatorIRI IM Industrial Risk Insurers InformationIRIS Internal Rotating Inspection SystemISA Instrument Society of AmericaISO Isometric (Drawing)ISOPE The International Society of Offshore and Polar EngineersISR Intermediate Stress RelievingITP Inspection and Test PlanJ.E. Joint EfficientJIP Joint Industry ProjectsJPCL Journal of Protective Coatings & LiningsKDF Knockdown Factor (for fatigue corrosion)KLA Knife-Line AttackLAS Low Alloy SteelsLBW Laser Beam WeldingLCPTT Lower Critical Phase Transformation TemperatureLDPE Low Density PELEFM Linear Elastic Fracture MechanicsLEG Liquefied Ethylene GasLF Lack of FusionLMP Larson-Miller Parameter ¼ (T+460)(C+log t)/1000LMT Lowest Metal TemperatureLNG Liquefied Natural GasLLDPE Linear Low Density PELODMAT Lowest One Day Mean Atmospheric TemperatureLPG Liquefied Petroleum GasLT Leak Test/TestingLTC Long, Threaded, and CoupledLWN Long Welding NeckMAG Metal Active GasMAP Maximum Allowable PressureMAT Maximum Allowable Temperature

xxii Abbreviations

Page 17: Handbook of Engineering Practice of Materials and Corrosion

MAWP Maximum Allowable Working PressureMDMT Minimum Design Metal TemperatureMDT Maximum Design TemperatureMI Malleable IronMI Mechanical IntegrityMIC Microbiological Induced CorrosionMf Martensite finishMFL Magnetic Flux LeakageMMA Manual Metal ArcMPT Minimum Pressurizing TemperatureMRTD Minimum Resolvable Temperature Difference (Thermal Imaging)MSD Materials Selection DiagramMSDS Material Safety Data SheetsMs Martensite Start Point(S)MSS (Super) Martensitic Stainless SteelsMT Magnetic Test/TestingMTBF Mean Time Before FailureMTI Materials Technology InstituteMTO Material Take Off (Civil and Structures)MTR Mill Test ReportMTTR Mean Time to RepairN/A or N.A Not ApplicableNACE National Association of Corrosion EngineersNACT Normalized-Accelerated Cooled and TemperedNAFTA North American Free Trade AgreementNASA National Aeronautics and Space AdministrationNBC National Building Code of CanadaNBIC National Board Inspection CodeNDE (or NDT) Nondestructive ExaminationNEC National Electric CodeNEMA National Electrical ManufacturersNETD Noise Equivalent Temperature Difference (Thermal Imaging)NIST National Institute of Standards and TechnologyNPS Nominal Pipe Size, inchNRDM Neutron Radiographic Dimensional MeasurementsNRT(A) Neutron Radiographic Test (Association)NFPA National Fire Protection AssociationN-T Normalized and TemperedNTIW No Tubes in WindowOEE Overall Equipment EffectivenessOES Optical Emission SpectroscopyOIML International Organization of Legal MetrologyOMAE International Conference on Ocean, Offshore and Arctic EngineeringO.P Operating PressureO.T Operating TemperatureOTC Offshore Technology ConferenceOSHA Occupational Safety and Health AdministrationOVHD Overheadpara. ParagraphPAW Plasma Arc WeldingPB PolybutylenePCC Post Construction Committee (ASME)PCMS Plant Condition Management SoftwarePdM Predictive Maintenance

Abbreviations xxiii

Page 18: Handbook of Engineering Practice of Materials and Corrosion

PDP Process Design PackagePE PolyethylenePED (European) Pressure Equipment DirectivePFA Perfluoro AlkoxyalkanePFEP Polyfluorinated EthylenepropylenePFI Piping Fabrication InstitutePHMSA Pipeline and Hazardous Materials Safety AdministrationPHSS Precipitation Hardening Stainless SteelsP&ID Piping and Instrumentation DiagramsPIP Process Industry PracticesPM Preventive MaintenancePMC Project Management ConsultantP. No. Parent Material NumberPO Purchasing OrderPP Polypropylenepp Partial Pressure, e.g., ppCO2, ppH2S, ppH2PPA Polyperfluoroalkoxy Alkaneppb Part per BillionPPE Personal Protective EquipmentPPI Plastics Pipe Instituteppmw Part per Million Weightppmv Part per Million VolumePQR Procedure Qualification RecordPR Pressure RatingPRD Pressure Relief DevicesPRCI Pipeline Research Council InternationalPRE (or PREN) Pitting Resistance Equivalent NumberPSEC Partial Saturation Eddy Current TestingPSM Process Safety ManagementPT Dye Penetration Test/TestingPTC Performance Test Code (ASME)PTFE PolytetrafluoroethylenePVC Polyvinyl ChloridePVDC Polyvinylidene ChloridePVDF Polyvinylidene FluoridePVF Polyvinyl FluoridePWHT Post Weld Heat TreatmentQA Quality AssuranceQC Quality ControlQST Quenched-Self TemperedQ-T Quenched and TemperedRAGAGEP Recognized Generally Accepted Good Engineering PracticesRAM Reliability, Availability, and MaintainabilityRBI Risk-Based InspectionRebar Reinforcement Bar (in Concrete)RC(F)A Root Cause (Failure) AnalysisRCM Reliability-Centered MaintenanceREM Rare Earth MetalsRFECT Remote Field Eddy Current TestingRMP Risk Management PlanRP Recommended PracticeRPM Reinforced Plastic MortarRT Radiographic Test/TestingRTF Run-to-Failure

xxiv Abbreviations

Page 19: Handbook of Engineering Practice of Materials and Corrosion

RTM Real-Time MonitoringRTP Reinforced Thermosetting PlasticsRTR(P) Reinforced Thermosetting Resin (Pipe)RW Resistance WeldingSAE Society of Automotive EngineersSAW Submerged Arc WeldingSCC Stress Corrosion CrackingSDR Standard Dimension RatioSIDR Standard Inside Dimension Ratios.g. Specific GravitySG Spheroidal GraphiteSHT Solution Heat TreatmentSIS Swedish Institute for StandardsSMAW Shielded Metal Arc WeldingSMRP Society for Maintenance & Reliability ProfessionalsSMTS/SMYS Specified Minimum Tensile Strength/Specified Minimum Yield StrengthSP Standard PracticeSPC Statistical Process ControlSpec SpecificationSQC Statistical Quality ControlSRB Sulfate-Reducing BacteriaSS Stainless SteelSSC Sulfide Stress CrackingSSPC Steel Structures Painting CouncilS/T Shell and TubesSTD Standard(s)STT Surface Tension Transfer (for Welding)SZC Sub-zero CoolingTBE Technical Bid EvaluationTEMA Tubular Exchanger Manufacturers AssociationTHG Thermohydraulic Gripping (Mechanical Bonding)TIG Tungsten Inert GasTIR Thermal/Infrared TestTM (Standard) Test MethodsTMCP Thermomechanical Controlled ProcessTML Thickness Measurement LocationTOFD Time of Flight DiffractionTPM Total Productive MaintenanceTR Technical ReportTRIP Transformation Induced PlasticityT.S. Tensile StrengthTSS Total Suspended SolidsTT Transformation Temperature (microstructure of metal)TTT Time-Temperature-Transformation (Heat Treatment)TTT Tube-to-Tubesheet (H/EX)TWI The Welding Institute (UK)UCC Uniform Commercial Code (US)UOE U (U-ing) forming, O molded (O-ing) and the enlarged diameter (Expanding) combining successive

processesUBC Uniform Building Code (US)UBRS User’s Basic Requirements SpecificationUHMW Ultra-High Molecular WeightUL Underwriters LaboratoriesULDPE Ultra-Low Density

Abbreviations xxv

Page 20: Handbook of Engineering Practice of Materials and Corrosion

PE UNS Unified Numbering SystemUSCG United States Coast GuardUSCO United States Copyright OfficeUSPTO United States Patent and Trademark OfficeUT Ultrasonic Test/TestingUV UltravioletVCI Volatile Corrosion InhibitorVPCI Vapor Phase Corrosion Inhibitor (Cortec’s VCI)VT Visual Test/TestingY.S Yield StrengthWP Wrought Pipe (for fitting grade)WPQ Welding Procedure QualificationWPS Welding Procedure SpecificationWRC Welding Research Councilwt WeightWTIA Welding Technology Institute of AustraliaXRF X-Ray Fluorescence Spectroscopy# (lb) Standard Flange Rating (pounds/sq. inch)

xxvi Abbreviations

Page 21: Handbook of Engineering Practice of Materials and Corrosion

Standard Terminology and Acronyms

– ASTM A340 Terminology of Symbols and Definitions Relating to Magnetic Testing– ASTM A941 Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys– ASTM C125 Terminology Relating to Concrete and Concrete Aggregates– ASTM D16 Terminology for Paint, Related Coatings, Materials, and Applications– ASTM D4538 Terminology Relating to Protective Coating and Lining Work for Power Generation Facilities– ASTM E6 Terminology Relating to Methods of Mechanical Testing– ASTM E7 Terminology Relating to Metallography– ASTM E1316 Terminology for NDE– ASTM G40 Terminology Relating to Wear and Erosion– NACE/ASTM G193 Terminology and Acronyms Relating to Corrosion– MSS SP-90 Terminology for Pipe Hangers and Supports– PIP PNC00002 Abbreviated Piping Terms and Acronyms

xxvii

Page 22: Handbook of Engineering Practice of Materials and Corrosion

Definitions and Comparisons

1. Industrial Code, Standard, and Local Regulations ------– xxx2. HAZID vs. HAZOP ------– xxx3. Minimum Temperatures (CET, MAT, MDMT) ------– xxx4. MAWP vs. MAP: See Sect. 1.2.5. ------– xxxi5. Joint Efficiency and Quality Factor: See Sect. 1.2.7. ------– xxxi6. Maximum Design Temperature (MDT) vs. Maximum Metal Skin Temperature (MMST) ------– xxxi7. Coating vs. Painting ------– xxxi8. Pipe vs. Tube ------– xxxi9. Piping vs. Pipeline ------– xxxi10. OCTG (Drill Pipe, Casing Pipe, and Tubing) ------– xxxi11. Ferrous Metal vs. Nonferrous Metal ------– xxxii12. Carbon Steel vs. Low Alloy Steel ------– xxxii13. Low Alloy Steel vs. High Alloy Steel ------– xxxii14. Carbon Steel vs. Cast Iron ------– xxxii15. Cast Steel/Alloy vs. Wrought Steel/Alloy ------– xxxii16. Sensitization (Cr Depletion) vs. Knife-Line Attack ------– xxxii17. Ferrite Contents vs. Ferrite Number (FN) ------– xxxii18. Toughness vs. Ductility ------– xxxii19. Tensile Strength vs. Design Stress Integrity Value ------– xxxii20. Work Hardening vs. Precipitation (also called Aging) Hardening ------– xviii21. MTR vs. PMI ------– xxxii22. Hardness vs. Hardenability ------– xxxii23. Solution Heat Treatment vs. Stabilizing Heat Treatment ------– xxxiii24. Standard Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys ------– xxxiii25. SCC (Stress Corrosion Cracking) vs. SSC (Sulfide Stress Cracking) ------– xxxiii26. Lethal Service vs. EAC vs. ASME B31.3 Category “M” Service ------– xxxiii27. Erosion vs. Abrasion vs. Adhesive Wear (Galling) ------– xxxiii28. Dew Point vs. Relative Humidity (RH) ------– xxxiii29. Cold Work vs. Hot Work for Fabrication ------– xxxiii30. Cold Rolled vs. Hot Rolled for Base Metal ------– xxxiii31. Impact Test Absorbing Energy vs. Impact Strength ------– xxxiii32. Fracture Appearance Transition Temperature (FATT) vs. Ductile-Brittle Transition

Temperature (DBTT)------– xxxiii

33. TEMA Classes (R, C, and B) ------– xxxiv34. Long Welding Neck (LWN) Flanges vs. Forged Nozzle ------– xxxiv35. FRP (Fiber-Reinforced Plastics) vs. GRP (Glass Fiber-Reinforced Plastics) ------– xxxiv36. Scale vs. Film on the Metal Surface ------– xxxiv37. Zinc Embrittlement vs. Dezincification ------– xxxiv38. Patent, Copyright, Trademark, and Registration ------– xxxiv39. Seal Weld vs. Strength Weld ------– xxxv40. Telltale Hole vs. Vent Hole ------– xxxv41. Gravity vs. Viscosity of Crude Oil ------– xxxv42. Sweet Crude vs. Sour Crude ------– xxxvi

xxix

Page 23: Handbook of Engineering Practice of Materials and Corrosion

43. Cold Electro-galvanizing vs. Hot-Dip Galvanizing ------– xxxvi44. Unit Conversion ------– xxxvii

*Conceptual Definition for Term of High Temperature

Well – Onshore: �150�C (300�F)Well – Offshore Subsea: �177�C (350�F)Onshore and Offshore Topsides: �343–427�C (650–800�F) per Plant and/or Material

1. Industrial Code, Standard, and Local Regulation: See Table 1.2 for comparison of standards and specifications.

Industrial codes Industrial standards Local regulations

Mandatory standards are those that all manu-facturers, design engineers, technicians, andinspectors must comply with and are typicallyset by industrial associations under the controlof the government. Codes are typically writtenin what is called mandatory or “code” lan-guage. This is very similar to specificationlanguage, with which most of us are quitefamiliar. This is best exemplified by using theword “shall or must” in lieu of “may orshould.” Using a mandatory language makesthe code enforceable; however, enforceabilityis somewhat subjective and could lead to avariety of interpretations. US Industrial Codesare widely used for project execution andmaintenance in the world industries. Normally,all contents of the codes shall be appliedentirely without exception once the applicablecode list specifies. Good examples for indus-trial codes: US safety standards regardingautomobile seatbelts or side-impact resistance,NBC (Building, NFPA (Fire), ASME BPVCand B31 series, etc.

Voluntary standards, on the other hand, are notregulated by the government, nor are theyrequired to be used by the industry. Voluntarystandards are considered consensus standardssince they’re developed using a process thatallows participation by all interested stake-holders including representatives of producers,manufacturers, users, consumers, and govern-ment agencies. This is best exemplified byusing the word “should or may” in lieu of“shall or must.” However, once they are des-ignated for application in the project specifi-cation, they will be mandatory standards forthe project. US industrial standards are widelyused for project execution and maintenance inthe world industries. Normally, these standardscan be applicable partially if the user requires.Good examples for industrial codes: ANSI(Standards Institute), ASTM (Testing andMaterials), NIST (Standards and Technology),API (Petroleum Institute), NACE (Associationfor Corrosion), etc.

Local regulations are typically issued by var-ious governments/states/provinces/municipaland representative agencies to carry out theintent of legislation enacted by the legislatureof the applicable jurisdiction-Act-Law. Localregulations are mandatorily used in the appli-cable local regions. Good examples forindustrial codes: US Federal Regulation, CFR,EUB, DOE, DOT, FERC, USCG (CG-ENG),OSHA, BSEE, NAFTA, USMCA, EHS, etc.

2. HAZID vs. HAZOP: See Sect.1.1.1.2(b) and (c) for more details.

HAZID (Hazard identification) HAZOP (Hazard and operability)

It is to early identify the hazards or threats with more of a general riskanalysis tool, which are under any possible unwanted incidents within adiscipline, operation, or area. The classification made is done on thebasis of probability and consequences. A HAZID study provides aqualitative analysis of a worksite in order to determine its worker safetyrisk level. Normally performed from evaluation stage to early definestage.

It is used to identify abnormalities in the working environment andpinpoint the root causes of the abnormalities. It deals with compre-hensive and complex workplace operations, which, if malfunctionswere to occur, could lead to significant injury or loss of life. It is a moredetailed evaluation than HAZID. Normally performed from the definestage to early execute stage.

3. Minimum Temperatures

CET (critical exposure temperature) MAT (minimum allowable temperature) MDMT (minimum design metal temperature)

The lowest (coldest) metal temperature derivedfrom either the operating or atmospheric con-ditions at the maximum credible coincidentcombination of pressure and supplementalloads that result in primary stresses. Note thatoperating conditions include startup, shut-down, and upset conditions. The CET may be asingle temperature at the maximum crediblecoincident combination of pressure and pri-mary supplemental loads [that result in generalprimary tensile stress (including any stresses

The lower (coldest) permissible metal temper-ature limit for a given material and thicknessbased on its resistance to brittle fracture. It maybe a single temperature or an envelope ofallowable operating temperatures as a func-tion of pressure. The MAT is derived frommechanical design information, materialsspecifications, and materials data. This is thematerials resistance to fracture. Typically, theMAT for the equipment will be the limiting(highest) temperature considering the effects of

The lowest metal temperature at which a sig-nificant load can be applied to a pressure ves-sel as defined by the ASME Section VIII,Division 1, UG-20. The MDMT and the MATare the same, unless the service causesembrittlement of the steel (e.g., temperembrittlement or hydrogen embrittlement).Then, the MAT will be higher than theMDMT and become the lowest permissibletemperature while under load. See Sect.1.1.12

xxx Definitions and Comparisons

Page 24: Handbook of Engineering Practice of Materials and Corrosion

CET (critical exposure temperature) MAT (minimum allowable temperature) MDMT (minimum design metal temperature)

due to net section bending) greater than55 MPa (8 ksi)] if that is also the lowest(coldest) metal temperature for all other com-binations of pressure and primary supplemen-tal loads. If lower (colder) temperatures atlower pressures and supplemental loads arecredible, the CET can be defined by an enve-lope of temperatures and pressures, e.g., thevapor pressure curve (depressurization) forLPG streams. The CET for atmospheric stor-age tanks constructed to API 650 is defined asthe lower of either the lowest one-day meanatmospheric temperature plus 8 �C (15 �F) orthe hydrostatic test temperature. The CET forlow-pressure storage tanks constructed to API620 should be established using the methodol-ogy for pressure vessels. The methodology fordetermining the CET is covered in API 579–1/ASME FFS-1, Part 3, 3.1.5.

all the applicable potential mechanisms affect-ing toughness (i.e., low temperature toughness,hydrogen embrittlement, temper embrittle-ment, etc.). The MAT should always be belowthe CET. This temperature is sometimesreferred to as the MPT (minimum pressuriza-tion temperature). The methodology for deter-mining the CET is covered in API 579-1/ASME FFS-1, Part 3, 3.1.6.

for MDMT and DMT (design minimumtemperature).

4. Maximum Allowable Working Pressure (MAWP) vs. Maximum Allowable Pressure (MAP): See Sect. 1.2.5.5. Joint Efficiency and Quality Factor: See Sect. 1.2.7.6. Maximum Design Temperature (MDT) vs. Maximum Metal Skin Temperature (MMST): MMST shows higher temper-

ature than MDT due to the other heat resources, such as flame in furnace/heater, while MDT is based on the maximum bulkservice temperature. In many cases of fire heaters, the MMST shows 50–150 �C (90–270 �F) higher than that of the MDT.See Sect. 2.1.6.8 and 2.6.2.3 General Note e for a case of application for MMST.

7. Coating vs. Painting: The terms are often used interchangeably because there are no clear definition for each word in thecodes and standards. Traditionally, the term of painting specification has been used for industrial application.

However, currently, many end-users are changing the title to “Protective Coating (Painting) Specification” or Painting(Coating) Specification” for their specification because industrial needs are based on two purposes: functional anddecoration/color-coding (safety base). The difference of the two terms may be recognized as below:

Item Coating Painting

Application Not only for anticorrosion paints but frequently used for functionalpurposes, such as mechanical protection coatings, fire protectioncoatings, waterproofing coatings, wear-resistant coatings, andanticorrosion coatings, which can be used on steel, concrete, andother substrates.

More often used for decoration or color coding than thefunctional purpose.Many people use “painting” to cover everything. In thematerial terms, all paints are coatings but not all coatings arepaints.

Depositmaterials

Can refer to a layer of any solid or liquid film to a substrate or to theapplication of such a layer.

Can refer to a layer on the substrate with paint, varnish,lacquer, tar, etc. in liquid form or to the application of such alayer.

Filmthickness

Used for higher thicknesses. Used for lower thicknesses.

8. Pipe vs. Tube in Tubular Type: Pipe is for mass transfer, while tube is for heat transfer. Hence, tubes are available forsmall size (up to 7 inches), while pipes are for small and larger sizes. The thickness of tubes is designated by mm (inch) orgauge, but that of pipes is designed by schedule. The standard diameters are used as nominal pipe size (NPS) for pipes andoutside diameter (OD) for tubes. Meanwhile, tubing material in oil and gas production is the conduit through which oiland gas are brought from the producing formations to the field surface facilities for processing (e.g., per API Spec 5CT).

9. Piping vs. Pipeline: They are the same purpose of the mass transfer, but piping is used for the pipes connected betweenequipment, while pipeline is used for the pipes connected between certain locations (long distance).

10. OCTG (Oil Country Tubular Goods): Drill Pipe, Casing Pipe, and Tubing (Fig. 1) – See Table 2.175 through Table 2.178for more details.

Definitions and Comparisons xxxi

Page 25: Handbook of Engineering Practice of Materials and Corrosion

– Drill pipe is a heavy seamless tube that rotates the drill bit andcirculates drilling fluid. Pipe segments 9 m (30 ft) long arecoupled with tool joints. Drill pipe is simultaneously subjectedto high torque by drilling, axial tension by its dead weight, andinternal pressure by purging of drilling fluid. Additionally,alternating bending loads due to non-vertical or deflected dril-ling may be superimposed on these basic loading patterns. SeeAPI Spec 5D, API RP5DP, API RP49, API Spec 16A/16R, APIRP7G, API RP5A3, API RP5A5, API RP5B1, API 6A718, etc.

– Casing pipe lines the borehole. It is subject to axial tension byits dead weight, internal pressure by fluid purging, and externalpressure by surrounding rock formations. Casing is particularlyexposed to axial tension and internal pressure by the pumped oilor gas emulsion. See API RP5CT, API RP5C1, API RP5C5,API RP5A3, API RP5A5, API RP5B1, API Spec 5B, APITR5C3, API TR5C, etc.

– Tubing is a pipe through which the oil or gas is transported fromthe wellbore. Tubing segments are generally around 9 m (30 ft)long with a threaded connection on each end. See API 5CT,API RP5C5, API RP5C1, API RP5A3, API RP5A5, APIRP5B1, API Spec 5B, API TR5C3, API TR5C, etc.

11. Ferrous Metal vs. Nonferrous Metal: See Table 2.2.12. Carbon Steel vs. Low Alloy Steel: See Table 2.4.13. Low Alloy Steel vs. High Alloy Steel: See Table 2.4.14. Carbon Steel vs. Cast Iron: See Table 2.23.15. Cast Steel/Alloy vs. Wrought Steel/Alloy: A steel/alloy that is wrought is one that is worked by being forged or

hammered. A cast steel/alloy is when the molten alloy is poured into a mold to give it its shape and has very littlestrength. It is not followed by being forged or hammered any more.

16. Sensitization (Cr depletion) vs. Knife-Line Attack: See Sect. 2.1.6.3 and 4.11.6.7, respectively.17. Ferrite Contents vs. Ferrite Number (FN): See Sect. 2.1.6.1.18. Toughness vs. Ductility: See Sect. 1.1.10.2.19. Tensile Strength vs. Design Stress Integrity Value: See Sect. 1.1.10.1.20. Work Hardening vs. Precipitation (also called Aging) Hardening: See Sect. 1.1.10.2(m) and (n).21. MTR vs. PMI: See Sect. 2.5.1.22. Hardness vs. Hardenability:

Hardness Hardenability

Hardness is a material property. It isthe ability of a material to withstandthe indent or penetration and is mea-sured on the metal surface in Rock-well or Vickers. It is also used formeasurement of the stiffness of amaterial. The softer the material, thedeeper the penetration, the wider theimpression. The hardness of a carbonsteel depends on its carbon content;any high-carbon steel is naturallyhard, no matter how it is cooled. It isusually heat-treated to give it the bestcombination of hardness and tough-ness required for a particular applica-tion. See Sect. 4.2.3 (hardness effecton weldments), Sect. 5.4.1 for hard-ness tests.

Hardenability is the ability of a materialto become hardened at a given depth byvarious methods of hardening such ascarburizing or quenching. It is firmlydependent on the quantity of carbon inthat material, and actually, it does nothave any measuring unit. Hardenabilityto achieve a targeted hardness at a givendepth usually refers to the ability of alloysteels to form martensite through heattreatment and thus acquire higherstrength. This ability is often not directlyrelated to carbon content, to put itanother way. For instance, an alloy steelwith relatively low carbon content maybe more hardenable than another alloysteel containing two or three times asmuch carbon (see Fig. 2). JominyEnd-Quench Test is the most popular testmethods.

Figure 1 Deep well schematic

Figure 2 Hardenability curves resulted by JominyEnd-Water Quench Test for five different AISI steels with0.40%C

xxxii Definitions and Comparisons

Page 26: Handbook of Engineering Practice of Materials and Corrosion

23. Solution Heat Treatment vs. Stabilizing Heat Treatment: See Sect. 4.12.5.24. Standard Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys: See ASTM A941.25. Stress Corrosion Cracking (SCC) vs. Sulfide Stress Cracking (SSC): See 2.1.6.2 for SCC. SSC which is one of the SCC

failures is based on the Wet H2S (sour) service. See ANSI/NACE MR0175/ISO 15156 and NACE MR0103/ISO17945for SSC.

26. Lethal Service vs. EAC vs. ASME B31.3 Category “M” Service: See Sects. 1.1.11.1 and 1.1.11.2.27. Erosion vs. Abrasion vs. Adhesive Wear (Galling): See Sect. 2.4.5.28. Dew Point vs. Relative Humidity (RH): Dew point is the temperature at which the air is saturated (100% RH). It is

dependent on only the amount of moisture in the air. RH is the % of saturation at a given temperature; it depends onmoisture content and temperature. As air is heated, its ability to hold water vapor doubles with about every 11 �C increase.If air is at 100% RH at 60 �C but is heated to 93 �C, its RH decreases to about 33%. Its dew point remains at 60 �C.

29. Cold Work vs. Hot Work for Fabrication: See Sects. 3.1.4.1 and 3.1.4.2.30. Cold Rolled vs. Hot Rolled for Base Metal

Cold rolled steel Hot rolled steel

Cold rolled steel is essentially hot rolled steel that has had furtherprocessing. The steel is processed further in cold reduction mills, wherethe material is cooled (at room temperature) followed by annealingand/or tempers rolling. This process will produce steel with closerdimensional tolerances and a wider range of surface finishes. The termcold rolled is mistakenly used on all products, when actually the productname refers to the rolling of flat rolled sheet and coil products. Thisprocess results in higher YS and has four main advantages:Cold drawing increases the YS and TS, often eliminating further costlythermal-treatments.Turning gets rid of surface imperfections.Grinding narrows the original size tolerance range.Polishing improves surface finish.All cold products provide a superior surface finish and are superior intolerance, concentricity, and straightness when compared to hot rolledsteel. Cold finished bars are typically harder to work with than hot rolleddue to the increased carbon content. However, this cannot be said aboutcold rolled sheet and hot rolled sheet. With these two products, the coldrolled product has low carbon content, and it is typically annealed,making it softer than hot rolled sheet.

Hot rolling is a mill process which involves rolling the steel at a hightemperature (typically at a temperature over 927 �C (1700 �F), which isabove the steel’s recrystallization temperature. When steel is above therecrystallization temperature, it can be shaped and formed easily, andthe steel can be made in much larger sizes. Hot rolled steel is typicallycheaper than cold rolled steel due to the fact that it is oftenmanufactured without any delays in the process, and therefore, thereheating of the steel is not required (as it is with cold rolled). When thesteel cools off, it will shrink slightly, thus giving less control on the sizeand shape of the finished product when compared to cold rolled.Applications: Hot rolled products like hot rolled steel bars are used inthe welding and construction trades to make railroad tracks andI-beams, for example. Hot rolled steel is used in situations whereprecise shapes and tolerances are not required (most weldable metals).

31. Impact Test Absorbing Energy vs. Impact StrengthBoth of them are typically defined as the amount of energy

required to fracture a specimen subjected to a specific shockloading under impact at the test temperature (e.g., minimumdesign temperature). Impact test absorbing energy is typicallydescribed as energy (e.g., J) per standard size specimen (e.g.,1.0 cm � 0.8 cm ¼ 0.8 cm2) while impact strength is normallydescribed as energy/area (e.g., J/cm2).

32. Fracture Appearance Transition Temperature(FATT) vs. Ductile-Brittle Transition Temperature (DBTT):The FATT value is based on the change from cleavage to shearfracture appearance percentage for a broken CVN impact spec-imen. Commonly, FATT50 is used, where 50 refers to 50%cleavage and 50% shear fracture appearance on a broken CVNimpact specimen. The DBTT is similar except the DBTT value isbased on the inflection point of a CVN impact energy testtemperature curve, where the CVN upper shelf (ductile) changesto lower shelf CVN (brittle) values at a specific test temperature.Figure 3 shows the comparison of both transition temperatures.

Figure 3 Comparison of both transition temperatures ofFATT and DBTT. T1: Conservative, above T1 fracture is100% fibrous. Fracture Transition Plastic (FTP) verydemanding. T2: 50% cleavage – 50% ductile fractureappearance transition temperature (FATT). T3: Averageof upper and lower shelf values (often approx. ¼ T2). T4:Arbitrary value of energy absorbed (CVN), for example,20 J (15 ft.lb) for low strength ship steel.Ductility transitiontemperature. T5: 100% cleavage fracture. Nil ductility tem-perature (NDT)

Definitions and Comparisons xxxiii

Page 27: Handbook of Engineering Practice of Materials and Corrosion

33. TEMA (Tubular Exchanger Manufacturers Association) Process Classes

Class “R” Class “C” Class “B”

To specify design and fabrication of unfired shelland tube H/EXs for the generally severe require-ments of petroleum and related processingapplications.

To specify design and fabrication of unfired shell andtube H/EXs for the generally moderate requirementsof commercial and general process applications.

To specify design and fabricationof unfired shell and tube H/EXs forchemical process service.

34. Long Welding Neck (LWN) Flanges vs. Forged Nozzle

LWN flanges Forged nozzle

Flanges have a neck outside diameter not exceeding thehub diameter specified in ASME B16.5.

A forged nozzle flange which are met:(1) For ASME B16.5 applications, the forged nozzle flange shall meet all dimensional

requirements of a flanged fitting given in ASME B16.5 with the exception of theinside diameter. The inside diameter of the forged nozzle flange shall not exceedthe inside diameter of the same size lap joint flange given in ASME B16.5. ForASME B16.47 applications, the inside diameter shall not exceed the weld hubdiameter A given in the ASME B16.47 tables.

(2) For ASME B16.5 applications, the outside diameter of the forged nozzle neckshall be at least equal to the hub diameter of the same size and class ASME B16.5lap joint flange. For ASME B16.47 applications, the outside diameter of the hubshall at least equal the X diameter given in the ASME B16.47 tables. Larger hubdiameters shall be limited to nut stop diameter dimensions. See ASME Sec. VIII,Div.1, Fig. 2–4 sketch (12) and (12a) and ASME Sec. VIII, Div.1, UG-44(j) formore details.

35. Fiber-Reinforced Plastics (FRP) vs. Glass Fiber or Fiberglass-Reinforced Plastics (GRP)

FRP GRP

Common GRP is one of the FRP composite materials. Fiber is embedded in the matrix. Fiber is for strength, stiffness, and durability, whileresin is for smoke penetration resistance, inter-laminar shear strength, toughness, and corrosion resistance. Thermal resistance isnormally governed by resin material. ASME and ISO codes do not have different classes as FRP and GRP. Fiberglass-reinforcedplastics may be interpreted as FRP or GRP.

Fiber Spectra 1000, carbon (CFRP), graphite, quartz, aramid, andboron.

Glass (E-glass, S-glass).

Matrix-Plas-tic Resin(Polymer)

Polyester, vinyl ester, epoxy (for high performance),bismaleimides/polyimides (high temperature), and furan/phe-nolics (high temperature and high smoke resistance).

Polyester, vinyl ester, and epoxy.

Usage High performance application such as aircraft interiors. Low performance applications such as producing swimmingpools, shower cubicles, panels, covers, enclosures, gliders,boats, bathtubs, pipes and fittings, water tanks, pipe, surf-boards, automobiles, external door skins, and roofing products.

See ASME Section X, ISO 14692, and Table 1.7 in this book for more detailed information and requirements.

36. Scale vs. Passive Film on the Metal Surface: Scales that are made by oxidation or other metallic reaction (e.g., FeS, SiCr-oxides, etc.) have heavy thickness and porous, so they are typically recognized as undesirable products even though theymay provide somewhat corrosion/erosion protection in the limited condition. However, passive films made by oxidationor other metallic reaction spontaneously (e.g., Cr2O3, TiO2, etc.) have ultrathin thickness and fine and dense on the CRAmetal surfaces. Passive film formation is also known as passivation.

37. Zinc Embrittlement vs. DezincificationZinc will be precipitated with alloy elements, such as NiZn or NiZn2, which have low melting temperature, and then

solidification cracking occurs (call out zinc embrittlement; see Sect. 2.1.6.6 for more details) while corrosion process thatappears to selectively dissolve one of the constituents of an alloy (e.g., Zn removal in brass calls out dezincification; seeFig. 2.95 and Tables 2.178(13), 2.76, and 2.138(15) for more details).

38. Patent, Copyright, Trademark, and Registration (or Registered Trademark) for All Types of Products Including AnyDistinctive Name, Symbol, or Word in the United States: USPTO (United States Patent and Trademark Office), USCO(United States Copyright Office), UCC (Uniform Law Commission). Meanwhile, Google Patents (https://patents.google.com) provides the indexes of worldwide patents and patent applications.

xxxiv Definitions and Comparisons

Page 28: Handbook of Engineering Practice of Materials and Corrosion

(source: https://smallbusiness.chron.com/differences-between-copyright-trademark-registration-780.html/https://smallbusiness.chron.com/difference-between-copyrights-patents-3220.html/https://www.whitecase.com/publications/article/perfecting-security-interests-united-states-patents-trademarks-and-copyrights)

Patent Copyright TrademarkRegistration (or registered

trademark)

Purpose To provide the right (to keep it as the originator’s property) to the originator for the certain period.

Symbol © TM or SM ®

GoverningLaws

UCC, Article 9USPTO

UCC, Article 9USCO

Lanham ActUSPTO

ApplicableItems Seeeach law

Intellectual property – usuallyan invention or certain typesof discoveries (mathematicalequations and product formu-las for example).

Literature, drama, music, art,books, videos, or intellectualproperty.

For words, symbols, devices, or product/company names thatare used to distinguish the goods of one manufacturer or sellerfrom that of another.Use TM (for goods) or SM (for service) if not yet registeredafter applied. Use ® if registered.

Function Patents provide the patentowner “the right to excludeothers from making, using,offering for sale, or selling theinvention in the U.S.”according to USPTO.

Once an original piece is fin-ished, it automatically receivescopyright protection. Avail-able to published andunpublished works, a copy-right gives the owner theexclusive right to reproducethe work, prepare derivativeworks, distribute copies, andperform/display the workpublicly. See Note 3 below.

This trademark (TM) does notprotect the company fromanother company that pro-duces a similar product oruses a similar name. If such athing were to happen, theoriginal company would haveto prove that it produced thename or design first but stillmay not have a legal defensewithout a registration.

With a registration of ®, atrademark is protectedagainst another company’suse of the name or image. Aregistered trademark is a fed-eral and legal registration ofthe mark. Any future com-pany wishing to register itsown design/name/image hasto check to be sure that it isnot like any registered trade-marks. See Note 5 below.

Registrationand theProcess

Patent applications can becomplex and costly, and pat-ent attorneys are oftenconsulted to assist inventors.See Note 1 below.

Copyright registrationinvolves filing the proper formobtained from USCO andsubmitting it with the requiredfee and work sample. See Note4 below.

Be registered through USPTO. First, you search the onlinedatabase (Trademark Electronic Search System (TESS)) todetermine that your mark is not claimed. Once you havedetermined that your mark is unique, fill out a trademarkapplication and present a representation of the mark. The reg-istration process can be lengthy, taking about 4 months toreceive a response to your application.

Protectionperiod afterregistered

Expire after 20 years of issu-ance to encourage competitionand innovation. See Note2 below.

Generally lasts for the life ofthe author(s) plus an addi-tional 70 years.

– Lasts 10 years but must beverified between years 5 and6 to confirm that the trade-mark is still in use.

Notes1. A patent search is perhaps the most labor-intensive process and involves searching through past patents to ensure that the property has not alreadybeen patented. Abstract definitions, detailed drawings, inventor information, inventor claims, and specifications are required, and it can take up toseveral years for a patent to be issued.

2. Copyrights expire depending on a number of factors, including whether the work was published or unpublished, the year of publishing, and thetype of author. For example, protection of an individual author’s work published after 2002 expires 70 years after the author’s death. If the work isowned and published by a corporation, copyright expires 95 years from date of publication or 120 years from the date of creation, whichevercomes first. Work no longer protected under copyright or created by any government office for civil use is considered in the “public domain” andmay be used freely.

3. Copyrights do not cover titles, names, phrases or slogans, symbols, designs, ideas, procedures, methods, concepts, or discoveries.4. USCO does not compare new works with those previously registered by others and only serves to provide dated evidence in cases of infringementor misuse. When infringement lawsuits are filed, the courts make the final ruling by comparing the works in question. When misuse suits arise, thecourt relies on copyright registration dates to prove ownership.

5. If the image is too similar and is still produced, the company is guilty of trademark infringement.

39. Seal Weld vs. Strength Weld: See Sect. 4.1.1.2 and Table 3.10.40. Telltale Hole vs. Vent Hole: See Sect. 3.3.3.41. Gravity vs. Viscosity of Crude Oil (based in 2012)

Definitions and Comparisons xxxv

Page 29: Handbook of Engineering Practice of Materials and Corrosion

Gravity vs. viscosityAPI

definition API gravity (density) Typical resources

AverageAPI

gravityViscosity, cSt

(mm2/s)

The term of heavy oil is a reference to the high density(API Gravity) of crude oils. Viscosity is not synony-mous with specific gravity (SG). There is a positive butvery loose correlation (Fig. 4) between gravity andviscosity that is specific to a given oilfield – but anyquantitative transform from API gravity (convertedfrom SG) to viscosity is a rough approximation at best,and there are no transforms or rules of thumb for oils ingeneral.Formula to calculate API gravityAPI Gravity (�) ¼ 141.5/SG – 131.5

Figure 4 Gravity vs. Viscosity of crude oil (typical, butnot always)

Light >31.1� [<870 kg/m3

(0.87 SG)]Kutubu Oil 44 2.1 @20 �CWest TexasIntermediate

40 4.9 @20 �C

Brent Oil 38 2.86 @50 �CBonny Light Oil 35.6 2.90 @50 �CArab Light Oil 34.2 10.7 @20 �CCanadian SyntheticCrude Oil (maxi-mum for pipeline)

33 350@15�C

Tia Juana Light Oil 31.9 8.8 @38�CMedium 31.1� to <22.3� (870–

920 kg/m3) [0.87–0.92 SG]

Alaska North SlopeCrude Oil

29

Arab Heavy Oil 27

Heavy 22.3–10 � (920–1000kg/m3) [0.92–1.00SG]

Alaska Viscous Oil 16–24

Alaska Heavy Oil 8–14

Tia Juana Heavy Oil 12.3 88.6 @38 �CReference Natural Water 10

ExtraHeavy

<10� (>1000 kg/m3

(1.00 SG)]Venezuela(Orinoco)

10

CanadianLloydminsterBitumen

9–18

Canadian AthabascaBitumen

6–10 760@15 �C

42. Sweet Crude vs. Sour Crude - Fig. 5

• Sweet crude: sulfur content �1 wt%(or 0.42 wt% � S � 1 wt%)

• Sour crude: sulfur content >1 wt%

Note: The quality of most US shale oilsindicates sweet crude.

43. Cold Electro-galvanizing vs. Hot-Dip Galvanizing

Cold electro-galvanizing Hot-dip galvanizing

Purpose and process To provide surface protection including CP in atmospherethrough metallic bonding of steel and Zn by electro-galvanizing at room temperature. Thickness: 25–400 μm(1–1.5 mil)

Galvanizing by immersing it into a molten zinc bathat temperatures of around 450 �C (840 �F). Onceremoved from the bath, the zinc coating on the ironor steel’s exterior reacts with oxygen in the atmo-sphere to form zinc oxide (ZnO). ZnO further reactswith CO2 to form the protective layer known as zinccarbonate (ZnCO3). Cleaning and stress relievingof the substrate are required before immersion.Thickness: 125–150 μm (5–6 mil)

Bonding, durability,abrasion resistance, and CPcapabilities

Poor than the quality of hot-dip galvanizing Excellent quality compared to cold electro-galvanizing

Source: EIA (2012)

Sweet

Sour

API Gravity (by A Measurement of Crude Oil Density)

Mexico - Maya

Saudi Arabia-Heavy

Kuwait (Conventional)

Oman (Conventional) Ecuador-Oriente

S (w

t%)

Northsea-Brent

UAE - Dubai

Libya-Es Sider

Saudi Arabia-Light

FSU - Urals

Iran - Heavy Iran-Light

USA-Mars

Nigeria-Bonny Light

USA - WTI

USA - LLS Algeria-Sahara Blend Malysis-Tapis

Heavy Light

Figure 5 API gravity or several crudes per sour and sweet

xxxvi Definitions and Comparisons

Page 30: Handbook of Engineering Practice of Materials and Corrosion

44. Unit ConversionEnergy: 1 ft-lb ¼ 1.355818 joulesPressure: 1 ksi ¼ 1000 psi ¼ 6.895 MPa ¼ 6895 kPa ¼ 6895 kN/m2 ¼ 68.94757 bar (1 bar ¼ 14.5 psi)Density: 1 lb/in3 ¼ 27.68 ton/m3

Temperature (certain): �F ¼ 1.8 � �C + 32Temperature (absolute or delta): �F ¼ 1.8 � �CSee ASME Sec. VIII, Div.2, Annex 1-C for ASME application.

Definitions and Comparisons xxxvii