64
Hamiltonian approach to Yang- Hamiltonian approach to Yang- Mills Theory in Coulomb gauge Mills Theory in Coulomb gauge H. Reinhardt Tübingen Collaborators: G. Burgio, M.Quandt, P. Watson D. Epple, C. Feuchter, W. Schleifenbaum, D. Campagnari, S. Chimchinda, M. Leder, W. Lutz, M. Pak, C. Popovici, J. Pawlowski, A. Szczepaniak, A.Weber, 1

Hamiltonian approach to Yang-Mills Theory in Coulomb gauge

  • Upload
    isaiah

  • View
    27

  • Download
    1

Embed Size (px)

DESCRIPTION

Hamiltonian approach to Yang-Mills Theory in Coulomb gauge. H. Reinhardt Tübingen. Collaborators : G. Burgio, M.Quandt, P. Watson D. Epple, C. Feuchter, W. Schleifenbaum, D. Campagnari, S. Chimchinda, M. Leder, W. Lutz, M. Pak, C. Popovici, J. Pawlowski, A. Szczepaniak, A.Weber,. - PowerPoint PPT Presentation

Citation preview

Page 1: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Hamiltonian approach to Yang-Hamiltonian approach to Yang-Mills Theory in Coulomb gaugeMills Theory in Coulomb gauge

H. Reinhardt

Tübingen

Collaborators:

G. Burgio, M.Quandt, P. Watson D. Epple, C. Feuchter, W. Schleifenbaum,D. Campagnari, S. Chimchinda, M. Leder, W. Lutz, M. Pak, C. Popovici,

J. Pawlowski, A. Szczepaniak, A.Weber,

1

Page 2: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

aim of the talkaim of the talk

microscopic description of infrared microscopic description of infrared properties like confinement properties like confinement

Hamiltonian approach to YMTHamiltonian approach to YMT Coulomb gaugeCoulomb gauge

2

Page 3: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Plan of TalkPlan of Talk Hamiltonian approach to Yang-Mills Hamiltonian approach to Yang-Mills

theory in Coulomb gaugetheory in Coulomb gauge basic results: propagatorsbasic results: propagators comparison with latticecomparison with lattice dielectric function of the Yang-Mills dielectric function of the Yang-Mills

vacuumvacuum topological susceptibilitytopological susceptibility D=1+1: Gribov copiesD=1+1: Gribov copies conclusionsconclusions

3

Page 4: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

C. Feuchter & H. R. hep-th/0402106, PRD70(2004) H. R. & C. Feuchter, hep-th/0408237, PRD71(2005)

W. Schleifenbaum, M. Leder, H.R. PRD73(2006)D. Epple, H. R., W. Schleifenbaum, PRD75(2007)

H. Reinhardt, D. Epple, Phys.Rev.D76:065015,2007C. Feuchter & H. R,Phys.Rev.D77:085023,2008,

D. Epple, H. R., W. Schleifenbaum, A. Szczepaniak, Phys.Rev.D77:085007,2008

H. Reinhardt, arXiv:0803.0504 [hep-th] PhysRevLett.101.061602,

D. Campangnari & H. R., arXiv:0807.1195 [hep-th], Phys.Rev.D, in press

G. Burgio, M.Quandt, H.R., arXiv:0807.3291 [hep-lat]

5

References:

related work: SwiftSzczepanik & Swanson

Zwanziger

Page 5: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Canonical Quantization of Yang-Canonical Quantization of Yang-Mills theoryMills theory

momenta ( ) / ( ) ( )a a ai i ix S A x E x

)( scoordinatecartesian xAa

0)( :gauge Weyl 0 xAa0)(0 xa

quantization: ( ) / ( )a ak kx i A x

))()(( 22321 xBxxdH

Gauß law: mD

)()( :)x U(invariance gauge residual AAU

6

Page 6: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Coulomb gaugeCoulomb gauge

mD Gauß law:

|| 1m( D ) , ( A )

resolution of Gauß´ law

)()(*)(| AAAJDAcurved space

Faddeev-Popov )()( DDetAJ

A 0, A A

|| , / i A

7

Page 7: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

YM Hamiltonian in YM Hamiltonian in Coulomb gaugeCoulomb gauge

1 212 ( ) CH J J B H

-arises from Gauß´law =neccessary to maintain gauge invariance -provides the confining potential

Coulomb term11

C 2

1 1 2 112

m

H J J

J ( D ) ( )( D ) J

color density: A

Christ and Lee

8

Page 8: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

aim: solving the Yang-Mills Schrödinger aim: solving the Yang-Mills Schrödinger eq.eq.

for the vacuum by the variational for the vacuum by the variational principleprinciple

with suitable ansätze for

H DAJ(A) (A)H( ,A) (A) min

metric of the space of gauge orbits: )( DDetJ

H E

9

Page 9: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

aim: solving the Yang-Mills Schrödinger aim: solving the Yang-Mills Schrödinger eq.eq.

for the vacuum by the variational for the vacuum by the variational principleprinciple

with suitable ansätze for

H DAJ(A) (A)H( ,A) (A) min

reflects non-trivial metric of the space of gauge orbits:

( )J Det D

H E

10

Page 10: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Vacuum wave functionalVacuum wave functional

11

2 * *1 2 1 2 1 2

( ) , r ( ) |

rJ r drr dr

r

QM: particle in a L=0-state

12

1A exp dxdy (A(x) A(y)

Det Dx, y)

YMT

1( ) ( ) (2 ( ), )xA x y yA gluon propagator

determined from

H min

variational kernel

gap equation

x, x´

C. Feuchter, H.R, 2004

Page 11: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

0

Ak A k

k

Gluon energyGluon energy

13

gluon confinement

Page 12: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

PropagatorsPropagators gluon propagatorgluon propagator

ωω(k)-gluon energy(k)-gluon energy ghost propagatorghost propagator

ghost formfactor d(k): ghost formfactor d(k): deviations from deviations from QED:QED:

QED: QED: Coulomb potentialCoulomb potential

14

( ) ( ) 1/ 2 ( )yA x A y x

12

( )( )

Gk

kD

d

( ) 1d k

1 12 2V x y g x D D y

2 2( ) ( ( )) /V k d k k

Page 13: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

numerical solutionnumerical solution

• Confinement of gluonsConfinement of gluons• Excellent agreement with IR and UV analysisExcellent agreement with IR and UV analysis• (in)dependence on renormalization scale(in)dependence on renormalization scale

D. Epple, H. Reinhardt, W.Schleifenbaum, PRD 75 (2007)

15

Page 14: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Coulomb potential

2 2 4k 0 k 0

V(k) (d(k)) / k 1/ k , d(k) 1/ k

1 12 2V x y g x D D y

16

Page 15: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

running couplingrunning coupling

17

W. Schleifenbaum, M. Leder, H.R. PRD73(2006)

Page 16: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Comparison with lattice Comparison with lattice datadata

18

Page 17: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

comparison with lattice D=2+1comparison with lattice D=2+1

19

lattice: L. Moyarts, dissertation continuum: C. Feuchter & H. Reinhardt

Page 18: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Lattice calculation in Lattice calculation in D=3+1D=3+1

Cuccheri, ZwanzigerCuccheri, Zwanziger Langfeld, Moyarts,Langfeld, Moyarts, Cuccheri, MendesCuccheri, Mendes A. Voigt, M. Ilgenfritz, M. Muller-A. Voigt, M. Ilgenfritz, M. Muller-

Preussker, A.SternbeckPreussker, A.Sternbeck G.Burgio, M. Quandt, S. Chimchinda, G.Burgio, M. Quandt, S. Chimchinda,

H. R.,H. R.,

Dubna 2008 20H.Reinhardt

Page 19: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

ghost propagator D=3+1ghost propagator D=3+1

22

424 - lattice Burgio, Quandt, Chimchinda, H. R.,PoS LAT2007:325,2007

Page 20: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Gluon propagator in Gluon propagator in D=3+1D=3+1

23

3/2( )D p p

( 0)D p const

K. Langfeld, L. Moyarts, 2004

1( ) (2 ( ))D p p

Page 21: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

recent lattice calculations of recent lattice calculations of D=3+1 gluon propaD=3+1 gluon propagatorgator

gauge fixinggauge fixing renormalizationrenormalization

24

G. Burgio, M.Quandt, H.R., arXiv:0807.3291 [hep-lat]

Page 22: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Static gluon propagator in Static gluon propagator in D=3+1D=3+1

25

4

2

1

2

( ) (2 ( ))

( )

0.8

´

6

Mk

Gribov s formu

D k k

k

V

la

k

M Ge

G. Burgio, M.Quandt, H.R., arXiv:0807.3291 [hep-lat]

Page 23: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

AsymptoticsAsymptotics

latticelattice IR: IR: αα=0.98(2)=0.98(2)

UV: UV: γγ=1.005(10)=1.005(10)

δδ=0.000(2)=0.000(2)

continuumcontinuum IR: IR: αα=1 =1

UV:UV:γγ=1.0=1.0

δδ=0.0=0.0

27

: ( ) : ( ) (log )IR D k k UV D k k k

Page 24: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

The color electric fieldThe color electric field

ED:ED:

28

1, , =( )E E

Page 25: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

The color electric fieldThe color electric field

ED:ED:

QCD:QCD:

29

1, , =( )E E

1

1

, ( )

, ( )

D D

E D

Page 26: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

external static color sources

electric field

ghost propagator

1 DE

30

Page 27: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

The color electric flux tube

missing: back reaction of the vacuum to the external sources

31

Page 28: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

The color electric fieldThe color electric field

ED:ED:

QCD:QCD:

33

1, , =( )E E

1

1

, ( )

, ( )

D D

E D

Page 29: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

The color electric fieldThe color electric field

ED:ED: mediummedium

QCD:QCD:

34

1, , =( )E E 11 = ( ) , dielectric constant

1

1

, ( )

, ( )

D D

E D

Page 30: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

The color electric fieldThe color electric field

ED:ED: mediummedium

QCD:QCD:

ghost propagatorghost propagator

35

1, , =( )E E

1( ) / ( )D d

11 = ( ) , dielectric constant

1

1

, ( )

, ( )

D D

E D

Page 31: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

The color dielectric The color dielectric „constant“ of the QCD „constant“ of the QCD

vacuumvacuum ED:ED:

mediummedium

QCD:QCD:

ghost propagatorghost propagator

36

1, , =( )E E

1( ) / ( )D d

11 = ( ) , dielectric constant

1

1

, ( )

, ( )

D D

E D

1 = ( ) ,d

Page 32: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

The color dielectric The color dielectric „constant“ of the QCD „constant“ of the QCD

vacuumvacuum ED:ED:

mediummedium

QCD:QCD:

ghost propagatorghost propagator

37

1, , =( )E E

1( ) / ( )D d

11 = ( ) , dielectric constant

1

1

, ( )

, ( )

D D

E D

1 = ( ) ,d 1d H. Reinhardt, PhysRevLett.101.061602(2008)

Page 33: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

The color dielectric fuction The color dielectric fuction of the QCD vacuumof the QCD vacuum 1d

38

Page 34: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

The color dielectric The color dielectric function of the QCD function of the QCD

vacuumvacuum ghost propagatorghost propagator dielectric „constant“dielectric „constant“

horizon condition:horizon condition: ::

QCD vacuum-perfect color dia-QCD vacuum-perfect color dia-electricumelectricum

QED: screeningQED: screening

1( ) / ( )D d

1d

k

( )k

1

( )<1 anti-screeningk

, freeD E D

( 0) 0k

39

1( 0) 0d k

Page 35: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

40

0 1 1

D E

no free color charges in the vacuum: confinement

freeD

Page 36: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

magnetic analog to the QCD magnetic analog to the QCD vacuum :vacuum : superconductor superconductor

magmetism in matter:magmetism in matter:

perfect dia-magneticum :perfect dia-magneticum :SuperconductorSuperconductor

41

-magnetic pe rmeabili ty B H 0

Page 37: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

magnetic analog to the QCD magnetic analog to the QCD vacuum :vacuum : superconductor superconductor

magmetism in matter:magmetism in matter:

perfect dia-magneticum :perfect dia-magneticum :superconductorsuperconductor

QCD vacuum:perfect dia-elektricumQCD vacuum:perfect dia-elektricumdual superconductordual superconductor

Duality:Duality:

42

-magnetic pe rmeabili ty B H 0

B E

( 0) 0k

Page 38: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Confinement scenariosConfinement scenarios Gribov-Zwanziger: ≈Gribov-Zwanziger: ≈

(Kugo-Ojima)(Kugo-Ojima)

43

dual superconductor:dual superconductor:

magnetic monopole magnetic monopole condensationcondensation

1( 0) 0d k ( 0) 0k

Page 39: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Confinement scenariosConfinement scenarios Gribov-Zwanziger: ≈Gribov-Zwanziger: ≈

(Kugo-Ojima)(Kugo-Ojima)

lattice evidence:lattice evidence:

monopole condensation ≈monopole condensation ≈

vortex condensation ≈vortex condensation ≈

44

dual superconductor:dual superconductor:

magnetic monopole magnetic monopole condensationcondensation

center vortex condensationcenter vortex condensation

Gribov-ZwanzigerGribov-Zwanziger

1( 0) 0d k ( 0) 0k

Page 40: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

elimination of center vortices removes:-string tension (Wilson´s confinment criterium)

-the infrared divergency from the ghost propagator (Kogu-Ojima confinement criterium)

Gattnar, Langfeld, Reinhardt NPB262(2002)131

Kugo-Ojima confinement criteria:

infrared divergent ghost form factor

45

1( 0) 0d k

Page 41: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Coulomb potentialCoulomb potential

46J. Greensite, S. Olejnik , 2003

Page 42: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Confinement scenariosConfinement scenarios Gribov-Zwanziger: ≈Gribov-Zwanziger: ≈

(Kugo-Ojima)(Kugo-Ojima)

lattice evidence:lattice evidence:

monopole condensation ≈monopole condensation ≈

vortex condensation ≈vortex condensation ≈

47

dual superconductor:dual superconductor:

magnetic monopole magnetic monopole condensationcondensation

center vortex condensationcenter vortex condensation

Gribov-ZwanzigerGribov-Zwanziger

1( 0) 0d k ( 0) 0k

Page 43: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Chiral symmery of QCDChiral symmery of QCD

spontaneous breaking:spontaneous breaking: quark condensationquark condensation constituent quark massconstituent quark mass

soft explicit breaking: soft explicit breaking: current masssescurrent massses

anomalous breaking: anomalous breaking: ηη´mass´mass

48

( ) ( ) (1) (1)V f A f V ASU N SU N U U

( )V fSU N

( )A fSU N

(1)AU

qq

Page 44: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Witten-Veneziano-FormulaWitten-Veneziano-Formula

topological susceptibilitytopological susceptibility

topological charge densitytopological charge density

50

, 2

22 2 22 fN

K Fm m m

0 ( ) (0) 0q x q

2

28( ) ( ) ( )g a a

i iq x E x B x

in perturbation theory0

Page 45: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

-vacuum in the Hamiltonian -vacuum in the Hamiltonian approachapproach

LagrangianLagrangian

canonical momentumcanonical momentum

hamiltonianhamiltonian

topological susceptibilitytopological susceptibility

54

2

2

d HV

d

2

28( ) ( ( )) ) (gx x E x B x

L L

2

28( ) ( ) ( )ga a ax xx B

2

2

2 21 12 28

( )g BH B

Page 46: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Topological susceptibility in Topological susceptibility in the Hamilton approachthe Hamilton approach

exact cancellation of Abelian part of exact cancellation of Abelian part of BBBB 2-and 3-quasi-gluons on top of the 2-and 3-quasi-gluons on top of the

vacuumvacuum

renormalizationrenormalization55

2

2

2

g 2 2

8n n

n B 0V ( ) 0 B (x) 0 2

E

† † † † †( ) 0 0, { ( ) ( ) 0 , ( ) ( ) ( ) 0 }a k n a k a k a k a k a k

0, G(k) G(k)-G(k)PT PT

D. Campangnari & H. R, Phys.Rev.D, in press

Page 47: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Numerical calculationsNumerical calculations

parametrizations:parametrizations:

56

4 2

2 2 2 2

2 1( ) ( ) 1m Mk k g k

k k G k

Page 48: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Numerical calculationsNumerical calculations

IR dominance of the integralsIR dominance of the integrals running coupling:running coupling:

IR limit:IR limit:

57

2 (0) 16(0)

4 3sC

g

N

Page 49: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Numerical ResultsNumerical Results

58

41.5 =(240Mev)C

4lattice: =(200-230Mev)

Page 50: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Summary & ConclusionSummary & Conclusion Hamiltonian approach to YMT in Coulomb gaugeHamiltonian approach to YMT in Coulomb gauge Variational solution of the YM Schrödinger eq.Variational solution of the YM Schrödinger eq.

gluon confinementgluon confinement quark confinementquark confinement

satisfactory agreement with lattice datasatisfactory agreement with lattice data dielectric function of the YM vacuumdielectric function of the YM vacuum

εε(k)=inverse ghost form factor (k)=inverse ghost form factor YM vacuum=perfect dual superconductorYM vacuum=perfect dual superconductor Gribov-Zwanziger Conf.↔dual Meißner effectGribov-Zwanziger Conf.↔dual Meißner effect

topological susceptibilitytopological susceptibility

59

Page 51: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Work in progressWork in progress

DSE in Coulomb gaue (first order formalism)DSE in Coulomb gaue (first order formalism)

P. WatsonP. Watson Hamiltonian flow equationHamiltonian flow equation

M. Leder, J. Pawlowski, A. WeberM. Leder, J. Pawlowski, A. Weber

60

Page 52: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Comments on Gribov Comments on Gribov copiescopies

61

H. Reinhardt & W.SchleifenbaumarXiv:0809.1764[hep-th]

Page 53: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Dyson-Schwinger Dyson-Schwinger EquationsEquations

Exact relations between propagators Exact relations between propagators and verticesand vertices

Not full QFTNot full QFT Missing:“ boundary“ conditionMissing:“ boundary“ condition No information on Gribov regionNo information on Gribov region DSEs are the same in all Gribov DSEs are the same in all Gribov

regions but propagators are notregions but propagators are not

62

0 ( )exp( )Gribov

FPD Det M S J

Gribov

Page 54: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Yang-Mills theory in Yang-Mills theory in D=1+1D=1+1

Exact solution availableExact solution available Full control of Gribov copiesFull control of Gribov copies Test approximation schemes used in Test approximation schemes used in

D=3+1D=3+1

63

H. Reinhardt and W. Schleifenbaum, in preparation

Page 55: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

64

YMT onYMT on 1 1( ) ( )S space R time L

2

2

sin( ) ( )J A Det D

FP determinant

( 1)n n n-th Gribov regime

1

12 exp( ) cos

S

tr A spatial Wilson loop 0

Coulomb gauge 0A

exact vacuum wave function(al) 1

( 0)( )A kA infrared limit of in D=3,4

12 g L A

Page 56: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

PropagatorsPropagators

Gluon propagatorGluon propagator

Ghost propagatorGhost propagator

Ghost-gluon vertexGhost-gluon vertex

Coulomb form factorCoulomb form factor

65

213

a b abA A const

12

( )( )

d kD

k

1 1 01( ) ( ) ( ) , A D AA D D

1 2 1 1 2 1( ) ( )( ) ( ) ( ) ( )D DfD D

Page 57: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Gribov copiesGribov copies

N-copiesN-copies

Gaussian distribution of copiesGaussian distribution of copies

66

1

0 0

... ...N

Nd d

212

0 0

... exp[ ( ) ]...N

d d

N

( 1):n n n

12 g L A

Page 58: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

N-Gribov copiesN-Gribov copies

ghost form factorghost form factor

Ghost-gluon vertexGhost-gluon vertex

(dressing function)(dressing function)

67

Page 59: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Gaussian distributed Gribov Gaussian distributed Gribov copiescopies

ghost form factorghost form factor

Coulomb form factorCoulomb form factor

68

Page 60: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Effect of Gribov copies Effect of Gribov copies on ghoston ghost

69

3 1 1 1 D lattice D analytic

. , . , . ..G Burgio M Quandt H R

Page 61: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Effect of Gribov copies on Effect of Gribov copies on Coulomb form factorCoulomb form factor

70

3 1 1 1 D lattice D analytic

. .AVoigt et al

Page 62: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

DSE with bare ghost-DSE with bare ghost-gluon vertexgluon vertex

gluon propagatorgluon propagator constant in D=1+1constant in D=1+1

ghost form factorghost form factor

71

Page 63: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

conclusionsconclusions

Gribov copies tend toGribov copies tend to damp IR enhencement of the ghost form factor damp IR enhencement of the ghost form factor

and produce spurious peaks at intermediate and produce spurious peaks at intermediate momentamomenta

increase the Coulomb form factor in the IRincrease the Coulomb form factor in the IR Approximating the ghost-gluon vertex by the Approximating the ghost-gluon vertex by the

bare one puts the propagators(solutions of bare one puts the propagators(solutions of DSE) into the first Gribov regionDSE) into the first Gribov region

Genuine IR physics cannot be properly Genuine IR physics cannot be properly described on the lattice unless Gribov copies described on the lattice unless Gribov copies are excludedare excluded

72

Page 64: Hamiltonian approach to  Yang-Mills  Theory  in Coulomb  gauge

Thanks for your Thanks for your attentionattention

73