199
HADRON SPECTROSCOPY AND STRONG QCD Eberhard Klempt Helmholtz-Institut f¨ ur Strahlen– und Kernphysik Universit¨ at Bonn Nußallee 14-16, D-53115 Bonn, GERMANY e-mail: [email protected] June 2003 0-0

HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

HADRON SPECTROSCOPY

AND STRONG QCD

Eberhard Klempt

Helmholtz-Institut fur Strahlen– und KernphysikUniversitat Bonn

Nußallee 14-16, D-53115 Bonn, GERMANYe-mail: [email protected]

June 2003

0-0

Page 2: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Why hadron spectroscopy ?

• Spectroscopy is a powerful tool to study internal dynamics

1. Balmer formula −→ Hydrogen atom

2. Magic numbers −→ Tensor forces in nuclear physics

3. Existance of Ω −→ Triumph of SU(3)

4. No ’ionized’ protons −→ Confinement

5. cc and bb families −→ One-gluon exchange plus linear

confinement

• Baryons have NF = NC

1. True non-abelian system −→ test of QCD related ideas

2. Rich dynamics of three-body system −→ Insights beyond

meson physics

3. Truely complicated −→ Intellectually and experimentally

demanding

Hadron Spectrosopy, HUGS, June 2003 1

Page 3: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

• Getting started

• Particles and interactions

• Particle decays and partial wave analysis

• The E/ι saga and the first glueball

• The quest for the scalar glueball

• Baryons

• Summary and conclusions

Hadron Spectrosopy, HUGS, June 2003 2

Page 4: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Literature:

1. S. Godfrey and J. Napolitano,

“Light meson spectroscopy,”

Rev. Mod. Phys. 71, 1411 (1999)

arXiv:hep-ph/9811410.

2. K. Hagiwara et al. [Particle Data Group Collaboration],

“Review Of Particle Physics,”

Phys. Rev. D 66 (2002) 010001.

3. Franz Gross,

”Relativistic Quantum Mechanics and Field Theory,”

Publisher: Wiley, John and Sons.

4. F.E.C. Close,

5. A.D. Martin, T. Spearman,

”Elementary Particle Theory,”

North Holland, Amsterdam, 1970Hadron Spectrosopy, HUGS, June 2003 3

Page 5: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Getting started

• Historical remarks

• Mesons and their quantum numbers

• Resonances in strong interactions

• Heavy quarks

• D and B mesons

Hadron Spectrosopy, HUGS, June 2003 4

Page 6: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

1 Getting started

1.1 Historical remarks

Nuclear interactions

• Hideki Yukawa, 1935, ”On the Interaction of Elementary

Particles. I.” (Proc. Phys.-Math. Soc. Japan, 17, p. 48)

• Proposed a new field theory of nuclear forces

• Predicted the existence of a meson, now called π-meson or pion.

Coulomb potential Strong Interaction

eVQED = e2

r=⇒ Vstrong = g2

r· e−mπr

• Discovery of pion by C. Powell, 1947

• Nobel prize to Yukawa, 1949 h = c = 1

Hadron Spectrosopy, HUGS, June 2003 5

Page 7: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Examples

The fine structure constant is defined as

α =e2

4πε0hc, α = 1/137.036

A second important number to remember is

hc = 197.327(∼ 200) MeV fm

• What is the clasical electron radius ?

re =α

me=

197.327

137.036 0.511

MeVfm

MeV= 2.8 fm

• Bohr formula

Emn = ER

(

1

m2− 1

n2

)

ER = hcRH = 12α

2c2mred

Hadron Spectrosopy, HUGS, June 2003 6

Page 8: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Strangeness

In 1947, Rochester and Butler found reactions of the type

π−p → ΛK0s

where both particles had long lifetimes.

Λ → pπ− τ = 2.6 10−10 s

K0s → π+π− τ = 0.9 10−10 s

• Particles are produced by strong interactions,

• and in pairs (associated prod., Pais, 1952)

• They decay by weak interaction

• Gell-Mann (1953) and Nishijima (1955) introduced additive

quantum number, called strangeness.

• Proton, Neutron, Λ: building blocks ?

• Gell-Mann (1964): quark model with up, down, strange quarks.

Hadron Spectrosopy, HUGS, June 2003 7

Page 9: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The particle zoo

A large number of strongly interacting particles were discovered,

• 3 pions at 135 MeV

π+, π− with τ = 2.6 10−8 s π+ → µ+νµ; µ+ → e+νµνe

π0 with τ = 8.4 10−17 s π0 → γγ

• η(547) with Γ = 1.2 keV η(547) → 2γ, 3π0, π+π−π0, π+π−γ

• η′(958) with Γ = 200 keV → 2γ, 2π0η, π+π−η, π+π−γ

• K+, K−, K0s, K0

l

• 3 ρ+−0(770) ; ρ→ 2π;Γ = 150 MeV

• 1 ω(782) ; ω → π+π−π0;Γ = 8.4MeV

• 4 K∗(892) ; K∗(892) → Kπ

• 3 a2(1320); 1 f2(1270); 4 K2(1430) and Γ = 50 MeV

• ... and many more.

Hadron Spectrosopy, HUGS, June 2003 8

Page 10: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The quark model:

• Mesons consist of a quark and an antiquark, qq

with the quarks u, d, s we expect families (with identical spin

and parities) of 9 mesons.

Example:

π+, π0, π−, η(548), η′(958),K+,K0,K0,K−

K0 ±K0 → K0

s ,K0l

• Baryons consist of 3 quarks, qqq

We might expect (wrong !) families of 27 baryons

but the Pauli principle reduces greatly the number of states.

Hadron Spectrosopy, HUGS, June 2003 9

Page 11: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

1.2 Mesons and their quantum numbers

Quarks have Spin 1/2 and baryon number 1/3

Antiquarks have Spin 1/2 and baryon number -1/3

They couple to B=0 and Spin S = 1 or S = 0

Mesons (conventional) are qq and thus may have the following

properties:

• Parity P = (−1)L+1

Parity of angular momentum P = (−1)L

Quarks have intrinsic parity P = 1

Antiquarks have intrinsic parity P = −1

• Charge conjugation C = (−1)L+S

defined for neutral mesons only

• Isospin I

• G-parity G = (−1)L+1+I

G-parity is conserved in strong interactions

(Not conserved when chiral symmetry is broken !)

Hadron Spectrosopy, HUGS, June 2003 10

Page 12: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Note:

• JPC are measured quantities.

•2s+1LJ are internal quantum numbers in a non-relativistic quark

model

JPC 2s+1LJ I=1 I=0 (nn) I=0 ss Strange

L=0 S=0 0−+ 1S0 π η η′ K

S=1 1−− 3S1 ρ ω φ K∗

L=1 S=0 1+− 1P1 b1 h1 h′1 K1

S=1 0++ 3P0 a0 f0 f ′0 K∗0

1++ 3P1 a1 f1 f ′1 K1

2++ 3P2 a2 f2 f ′2 K∗2

Hadron Spectrosopy, HUGS, June 2003 11

Page 13: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

L=2 S=0 2−+ 1D2 π2 η2 η′2 K2

S=1 1−− 3D1 ρ ω φ K∗1

2−− 3D2 ρ2 ω2 φ2 K2

3−− 3D3 ρ3 ω3 φ3 K∗3

L=3 S=0 3+− 1F3 b3 h h′3 K3

S=1 2++ 3F2 a2 f2 f ′2 K∗2

3++ 3F3 a3 f3 f ′3 K3

4++ 3F4 a4 f4 f ′4 K∗4

L=4 S=0 4−+ 1G2 π4 η4 η′4 K4

S=1 3−− 3G1 ρ3 ω3 φ3 K∗3

4−− 3G2 ρ4 ω4 φ4 K4

5−− 3G3 ρ5 ω5 φ5 K∗5

Hadron Spectrosopy, HUGS, June 2003 12

Page 14: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The nonet of pseudoscalar mesons JPC = 0−+

-

6

-

6

I3 I3

S Singlet

S Octet

t tt

t t

t t

tj

AAAAAA

AA

AA

AA

K+ (us)K0 (ds)

K− (su)

π− (du)

K0 (sd)

π+ (ud)π0

η8 η1

|π0 >= 1√2(uu + dd);

|η8 >= 1√6

(

uu + dd − 2ss)

; |η1 >= 1√3

(

uu + dd + ss)

Hadron Spectrosopy, HUGS, June 2003 13

Page 15: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Mixing angles and GMO formulae

|η > = cosΘps|η8 > - sinΘps|η1 >|η′ > = sinΘps|η8 > + cosΘps|η1 >

Extension to include a possible glueball content:

|η > = Xη · 1√2

(

uu + dd)

+ Yη · (ss) + Zη · (glue)

|η′ > = Xη′ · 1√2

(

uu + dd)

+ Yη′ · (ss) + Zη′ · (glue)

light quark strange quark inert

Zη = Zη′ ∼ 0

See: T. Feldmann,

“Quark structure of pseudoscalar mesons,”

Int. J. Mod. Phys. A15 (2000) 159

Hadron Spectrosopy, HUGS, June 2003 14

Page 16: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Mixing angles, examples

ΘPS = 0 |η > = 1√6

(

uu + dd− 2ss)

|η′ > = 1√3

(

uu + dd + ss)

ΘPS = −11.1 |η > = 1√2

(

1√2(uu + dd) − ss

)

|η′ > = 1√2

(

1√2(uu + dd) + ss

)

ΘPS = −19.3 |η > = 1√3

(

uu + dd − ss)

|η′ > = 1√6

(

uu + dd + 2ss)

ΘPS = 35.3 |η > = ss

|η′ > = 1√2

(

uu + dd)

Hadron Spectrosopy, HUGS, June 2003 15

Page 17: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The nonet of vector mesons JPC = 1−−

-

6

-

6

I3 I3

S Singlet

S Octet

t tt

t t

t t

tj

AAAAAA

AA

AA

AA

K+∗K0∗

K−∗

ρ−

K0∗

ρ+ρ0

ω8 ω1

Hadron Spectrosopy, HUGS, June 2003 16

Page 18: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The nonet of tensor mesons JPC = 2++

-

6

-

6

I3 I3

S Singlet

S Octet

t tt

t t

t t

tj

AAAAAA

AA

AA

AA

K+2

∗(1430)K0

2∗(1430)

K−2

∗(1430)

a−2 (1320)

K02∗(1430)

a+2 (1320)a0

2(1320)

f2(1270) f2(1525)

ΘV = 35.3 |ω > = 1√2

(

uu + dd)

= f2(1270) ΘT = 35.3

|Φ > = ss = f2(1525)

Hadron Spectrosopy, HUGS, June 2003 17

Page 19: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The Gell-Mann-Okubo mass formula

Mπ = M0 + 2Mq

MK = M0 + Mq + Ms

Mη = M8 cos2 Θ + M1 sin2 Θ

Mη′ = M8 sin2 Θ + M1 cos2 Θ

M1 = M0 + 4/3Mq + 2/3Ms

M8 = M0 + 2/3Mq + 4/3Ms

Quadratic mass formula:

cos2 Θ =3M2

η + M2π − 4M2

K

4M2K − 3M2

η′ − M2π

Linear mass formula:

cos2 Θ =3Mη + Mπ − 4MK

4MK − 3Mη′ − Mπ

Nonet members Θlinear Θquad

π,K, η′, η −23 −10

ρ,K∗,Φ , ω 36 39

a2(1320),K∗2(1430), f2(1525), f2(1270) 26 29

Hadron Spectrosopy, HUGS, June 2003 18

Page 20: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

1.3 Resonances in strong interactions

• In 1952, E. Fermi and collaborators measured the cross section

for π+p → π+p and found it steeply raising.

H. L. Anderson,

E. Fermi, E. A. Long

and D. E. Nagle, “Total

cross-sections of positive

pions in hydrogen,”

Phys. Rev. 85 (1952)

936.

∆++(1232): width

150 MeV

h/Γ ∼ 0.45 10−23 s

10

10 2

10 -1

1 10 10 2

π + p total

π + p elastic

Cro

ss s

ectio

n (m

b)

10

10 2

10 -1

1 10 10 2

π ± d total

π – p total

π – p elastic

Laboratory beam momentum (GeV/c)

Cro

ss s

ectio

n (m

b)

Center of mass energy (GeV)

π d

π p 1.2 2 3 4 5 6 7 8 9 10 20 30 40

2.2 3 4 5 6 7 8 9 10 20 30 40 50 60

Hadron Spectrosopy, HUGS, June 2003 19

Page 21: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Clebsch Gordon coeffi-

cients

Maximum cross section:

• σtot,π+p = 210 mb

• σel,π+p = 210 mb

• σtot,π−p = 70 mb

• σel,π−p = 23 mb

WHY ?

10

10 2

10 -1

1 10 10 2

π + p total

π + p elastic

Cro

ss s

ectio

n (m

b)

10

10 2

10 -1

1 10 10 2

π ± d total

π – p total

π – p elastic

Laboratory beam momentum (GeV/c)

Cro

ss s

ectio

n (m

b)

Center of mass energy (GeV)

π d

π p 1.2 2 3 4 5 6 7 8 9 10 20 30 40

2.2 3 4 5 6 7 8 9 10 20 30 40 50 60

Hadron Spectrosopy, HUGS, June 2003 20

Page 22: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

+1

5/25/23/2

3/2+3/2

1/54/5

4/5−1/5

5/2

5/2−1/23/52/5

−1−2

3/2−1/22/5 5/2 3/2

−3/2−3/24/51/5 −4/5

1/5

−1/2−2 1

−5/25/2

−3/5−1/2+1/2

+1 −1/2 2/5 3/5−2/5−1/2

2+2

+3/2+3/2

5/2+5/2 5/2

5/2 3/2 1/2

1/2−1/3

−1

+10

1/6

+1/2

+1/2−1/2−3/2

+1/22/5

1/15−8/15

+1/21/10

3/103/5 5/2 3/2 1/2

−1/21/6

−1/3 5/2

5/2−5/2

1

3/2−3/2

−3/52/5

−3/2

−3/2

3/52/5

1/2

−1

−1

0

−1/28/15

−1/15−2/5

−1/2−3/2

−1/23/103/5

1/10

+3/2

+3/2+1/2−1/2

+3/2+1/2

+2 +1+2+1

0+1

2/53/5

3/2

3/5−2/5

−1

+10

+3/21+1+3

+1

1

0

3

1/3

+2

2/3

2

3/23/2

1/32/3

+1/2

0−1

1/2+1/22/3

−1/3

−1/2+1/2

1

+1 1

0

1/21/2

−1/2

0

0

1/2

−1/2

1

1

−1−1/2

1

1

−1/2+1/2

+1/2 +1/2+1/2−1/2

−1/2+1/2 −1/2

−1

3/2

2/3 3/2−3/2

1

1/3

−1/2

−1/2

1/2

1/3−2/3

+1 +1/2+10

+3/2

2/3 3

3

3

3

3

1−1−2−3

2/31/3

−22

1/3−2/3

−2

0−1−2

−10

+1

−1

6/158/151/15

2−1

−1−2

−10

1/2−1/6−1/3

1−1

1/10−3/10

3/5

020

10

3/10−2/53/10

01/2

−1/2

1/5

1/53/5

+1

+1

−10 0

−1

+1

1/158/156/15

2

+2 2+1

1/21/2

1

1/2 20

1/6

1/62/3

1

1/2

−1/2

0

0 2

2−21−1−1

1−11/2

−1/2

−11/21/2

00

0−1

1/3

1/3−1/3

−1/2

+1

−1

−10

+100

+1−1

2

1

00 +1

+1+1

+11/31/6

−1/2

1+13/5

−3/101/10

−1/3−10+1

0

+2

+1

+2

3

+3/2

+1/2 +11/4 2

2

−11

2

−21

−11/4

−1/2

1/2

1/2

−1/2 −1/2+1/2−3/2

−3/2

1/2

1003/4

+1/2−1/2 −1/2

2+13/4

3/4

−3/41/4

−1/2+1/2

−1/4

1

+1/2−1/2+1/2

1

+1/2

3/5

0−1

+1/20

+1/23/2

+1/2

+5/2

+2 −1/21/2+2

+1 +1/2

1

2×1/2

3/2×1/2

3/2×12×1

1×1/2

1/2×1/2

1×1

Notation:J J

M M

...

. . .

.

.

.. . .

m1 m2

m1 m2 Coefficients

−1/52

2/7

2/7−3/7

3

1/2

−1/2−1−2

−2−1

0 4

1/21/2

−33

1/2−1/2

−2 1

−44

−2

1/5

−27/70

+1/2

7/2+7/2 7/2

+5/23/74/7

+2+10

1

+2+1

41

4

4+23/14

3/144/7

+21/2

−1/20

+2

−1012

+2+10

−1

3 2

4

1/14

1/14

3/73/7

+13

1/5−1/5

3/10

−3/10

+12

+2+10

−1−2

−2−1012

3/7

3/7

−1/14−1/14

+11

4 3 2

2/7

2/7

−2/71/14

1/14 4

1/14

1/143/73/7

3

3/10

−3/10

1/5−1/5

−1−2

−2−10

0−1−2

−101

+10

−1−2

−12

4

3/14

3/144/7

−2 −2 −2

3/7

3/7

−1/14−1/14

−11

1/5−3/103/10

−1

1 00

1/70

1/70

8/3518/358/35

0

1/10

−1/10

2/5

−2/50

0 0

0

2/5

−2/5

−1/10

1/10

0

1/5

1/5−1/5

−1/5

1/5

−1/5

−3/103/10

+1

2/7

2/7−3/7

+31/2

+2+10

1/2

+2 +2+2+1 +2

+1+31/2

−1/2012

34

+1/2+3/2

+3/2+2 +5/24/7 7/2

+3/21/74/72/7

5/2+3/2

+2+1

−10

16/35

−18/351/35

1/3512/3518/354/35

3/2

3/2

+3/2

−3/2−1/21/2

2/5−2/5 7/2

7/2

4/3518/3512/351/35

−1/25/2

27/703/35

−5/14−6/35

−1/23/2

7/2

7/2−5/24/73/7

5/2−5/23/7

−4/7

−3/2−2

2/74/71/7

5/2−3/2

−1−2

18/35−1/35

−16/35

−3/21/5

−2/52/5

−3/2−1/2

3/2−3/2

7/2

1

−7/2

−1/22/5

−1/50

0−1−2

2/5

1/2−1/21/10

3/10−1/5

−2/5−3/2−1/21/2

5/2 3/2 1/2+1/22/5

1/5

−3/2−1/21/23/2

−1/10

−3/10

+1/22/5

2/5

+10

−1−2

0

+33

3+2

2+21+3/2

+3/2+1/2

+1/2 1/2−1/2−1/2+1/2+3/2

1/2 3 2

30

1/20

1/20

9/209/20

2 1

3−11/5

1/53/5

2

3

3

1

−3

−21/21/2

−3/2

2

1/2−1/2−3/2

−2

−11/2

−1/2−1/2−3/2

0

1−1

3/10

3/10−2/5

−3/2−1/2

00

1/41/4

−1/4−1/4

0

9/20

9/20

+1/2−1/2−3/2

−1/20−1/20

0

1/4

1/4−1/4

−1/4−3/2−1/2+1/2

1/2

−1/20

1

3/10

3/10

−3/2−1/2+1/2+3/2

+3/2+1/2−1/2−3/2

−2/5

+1+1+11/53/51/5

1/2

+3/2+1/2−1/2

+3/2

+3/2

−1/5

+1/26/355/14

−3/35

1/5

−3/7−1/21/23/2

5/22×3/2

2×2

3/2×3/2

−3

Hadron Spectrosopy, HUGS, June 2003 21

Page 23: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

• σtot,π+p = σπ+p→π+p = CG(I=1/2,I3=1/2)+(I=1,I3=1)→ (I=3/2,I3=3/2) ×CG(I=3/2,I3=3/2)→ (I=1/2,I3=1/2)+(I=1,I3=1) = 1× 1 ∝ 210 mb

• σel,π+p = σπ+p→π+p = CG(I=1/2,I3=1/2)+(I=1,I3=1)→ (I=3/2,I3=3/2) ×CG(I=3/2,I3=3/2)→ (I=1/2,I3=1/2)+(I=1,I3=1) = 1× 1 ∝ 210 mb

• σtot,π−p = σπ−p→π−p + σπ−p→π0n =

CG(I=1/2,I3=1/2)+(I=1,I3=−1)→ (I=3/2,I3=−1/2) +

CG(I=1/2,I3=−1/2)+(I=1,I3=0)+(I=3/2,I3=−1/2) =

1/3× 2/3 + 1/3× 1/3 ∝ 70 mb

• σel,π−p = σπ−p→π−p = CG(I=1/2,I3=1/2)+(I=1,I3=−1)→ (I=3/2,I3=−1/2) ×CG(I=3/2,I3=−1/2)→ (I=1/2,I3=1/2)+(I=1,I3=−1) = 1/3× 1/3 ∝ 23 mb

Hadron Spectrosopy, HUGS, June 2003 22

Page 24: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

1.4 Heavy Quarks

Discovery of the J/ψ

A narrow resonance was discovered in the 1974 “November

revolution of particle physics” in two reactions:

• Proton + Be → e+e− + anything

at the BNL (Long Island, New York)

J. J. Aubert et al., “Experimental observation of a heavy particle J,”

Phys. Rev. Lett. 33, 1404 (1974).

• e+e− annihilation to hadrons µ+µ−, e+e−

in the SPEAR storage ring at Stanford

J. E. Augustin et al., “Discovery of a narrow resonance in e+e−

annihilation,” Phys. Rev. Lett. 33, 1406 (1974).

Hadron Spectrosopy, HUGS, June 2003 23

Page 25: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Observation of a heavy particle J

J. J. Aubert et al.

Electrons and positrons are iden-

tified by Cerenkov radiation and

time and flight, their momenta are

measured in two spectrometers.

Hadron Spectrosopy, HUGS, June 2003 24

Page 26: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Discovery of a Narrow Resonance

(ψ) in e+e− Annihilation

J.E. Augustin et al.

Results from the SPEAR e+e−

storage ring. Width of the reso-

nance is less than 1.3 MeV. Due

to production mode spin, parity

and charge conjugation are likely

JPC = 1−− (as the ρ-meson).

Narrow resonance: → OZI rule →new quantum number charm:

J/ψ = cc

The curve is asymmetric due to

photon radiation. Interference is

seen between intermediate photon

and J/ψ production.

Hadron Spectrosopy, HUGS, June 2003 25

Page 27: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Width of the J/ψ

The J/ψ mass is (3096.87± 0.04) MeV, the width 87 ± 5 keV.

Comparison: ρ mass is 770 MeV, its width 150 MeV.

The J/ψ is extremely narrow. How narrow ? See PDG

Total cross section:

σ(E) = (4π)(λ2/4π2)Γ2/4

[(E−ER) + Γ2/4)]

2J + 1

(2s1 + 1)(2s2 + 1)

with λ/2π = 1/p = 2/E de Broglie wave length of e+ and e− in cms

E cms energy, Γ total width.

In case of specific reactions, like e+e− → ψ → e+e−, replace

Γ2 → ΓinitialΓfinal = Γ2e+e− .

Γe+e− partial width

s1 = s2 = 1/2 electron (positron) spin; J=1 spin of J/ψ

Hadron Spectrosopy, HUGS, June 2003 26

Page 28: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Then:

σ(Ee+e−→ψ→e+e−) = (3π)(λ2/4π2)Γ2

e+e−/4

(E− ER) + Γ2/4

Substituting tan θ = 2(E− ER)/Γ:

∫ ∞

0

σ(E)dE =3π2

2

λ2

4π2

Γ2e+e−

Γ2Γ.

This results in

Γ2e+e− =

6π2

E2Γ

Γ = Γe+e− + Γµ+µ− + Γhadrons

Imposing Γe+e− = Γµ+µ− yields 3 equations and thus 3 unknown

widths.

Hadron Spectrosopy, HUGS, June 2003 27

Page 29: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The OZI rule and flavor tagging

D

D

c

c

ω

nn

c

c

Φ

ss

c

c

The decay J/ψ into mesons with open charm (left) is forbidden due

to energy conservation. The two right diagrams require annihilation

of cc into gluons. This is suppressed.

Recoiling against an ω, mesons with nn quark structure are

expected. If a Φ is observed we expect mesons with hidden

strangeness ss.

Example: The ratio Φη′/ωη′ is proportional to the ratio of ss/nn in

the η′ wave function.

Hadron Spectrosopy, HUGS, June 2003 28

Page 30: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

J/ψ → ωη′ (top)

Φη′ (right)

D. Coffman et al. [MARK-III Col-

laboration], “Measurements of J/ψ

decays into a vector and a pseu-

doscalar meson,” Phys. Rev. D 38,

2695 (1988) [Erratum-ibid. D 40,

3788 (1989)]. ⇒ Θpseudoscalar

Hadron Spectrosopy, HUGS, June 2003 29

Page 31: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Cross section e+e− → hadrons.

10 2

10 3

10 4

10 5

10 6

10 7

1 10 102

ρω

√s (GeV)

σ(e+

e− →

qq

→ h

adro

ns)

[pb

]_

ψ(2S)J/ψφ

Z

Note:

• At low energies dominated by ρ, ω,Φ

• Cross section is given by 4πα2/3 s∑

Q2i

Hadron Spectrosopy, HUGS, June 2003 30

Page 32: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

• There are two narrow cc and three narrow bb states.

• Above a new flavor threshold, the cross section increases by 3e2q

• The ratio R of cross section for e+e− → hadrons over that to

µ+µ− is given by R = 3× ∑

e2q and increases above

quark-antiquark thresholds.

10-1

1

10

10 2

10 3

1 10 102

ρω φ

J/ψψ(2S)

R

Z

√s (GeV)

Hadron Spectrosopy, HUGS, June 2003 31

Page 33: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

• A closer look reveals additional peaks in the cross sections,

decaying into mesons with open charm like D+D− or D0D0.

• Mass D± = 1870 MeV D0 = 1865 MeV

• Quark content: cd and dc cu and uc

1

2

3

4

5

6

7

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8

MARK IMARK I + LGWMARK IICRYSTAL BALLDASPPLUTOBES

ψ3770 ψ

4040

ψ4160

ψ4415

R

√s (GeV)

ψ(2S)

J/ψ

e+e− → hadrons versus µ+µ− in the cc region.

All resonances have JPC = 1−−

Hadron Spectrosopy, HUGS, June 2003 32

Page 34: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

J/ψ → e+e−

Van Royen Weisskopf equation (from ortho-positronium decay):

Γ(J/ψ → e+e−) =16πα2Q2

M2V

|ψ(0)|2

Here, Q2 is the squared sum of contributing quark charges:

Meson wave function Q2

ρ0: 1√2

(

uu− dd)

[

1√2

(2/3− (−1/3))]2

1/2

ω: 1√2

(

uu + dd)

[

1√2

(2/3 + (−1/3))]2

1/18

Φ: (ss) (1/3)2 1/9

J/ψ: (cc) (2/3)2

4/9

Important: Photon couples to ρ in amplitude 3 times stronger than

to ω.

Hadron Spectrosopy, HUGS, June 2003 33

Page 35: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Charmonium states in radiative decays

The Crystal Ball detector.

Hadron Spectrosopy, HUGS, June 2003 34

Page 36: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The Crystal Ball:

γ from ψ(2S),

background

subtracted.

Hadron Spectrosopy, HUGS, June 2003 35

Page 37: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Crystal Ball:

γ transition

from ψ(2S) (left)

and J/ψ (right)

to the ηc.

Hadron Spectrosopy, HUGS, June 2003 36

Page 38: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Experiment E760/E835 at FNAL√

s = mp ·√

2(1 + mpEp)

• Hydrogen gas jet target with ρjet = 3 · 1014H2/cc

• σhadronic = 100mb Very good P.I. required ! σcc = 1µb

• Small decay fractions, e.g. for ηc → γγ

Hadron Spectrosopy, HUGS, June 2003 37

Page 39: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

• 8 · 1011 antiprotons circulating The e+e− invariant mass

in Fermilab accumulator ring as reconstructed in E760

with frev = 0.63MHz for events with a χ2.

• Luminosity L = Npfrevρjet = 2 · 1031/cm2sec

• R = Lσ R = 3 · 106/secHadron Spectrosopy, HUGS, June 2003 38

Page 40: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The number of J/ψ per p momentum bin in the χ1 and χ2 mass

regions.

Peak cross section is 1nb compared to 100mb total hadronic: 10−5

Mass and width can be determined !

Hadron Spectrosopy, HUGS, June 2003 39

Page 41: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The number of J/ψ per p momentum bin

in the χ0 mass region. The ηc → 2γ.

Hadron Spectrosopy, HUGS, June 2003 40

Page 42: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Evidence for the h1(c).

Not confirmed in later runs !

Hadron Spectrosopy, HUGS, June 2003 41

Page 43: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

A new player: BES at Bejing

0

20

40

60

3.2 3.3 3.4 3.5 3.6 3.7mππ (GeV/c2)

En

trie

s/2.

5MeV

/c2

0

20

40

60

3.2 3.3 3.4 3.5 3.6 3.7mKK (GeV/c2)

En

trie

s/2.

5MeV

/c2

• So far: 3.79× 106 ψ(2S) annihilations.

• Studied: ψ(2S) → γπ+π−, γK+K− and γpp

• The (near) future: Cornell and CLEO-CHadron Spectrosopy, HUGS, June 2003 42

Page 44: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Charmonium en-

ergy levels ressam-

ble positronium

Hadron Spectrosopy, HUGS, June 2003 43

Page 45: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

1.5 D and B mesons

• Mesons with one charmed quark are called D-mesons,

• with one charmed and one strange quark Ds;

• mesons with one bottom quark B-mesons,

• with one bottom and one charmed quark Bs

• Baryons with one charmed (bottom) quark Λc or Λb, Σc or Σb,

and so on.

• But the forces are the same !

Hadron Spectrosopy, HUGS, June 2003 44

Page 46: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

0.0

0.2

0.4

0.6

GeV

ee

e

e e ee

e e 4

4

nn sn ss cn cs cc bn bs bb ∆ Σ∗

2++

1−−

L = 1

ground state

Mass differences between ground states and L=1 states

Hadron Spectrosopy, HUGS, June 2003 45

Page 47: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

0.0

-0.3

-0.6

-0.9 GeV2

e e ee

e

e4

4

4

4

4

nn sn cn cs bn cc N∆

ΣΣ∗

ΞΞ∗

Λ1405

Λ1670

Λ1520

Λ1690

1−−

0−+

Mass square differences between PS and V mesons (circles),

for L=0 octet-decuplet and L=1 singlet-octet baryons.

Hadron Spectrosopy, HUGS, June 2003 46

Page 48: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Spectrum of excited Ds

mesons from the BABAR

experiment (SLAC).

D

K

c

s

Hadron Spectrosopy, HUGS, June 2003 47

Page 49: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Hadron Spectrosopy, HUGS, June 2003 48

Page 50: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The new state does not cor-

respond to expections. Is

it:

• four-quark states

• D K molecule ?

• indication for wrong

models ?

Hadron Spectrosopy, HUGS, June 2003 49

Page 51: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Hadron Spectrosopy, HUGS, June 2003 50

Page 52: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Particles and

interactions

• The particles: quarks and leptons

• The interactions

• Quark models for mesons

Hadron Spectrosopy, HUGS, June 2003 50

Page 53: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

2 Particles and their interaction

2.1 The particles: quark and leptons

Fundamental particles: fermions with spin 1/2

Interactions: through exchange of bosons with spin 0,1,2

Leptons and their quantum numbers

Classification e−/ve µ−/vµ τ−/vτ

e-lepton number 1 0 0

µ-lepton number 0 1 0

τ-lepton number 0 0 1

No τ− → e−γ decays

Hadron Spectrosopy, HUGS, June 2003 51

Page 54: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Quarks and their quantum numbers

Classification d u s c b t

Charge -1/3 2/3 -1/3 2/3 -1/3 2/3

Isospin I 1/2 1/2 0 0 0 0

I3 -1/2 1/2 0 0 0 0

Strangeness s 0 0 -1 0 0 0

Charm c 0 0 0 1 0 0

Beauty (bottom) b 0 0 0 0 -1 0

Truth (top) t 0 0 0 0 0 1

The charge of mesons is given by the sign of the flavor.

Examples: Charge(K+) = Charge(us) = +1

Charge(D+) = Charge(cd) = +1

Charge(B−) = Charge(bu) = -1

Hadron Spectrosopy, HUGS, June 2003 52

Page 55: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Quark masses:

Classification d u s c b t

Current mass 10 5.6 120 MeV 1.5 5 175 GeV

Constituent mass 330 330 450 MeV 1.5 5 175 GeV

Quark colors: red blue green

Color is confined: no free color ever observed

Mesons: qq qq qq

Baryons qqq

Hadron Spectrosopy, HUGS, June 2003 53

Page 56: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Quarks and leptons and their interactions

Hadron Spectrosopy, HUGS, June 2003 54

Page 57: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The Standard Model and QCD

SU(3) ⊗ SU(2) ⊗ U(1)

⇓ ⇓ ⇓8 gluons W±, Z0 photon

strong interactions electro-weak interactions

Coupling vertices

QCD with color-electromagnetic fields

Fµνa = δµAν

a − δνAµa + gsfabcAµ

bAcν

yields renormalizable gauge theory.

Hadron Spectrosopy, HUGS, June 2003 55

Page 58: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The static QQ potential as a function of separation !

-0.5

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

V0(

r)/G

eV

r/fm

β=6.0β=6.2

fit

G. S. Bali, K. Schilling and A. Wachter, “Complete O(v**2) corrections

to the static interquark potential from SU(3) gauge theory,” Phys. Rev.

D 56 (1997) 2566.

Hadron Spectrosopy, HUGS, June 2003 56

Page 59: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Restoration of

chiral symmetry

perturbative QCD

asymptotic freedom

Q2

1Q2

Q2 Λ2QCDQ2 Λ2

QCD

chiralperturbation theory

confinementnon-perturbative QCD

PPPq

BBBM

QCD observables as a function of Q2

Hadron Spectrosopy, HUGS, June 2003 57

Page 60: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

From large energies to large distances

Can we understand bound systems within the QCD frame ?

NO !

Concepts: QCD inspired models

• Bag models

• Effective one-gluon exchange

• Flux tube models

• Instanton interactions

• QCD sum rules

• Lattice QCD

Hadron Spectrosopy, HUGS, June 2003 58

Page 61: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

In the Standard Model of particle physics, strong interactions are

described by Quantum Chromodynamics (QCD), a local gauge

theory with quarks and gluons as elementary degrees of freedom.

The interaction is governed by the strong fine-structure constant αs

which depends on the four-momentum transfer Q of a given strong

process. As αs decreases with increasing Q, perturbation theory can

be applied in high-energy reactions. At momentum scales given by

typical hadron masses, perturbative QCD breaks down due to a

rapid increase of αs. This is the realm of ’strong QCD’. Not only αs

changes but also the relevant degrees of freedom change from

current quarks and gluons to constituent quarks, instantons and

vacuum condensates. To understand this transition is one of the

most challenging intellectual problem. A clarification of the

following central issues in strong interactions is needed:

Hadron Spectrosopy, HUGS, June 2003 59

Page 62: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

• What are relevant degrees of freedom that govern hadronic

phenomena ?

• What is the relation between parton degrees of freedom in the

infinite momentum frame and the structure of hadrons in the

rest frame ?

• What are the mechanisms for confinement and for chiral

symmetry breaking ?

• Are deconfinement and chiral symmetry restoration linked, and

can precursor phenomena be seen in nuclear physics ?

The answers to these questions will not be the direct result of some

experiments. Models need to link observables to these fundamental

questions. Significant observables are the nucleon excitation

spectrum and their electromagnetic couplings including their

off-shell behaviour, and the response of hadronic properties to the

exposure by a nuclear enviroment.

Hadron Spectrosopy, HUGS, June 2003 60

Page 63: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

2.2 Quark models for mesons

• Quarks are confined

Phenomenological potential V = V0 + a r; a string constant;

a = 1 GeV/fm.

• At small distances:

V = − 43αs

r ; one-gluon exchange.

• At large distances: quarks develop effective masses.

What is the effective interaction bet constituent quarks ?

Effective one-gluon exchange ? Exchange of pseudoscalar

mesons ? Instanton-induced interactions ?

Hadron Spectrosopy, HUGS, June 2003 61

Page 64: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

2.2.1 The Godfrey-Isgur model

First unified constituent quark model for all qq-mesons was developed

by Godfrey and Isgur: (see: Stephan Godfrey and Nathan Isgur,

Mesons in a relativized quark model with chromodynamics, Phys.

Rev. D 32 (1985) 189)

Basic ingredients:

HΨ = (H0 + V)Ψ = EΨ, H0 =√

mq2 + |p|2 +

mq2 + |p|2 ,

with p the relative momentum in the CM-frame, and

V = Hc + Hhf + HLS + HA

which contains the central potential (linear confinement and

Coulomb-potential), the spin-spin and tensor interaction and an

annihilation contribution for flavor-neutral mesons.

Hadron Spectrosopy, HUGS, June 2003 62

Page 65: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The potential is generated by an (instantaneous) short-range γµ · γµ,vector-like (gluon) exchange, where

G(Q2) = −4

3αs(Q

2)4π

Q2

where αs(Q2) =

k αk e− Q2

4γ2k is the running coupling, with αs(0) finite,

and a long-range confining potential S(Q2), S(r) = br + c. Here, Q =

p′ − p and P = 12 (p′ + p) :

χ†s′χ

†s′ V

eff (P , r)χsχs =∫

d3Q

(2π)3eiQ·ru(p′, s′)v(−p, s)

[

G(Q2)γµ · γµ − S(Q2)1I · 1I]

u(p, s′)v(−p′, s′) .

This is further modified by “smearing the potentials”:

fij(r) =

d3r′σ3ij

π32

e−σ2ij|r−r′|2fij(r

′) ,

Hadron Spectrosopy, HUGS, June 2003 63

Page 66: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

and thus avoiding the singularities at the origin, where

σ2ij = σ2

0

[

1

2+

1

2

(

4mimj

(mi + mj)2

)4]

+ s2[

2mimj

mi + mj

]2

and relativistic effects are parametrized by the modifications

GC(r) →√

1 +p2

EE

Vi(r)

m1m2→

(

m1m2

E1E2

)12+εi

There are no spin-orbit forces in the Hamiltonian

Excuse: Absent in data, compensated by Thomas precession ?

Referred to as ”Spin-Orbit-Problem” in the literature.

Hadron Spectrosopy, HUGS, June 2003 64

Page 67: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Annihilation

Annihilation is taken into account by parameterizing the

annihilation amplitude as

A(2S+1LJ )ij = 4π(2L+ 1)

A(2S+1LJ)

[

αs(M2i )αs(M

2j )

π2

]n2

SL(Ψi)SL(Ψj)

mimj,

with SL(Ψ) =1

(2π)32

d3p1√4π

Φ(p)( p

E

)L m

E

n = 2 or n = 3 for C = + ;C = −, respectively,

Hadron Spectrosopy, HUGS, June 2003 65

Page 68: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

for non-pseudoscalar flavour-neutral mesons:

. . . →

A0 em2

i +m2j

M02 +

3(ln(2) − 1)

αs(M2i )αs(M

2j )

π2

or, alternatively,

. . . →

A0

[

1 −(

M

M0

)4]

em2

i +m2j

M02 − M4

4M04 +

3(ln(2) − 1)

α2s(M0

2)

π2

for pseudoscalar, isoscalar mesons. Here Mi are the

annihilation-unperturbed mesons masses .

Hadron Spectrosopy, HUGS, June 2003 66

Page 69: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Parameters of the Godfrey-Isgur model

masses mn 220 MeV ms 419 MeV

confinement b 910 MeV/fm c -253 MeV

OGE αs(0) 0.60 Λ 200 MeV

εSS -0.168 εT 0.025

εCLS -0.035 εSLS 0.055

“smearing” σ0 0.11 fm s 1.55

annihilation A(3S1) 2.5 A(3P2) -0.8

A0 0.5 (0.55) M0 550(1170) MeV

Hadron Spectrosopy, HUGS, June 2003 67

Page 70: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Godfrey-Isgur Mass spectra

All mesons are assumed to be “ideally mixed”, except

Meson ∆M(calc)[MeV] ∆M(exp)[MeV]

η 370 (340) 410

η′ 810(780) 820

η′′ ±100 (-30) -20 / 140

η′′′′ – (250) –

ω 10 15 ± 10

φ 250 250 ± 10

f2 -40 -45 ± 15

f ′

2 315 200 ± 20

where ∆M = MI=0 −MI=1 is the mass shift due to the

annihilation-contribution. In all other channels it seems to be

ignored.

Hadron Spectrosopy, HUGS, June 2003 68

Page 71: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Isoscalar Mesons

Mas

s [M

eV]

0

500

1000

1500

2000

2500

520

960

1440

1630

547

957

1297

1435

1760

2225

780

1020

1460

16601690

1880

780

1020

1460

16601690

1880

782

1019

1419

16491680

1220

1470

1780

2010

1170

1386

1090

1360

1780

1990

800

980

1350

15001525

1715

2020

1240

1480

1820

2030

1281

1426

1518

1280

1530

1820

20402050

2240

1275

1430

15441525

1638

1815

1960

2011

2161

22972339

1680

1890

1632

1854

1680

1900

2370

2540

1667

1854

2010

2200

2034

23002340

2520

2300

2470 2465

Hadron Spectrosopy, HUGS, June 2003 69

Page 72: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Light Mesons, isospin dependenceM

ass

[MeV

]

0

500

1000

1500

2000

2500

547

957

1297

1435

1760

2225

138

1300

1801

782

1019

1419

16491680

769

1465

1700

2149

1170

1386

1229

800

980

1350

15001525

1715

2020

984

1474

1281

1426

1518

1230

1640

1275

1430

15441525

1638

1815

1960

2011

2161

22972339

1318

1660

1752

1632

1854

1670

2090

1667

1854

1691

2250

2350

2034

2300

2014

2465 2450

Hadron Spectrosopy, HUGS, June 2003 70

Page 73: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Strange mesons

Mas

s [M

eV]

0

500

1000

1500

2000

2500

470

1450

2020

495

1460

1830

900

1580

1780

2110

2250

891

1414

1717

1240

1890

1412

1945

13401380

19001930

1273

1402

1650

1430

1940

2150

1425

1973

17801810

22302260

1580

17731816

2247

1790

2240

2460

1776

21202150

2324

2110

2045

24102440

2490

2390 2382

Hadron Spectrosopy, HUGS, June 2003 71

Page 74: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Isovector Mesons

Mas

s [M

eV]

0

500

1000

1500

2000

2500

150

1300

1880

138

1300

1801

770

1450

1660

2000

2150

769

1465

1700

2149

1220

1780

1229

1090

1780

984

1474

1240

1820

1230

1640

1310

1820

2050

1318

1660

1752

1680

2130

1670

2090

1700

2150

1680

2130

2370

1691

2250

2350

2010 2014

23002330

2450

Hadron Spectrosopy, HUGS, June 2003 72

Page 75: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The Bonn model

• Starting from field theory

• Nonrelativistic reduction of Salpater equation

• Confinement potential with Dirac structure

two variants, called A and B

• Instanton-induced interactions

for pseudoscalar and scalar mesons

U. Loring, B. C. Metsch and H. R. Petry, “The light baryon spectrum in

a relativistic quark model with instanton-induced quark forces: The

non-strange baryon spectrum and ground-states,” “The light baryon

spectrum in a relativistic quark model with instanton-induced quark

forces: The strange baryon spectrum,” Eur. Phys. J. A 10, (2001) 395,

447

Hadron Spectrosopy, HUGS, June 2003 73

Page 76: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Salpeter-model parameters

Model A Model Bmasses mn 306 MeV 419 MeV

ms 503 MeV 550 MeV

confinement aC -1751 MeV -1135 MeV

bC 2076 MeV/fm 1300 MeV/fm

Γ · Γ 12(1I · 1I − γ0 · γ0)

12(1I · 1I − γ5 · γ5 − γµ · γµ)

instanton g 1.73 GeV−2 1.63 GeV−2

induced g′ 1.54 GeV−2 1.35 GeV−2

interaction λ 0.30 fm 0.42 fm

Hadron Spectrosopy, HUGS, June 2003 74

Page 77: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Isovector

MesonsM

ass

[MeV

]

500

1000

1500

2000

2500

Hadron Spectrosopy, HUGS, June 2003 75

Page 78: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Strange

Mesons

Mas

s [M

eV]

500

1000

1500

2000

2500

Hadron Spectrosopy, HUGS, June 2003 76

Page 79: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

IsoscalarMesons

Mas

s [M

eV]

500

1000

1500

2000

2500

Hadron Spectrosopy, HUGS, June 2003 77

Page 80: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

What are instantons ?

Strong interactions of massless quarks: Chiral symmetry

However, symmetry is broken

• Strong fluctuations of gluon fields

• QCD allows solutions with vortices (topological charge, winding

number)

• Quarks can be bound to these vortices (zero modes)

• Quarks can flip spin under change of topological charge

• Chirality of quarks is not conserved

• Chiral symmetry is spontaneously broken

• Glodstone boson acquire mass

Hadron Spectrosopy, HUGS, June 2003 78

Page 81: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Symmetry breaking :

Magnetism QCD

spontaneous Weiss- Constituent

districts quarks

mu ∼ 120 MeV

induced magnetic field Higgs field

mu ∼ 4 MeV

md ∼ 7 MeV

Instantons on the lattice

Hadron Spectrosopy, HUGS, June 2003 79

Page 82: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

arX

iv:h

ep-l

at/9

3120

71 v

2 2

3 D

ec 1

993

arX

iv:h

ep-l

at/9

3120

71 v

2 2

3 D

ec 1

993

t

z

(a)

5

10

15

20

5

10

15

2

3

4

5

10

15

20

5

10

15

2

3

4

t

z

(b)

5

10

15

20

5

10

15

-0.05

0

0.05

5

10

15

20

5

10

15

-0.05

0

0.05

t

z

(c)

5

10

15

20

5

10

15

0

0.01

0.02

0.03

5

10

15

20

5

10

15

0

0.01

0.02

0.03

t

z

(d)

5

10

15

20

5

10

15

-0.001

0

0.001

0.002

5

10

15

20

5

10

15

-0.001

0

0.001

0.002

t

z

(e)

5

10

15

20

5

10

15

0

0.01

0.02

0.03

5

10

15

20

5

10

15

0

0.01

0.02

0.03

t

z

(f)

5

10

15

20

5

10

15

-0.001

0

0.001

0.002

5

10

15

20

5

10

15

-0.001

0

0.001

0.002

Action den-

sity (left) and

topological

charge (right)

as functions of

space and time

before cooling

(a,b) and after

cooling (c-f).

Hadron Spectrosopy, HUGS, June 2003 80

Page 83: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

η’980

530

495

ηΚ

π140

Mass [MeV]

1000

500

0

910

810

690

ss

ns

nn

η’

495

ηΚ

π140

960

550

of’

aoKo

*Ko*of’

ao

fo fo

Mass [MeV]

1000

1500 1460

1350

1240nn

’1500’1450

1430

1470

1430

1320

980

ns

ss

’1000’

VC + VIII Exp. VC + VIII Exp.

Hadron Spectrosopy, HUGS, June 2003 81

Page 84: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Particle decays and

partial wave analysis

• Introduction

• Three-body decays

• Elements of scattering theory

• Angular distribution

• Flavor structure of mesons

Hadron Spectrosopy, HUGS, June 2003 82

Page 85: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

3 Particle decays and partial wave analysis

3.1 Introduction

The aim of an analysis is

• to determine masses and widths of resonances

Breit-Wigner amplitude; Flatte formula, K-Matrix

• to determine their spins and parities

Decay angular distributions, Zemach, Rarita-Schwinger or

helicity formalism

• and their partial decay widths to different final states

multichannel analyses

• and their flavor structure

SU(2) and SU(3)

Hadron Spectrosopy, HUGS, June 2003 83

Page 86: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Particle decays

The transition rate for particle decays are given by Fermi’s golden

rule:

Tif = 2π|M|2ρ(Ef )Tif is the transition probability per unit time. With N particles the

number of decays in the time interval dt is NTifdt or

dN = −NTifdt

and

N = N0e−Tif t = N0e

−(t/τ) = N0e−Γt

Γτ = h = 1

(uncertainty priniple).

Hadron Spectrosopy, HUGS, June 2003 84

Page 87: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

How to describe a short-lived state in QM ?Consider a state with energy E0 = hω; it is characterised by a wave

function

ψ(t) = ψ0(t)e−iE0t

Now we allow it to decay:

= ψ∗0(t)ψ0(t)

= ψ∗0(t = 0)ψ0(t = 0)e−t/τ .

Probabilty density must decay

exponentially. −→

ψ(t) = ψ(t = 0)e−iE0te−t/2τ

Hadron Spectrosopy, HUGS, June 2003 85

Page 88: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

A damped oscillation contains not only one frequency. The

frequency distribution can be calculated by the Fourier

transformation:

f(ω) = f(E) =∫ ∞0ψ(t = 0)e−iE0t−t/2τeiEtdt

=∫ ∞0ψ(t = 0)e−i((E0−E)t−1/2τ)tdt

=ψ(t = 0)

(E0 −E) − i/ (2τ)Probability to find the

energy E:

f∗(E)f(E) =|ψ(t = 0)|2

(E0 − E)2 + 1/ (2τ)2

(τ = 1/Γ) →(Γ/2)2

(E0 − E)2 + (Γ/2)2

Hadron Spectrosopy, HUGS, June 2003 86

Page 89: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Resonances are described by amplitudes !

BW (E) =Γ/2

(E0 − E) − iΓ/2=

1/2

(E0 −E) /Γ− i/2

With

2 (E0 −E) /Γ = cot δ : f(E) =1

cot δ − i= eiδ sin δ =

i

2

(

1 − e−2iδ)

This formula is derived from S matrix. δ is called phase shift. The

amplitude is zero for Γ/(E −E0) << 0 and starts to be real and

positive with an small positive imaginary part. For Γ/(E −E0) >> 0

the amplititude is small, real and positive with an small negative

imaginary part. The amplitude is purely imaginary (i) for E = E0.

The phase δ goes from 0 to π/2 at resonance and to π at high

energies. Argand circle

Hadron Spectrosopy, HUGS, June 2003 87

Page 90: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Scattering ampli-

tude T in case of

inelastic scattering.

Definition of phase δ

and inelasticity η.

Hadron Spectrosopy, HUGS, June 2003 88

Page 91: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Elastic channel (upper curve),

πp → ππp (lower curve), differ-

ence πp → ηp or πp → ΛK

Argand diagram and cross section for π−p → π−p via formation of

the N(1650)D1,5 resonance (L=2). From:

D. M. Manley, “Multichannel analyses of anti-K N scattering,” PiN

Newslett. 16 (2002) 74.

Hadron Spectrosopy, HUGS, June 2003 89

Page 92: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

3.2 Three-body decays

A particularly important case is that of annihilation into three

final-state particles, M → (m1,m2,m3).

• There are 12 dynamical variables (3 four-vectors).

• These are constrained by energy and momentum conservation.

• Three masses can be identified.

• There are three arbritrary Euler angles defining the orientation

the three-body system in space.

Two variables need (and suffice) to be identify the full dynamics.

The two variables are customly chosen as squared invariant masses

m122 and m13

2. Then the partial width can be expressed as

dΓ =1

(2π)31

32M· |M|2 · dm2

12dm213

Events are uniformly distributed in the (m212,m

213) plane if the

reaction leading to the three particle final state has no internal

dynamics. This is the Dalitz plot.Hadron Spectrosopy, HUGS, June 2003 89

Page 93: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Warnings:

1. If the decaying particle has a spin J 6= 0, summation over the

spin components is required.

2. If a spinning particle is produced in flight, the spin may be

aligned, the components mj can have a non-statistical distribution.

The Dalitz plot

Events are represented in a Dalitz plot by one point in a plane

defined by m212 in x and m2

23 in y direction. Since the Dalitz plot

represents the phase space, the distribution is flat in case of absence

of any dynamical effects. An example is the Dalitz plot for

K0L → π+π−π0

Resonances in m212 are given by a vertical line, in m2

23 as horizontal

lines. Since

m213 = (M2

p +m21 +m2

2 +m23) − (m2

12 −m223)

particles with defined m213 mass are found on the second diagonal.

Hadron Spectrosopy, HUGS, June 2003 90

Page 94: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

From the invariant mass of particles 2 and 3

m223 = (E2 +E3)

2 − (p2 + p3)2

we derive

m223 = (m2

2 +m23 + 2 ·E2 ·E3) − (2 · |q2| · |q3|) · cos θ

with θ being the angle between q2 and q3. This can be rewritten as

m223 =

[(

m223

)

max+

(

m223

)

min

]

+[(

m223

)

max−

(

m223

)

min

]

· cos θ

For a fixed value of m1,2 the momentum vector p3 has a cos θ

direction w.r.t. the recoil p1 which is proportional to m223.

Hadron Spectrosopy, HUGS, June 2003 91

Page 95: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Example:

0

500

1000

1500

2000

2500

3000

x 10 3

0 500 1000 1500 2000 2500 3000

x 103

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

-1 -0.5 0 0.5 10

1000

2000

3000

4000

5000

6000

7000

8000

9000

-1 -0.5 0 0.5 1

0

1000

2000

3000

4000

5000

6000

7000

-1 -0.5 0 0.5 1

The π+π−π0 Dalitz plot in pp annihilation at rest, and ρ+ (a), ρ− (b)

and ρ0 (c) decay angular distributions.Hadron Spectrosopy, HUGS, June 2003 92

Page 96: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The Dalitz plot shows striking evidence for internal dynamics.

High-density bands are visible at fixed values of m212,m

213, and m2

23.

The three bands correspond to the sequential annihilation modes

pp → |ρ+ >|π− >, |ρ− >|π+ >, and |ρ0 >|π0 >, respectively. The

enhancements due to ρ production as intermediate states is

described by dynamical functions F .

The Figures on the right shows the density distribution choosing a

slice m212 = m2

|ρ+ >±∆m2

|ρ+ >and plotting the number of events as

a function of m213. All three ρ decay angular distributions exhibit

two peaks. Their significance is immediately evident from the

Dalitz plot. The three bands due to the three ρ charged states

cross; at the crossing two amplitudes interfere and the observed

intensity increases by a factor of four as one should expect from

quantum mechanics. Apart from the peaks the decay angular

distribution is approximately given by sin2 θ, hence A ∼ sin θ. The

three ρ production amplitudes have obviously the same strength

indicating that the pp initial state(s) from which ρ production

occur(s) must have isospin zero.Hadron Spectrosopy, HUGS, June 2003 93

Page 97: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

3.3 Elements of scattering theory

Consider two-body scattering from the initial state i to the final

state f, ab → cd. Then

dσfi

dΩ=

1

(8π)2s

qf

qi|Mfi|2 = |ffi(Ω)|2

where s = m2 = squared CMS energy; q break-up momenta. In case

of spins, one has to average over initial spin components and sum

over final spin components. The scattering amplitude can be

expanded into partial-wave amplitudes:

ffi(Ω) =1

qi

(2J + 1)TJfiDJ∗

λµ(Φ,Θ,0)

One may remove the probability that the particles do not interact

by S = I + iT. Probability conservation yields SS† = I from which

one may define

K−1 = T−1 + iI

Hadron Spectrosopy, HUGS, June 2003 94

Page 98: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

From time reversal: K is real and symmetric.

Below the lowest inelasticity threshold

S = e2iδ T = eiδsinδ

For a two-channel problem, the S-matrix is 2 × 2.

SikS∗jk = δij

and S11 = ηe2iδ1

S22 = ηe2iδ2

S12 = ieiδ1+δ2√

1 − η2

The T matrix is so far not relativistically invariant. This can be

achieved by introducing T :

Tij =(

ρ12

i

)

Tij

(

ρi)12

)

where ρn = 2qn/m are phase space factors.

Hadron Spectrosopy, HUGS, June 2003 95

Page 99: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The amplitude now reads

TJfi(Ω) =

1

qi

(2J + 1)TJfiDJ∗

λµ(Φ,Θ,0)

with

ρn = 2qn/m =

[

1−(

ma + mb

m

)2] [

1−(

ma −mb

m

)2]

Now the following relations hold:

T =1

ρeiδsinδ; K−1 = T−1 + iρ

T =1

1− ρ1ρ2D − i(

ρ1K11 + ρ2K22

)

K11 − iρ2D K12

K21 K22 − iρ1D

and D = K11K22 − K212

Hadron Spectrosopy, HUGS, June 2003 96

Page 100: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

In case of resonances, we have to introduce poles into the K-matrix:

Kij =∑

α

gαi(m)gαj(m)

m2α −m2

+ cij

Kij =∑

α

gαi(m)gαj(m)

(m2α −m2)

√ρiρj

+ cij

The coupling constants g are related to the partial decay widths

g2αi = mαΓαi(m) Γα(m) =

i

Γαi(m)

The partial decay widths and couplings depend on the available

phase space

gαi(m) = gαi(mα)Blαi(q,qα

√ρi

These formule can be used in the case of several resonances (sum

over α) decaying into different final states (i). The K-matrix

preserves unitarity and analyticity. It is a multi-channel approach.

Hadron Spectrosopy, HUGS, June 2003 97

Page 101: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Adding two resonances using a K-matrix

Hadron Spectrosopy, HUGS, June 2003 98

Page 102: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

3.4 Angular distributions

Zemach formalism: Back to our Dalitz plot: on the right are decay

angular distributions. The ρ is emitted with a momentum pρ and

then decays in a direction characterized, in the ρ rest frame, by one

angle Θ and the momentum vector pπ.

0

500

1000

1500

2000

2500

3000

x 10 3

0 500 1000 1500 2000 2500 3000

x 103

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

-1 -0.5 0 0.5 10

1000

2000

3000

4000

5000

6000

7000

8000

9000

-1 -0.5 0 0.5 1

0

1000

2000

3000

4000

5000

6000

7000

-1 -0.5 0 0.5 1

Hadron Spectrosopy, HUGS, June 2003 99

Page 103: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The pp initial state has L = 0: The parity of the initial state is -1

(in both cases), the parities of π and ρ are -1; hence there must be

an angular momentum redlρ = 1 between π and ρ. This decay is

described by the vector pρ. The ρ decays also with one unit of

angular momentum, with lπ = 1. From the two rank-one tensors

(=vectors) we have to construct the initial state:

J = S =

J 2s+1LJ JPC Zemach angle

0 1S0 0−+ pρ · pπ sinΘ

1 3S1 1−− pρ × pπ cosΘ

Higher spins:

• Traceless, trace t = 0P

ti = 0;P

tii = 0;P

tiii = 0; · · ·

• Symmetry

tij = tji; tijk = tjik = tij = tikj

• Tensors are construct as products of lower-rank tensors

titj =⇒ 1

2(titj + titj) − 1

3t2δij

• To reduce rank, multiply with δijδkl or εijk

Hadron Spectrosopy, HUGS, June 2003 100

Page 104: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

3.4.1 Helicity formalism

M. Jacob and G. C. Wick, “On The General Theory Of Collisions For

Particles With Spin,” Annals Phys. 7 (1959) 404 [Annals Phys. 281

(2000) 774].

Thanks to Dr. Ulrike Thoma.

The helicity of a particle is defined as the projection of its total

angular momentum J = l + s onto its direction of flight.

λ = J · p

|p| = l · p

|p| +ms = ms ,

Consider a particle A decaying into particles B and C with spins s1,

s2. The particles move along the z-axis (quantisation axis). The

final state is described by (2s1 + 1) · (2s2 + 1) helicity states |pλ1λ2〉; λiare the helicities of the particles and p is their center of mass

momentum.

Hadron Spectrosopy, HUGS, June 2003 101

Page 105: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

A particle B which is emit-

ted in a arbitrary direction

can be described in spher-

ical coordinates by the an-

gles θ, φ.

X

Y

Z Z`

B

0

0

Coordinate system for A→ BC decays.

In this case the helicity states are defined in the coordinate system

Σ3 which is produced by a rotation of Σ1 into the new system.

R(θ, φ) = Ry2(θ)Rz1(φ)

Using d-functions the rotation can be written as

DJmm′(θ, φ) = eim

′φdJmm′(θ)

Hadron Spectrosopy, HUGS, June 2003 102

Page 106: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The final states in system Σ1 can be expressed as

|pθφλ1λ2M〉1 = DJMλ(−θ,−φ) · |pλ1λ2〉3

with λ = λ1 − λ2. The transition matrix for the decay is given by

fλ1λ2,M (θ, φ) = 〈pθφλ1λ2M |T |M ′〉 = DJ ∗Mλ(−θ,−φ) 〈λ1λ2|T |M ′〉

fλ1λ2,M (θ, φ) = DJλM (θ, φ)Tλ1λ2

The interaction is rotation invariant. The transition amplitude is a

matrix with (2s1+1)(2s2+1) rows and (2J+1) columns. DJλM(θ, φ)

describes the geometry (the rotation of the system Σ3 where the

helicity states are defined back into the CMS system of the

resonance) Tλ1λ2describes the dependences from the spins and the

orbital angular momenta of the different particles in the decay

process. The general form of Tλ1λ2is given by

Tλ1λ2=

ls

αls 〈Jλ|ls0λ〉 〈sλ|s1s2λ1,−λ2〉

where αls are unknown fit parameters.Hadron Spectrosopy, HUGS, June 2003 103

Page 107: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The parameters define the decay spin and orbital angular

momentum configuration. The brackets are Clebsch-Gordan

couplings for J = l + s und s = s1 + s2. The sum extends over all

allowed l and s. Thus:

wD(θ, φ) = Tr(ρf ) = Tr(fρif+)

ρf is the final state density matrix of the dimension (2s1+1)(2s2+1)

and ρi is the initial density matrix of dimension (2J+1).

• Multiple decay chains

Assume that not only A decays into B and C but also B and C

decay further into B1B2 and C1C2. The total helicity amplitude for

a reaction A→ BC, B → B1B2, C → C1C2, has the form:

ftot = [f(B) ⊗ f(C)] f(A)

=∑

λ(B)λ(C)

[

fλ(B1)λ(B2),λ(B) ⊗ fλ(C1)λ(C2),λ(C)

]

fλ(B)λ(C),λ(A)

⊗ represents the tensor product of two matrices.Hadron Spectrosopy, HUGS, June 2003 104

Page 108: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The Figure shows in which

cases this combination is done

by a scalar or by a tensor

product. The transition am-

plitude for the different sin-

gle decays fλ(x1)λ(x2),λ(x) of X →X1X2 are calculated, and are

then combined.

pN_

AB

B1 A1

A2

B2

π π π π

π

π

π π

All decays in the figure are combined as tensor product (all (J,mJ)A

with all (J,mJ)B); all decays of a line are combined by a scalar

product. Here the (J,mJ )A1, depends directly on (J,mJ)A. Thus the

amplitude is determined to

ftot = [ ( f(A2)f(A1)f(A) ) ⊗ ( [ f(B2) ⊗ f(B1) ] f(B) ) ] f(pN)

Hadron Spectrosopy, HUGS, June 2003 105

Page 109: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The decay angular distribution of a specific resonance depends on

the whole process the state is produced in. Its spin density matrix

is changed depending on the process it is produced in. This can be

easily seen in the following example (A→ Bπ,B → B1B2). The first

decay changes the spin-density matrix of the decaying resonance B.

wD(θ, φ) = Tr(fρif+) =

=“

B → B1B2

” “

A→ Bπ”

0

B

B

@

ρi

1

C

C

A

A→ Bπ”T “

B → B1B2

”T

=“

B → B1B2

0

B

B

@

ρB

1

C

C

A

B → B1B2

”T

Hadron Spectrosopy, HUGS, June 2003 106

Page 110: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

3.4.2 The helicity formalism in photoproduction processes

In photoproduction a resonance is produced in the process and then

decays. We first consider a nucleon resonance is produced and

decays only into two particles, e.g.:

γp→ N∗ → pη

The γp-system defines the z-axis (θ, φ = 0) and determines the spin

density matrix of the N∗-resonance.

The reaction γp→ N∗ is related to N∗ → γp (which can be calculated

using the formalism discussed above) by time reversal invariance.

Using

fλcλd,λaλb(θ) = (−1)λ

′−λfλaλb,λcλd(θ) ([martinspearman] p.232)

valid for ab→ cd with λ′ = λc − λd and λ = λa − λd we can write

f(γp→ N∗ → pη) = f(N∗ → pη) · fT (N∗ → γp)

Note that λ′ = λN∗ = λp − λγ always holds.

Hadron Spectrosopy, HUGS, June 2003 107

Page 111: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The photoproduction amplitude needs to describe the decay of a

resonance R f(R→ N X) into the channel N X and its production

γp→ R calculated using the transposed decay amplitude fT (R→ pγ).

For photoproduction of spin 0 mesons this matrix has the form

f tot =

[ 12 ,-1; 12 ] [- 1

2 -1; 12 ] [ 12 ,+1; 1

2 ] [- 12 +1; 1

2 ]

[ 12 ,-1;- 12 ] [- 1

2 -1;- 12 ] [ 12 ,+1;- 1

2 ] [- 12 +1;- 1

2 ]

(1)

where the numbers in the brackets represent [λp, λγ ;λpf ] with p, pf

being the initial and final state proton. The angular part of the

differential cross section is then given by

dΩ= ∼ 1

λpλγλ′

|T(λpλγλpf )|2

Hadron Spectrosopy, HUGS, June 2003 108

Page 112: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Example

We now discuss the photoproduction of the S11 and P11 resonances

and their decay into pη decay of a photoproduced resonance will be

discussed first having a resonance second having a multipole picture

in mind. The photons are assumed to be unpolarised.

γp → S11 → pη : 12

− → 12

+0−, ` = 0

To determine the angular distribution of the decay process the

helicity matrix Tλ1λ2has to be calculated,

T± 12,0 = α0 1

2

1

2± 1

2|0 1

20 ± 1

2

⟩ ⟨

1

2± 1

2|12

0 ± 1

20

= α0 12

= const.

The transition matrix is then given by (the constant is arbitrarily

set to 1):

f± 12

0,M (θ, φ) =

D1212

12

D1212− 1

2

D12

− 12

12

D12

− 12− 1

2

(2)

(columns: MS11= 1

2 , − 12 , rows λ′p = 1

2 , − 12)

Hadron Spectrosopy, HUGS, June 2003 109

Page 113: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

with φ = 0 (process is symmetric over φ, z-axis corresponds to

direction of flight) follows:

fS11→pη =

cos( θ2 ) − sin( θ2 )

sin( θ2 ) cos( θ2 )

(3)

γp→ S11:

First, we calculate S11 → pγ, for 12

− → 12

+1−, ` = 0. Two proton

helicities occur: λ1 = ± 12 , and two photon helicities: s2 = 1, λ2 = ±1 ;

λ2 = 0 is excluded for real photons. One finds: T 12−1 = T− 1

2+1 = 0,

T− 12−1 = −

23 , T 1

21 = +

23 . Setting θ and φ to 0 (the γp is parallel to

the z-axis), only DJλM (0, 0) is not equal to zero only if λ = M .

fS11→pγ =

0 0

−√

23 0

0√

23

0 0

(4)

Hadron Spectrosopy, HUGS, June 2003 110

Page 114: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The rows correspond to different λ-values. Thus:

f(γp→ S11) = fT (S11 → pγ) =

0 −√

23 0 0

0 0√

23 0

And for the whole reaction:

γp→ S11 → pη: fγp→S11→pη =

cos( θ2 ) − sin( θ2 )

sin( θ2) cos( θ2 )

·

0 −√

23 0 0

0 0√

23 0

=

0 −√

23 cos( θ2) −

23 sin( θ2 ) 0

0 −√

23 sin( θ2 )

23 cos( θ2 ) 0

Withdσ

dΩ= ∼ 1

λpλγλ′

|T (λpλγλ′)|2

one finds a flat angular distribution.

dΩ∼ |AS11

|2

Hadron Spectrosopy, HUGS, June 2003 111

Page 115: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

γp → P11 → pη

The helicity matrix for P11 → pη involves the quantum numbers:12

+ → 12

+0−, ` = 1 and the matrix elements T± 1

2,0 = ± 1√

3α1 1

2. The

scattering amplitude is now given by

fP11→pη =

− 1√3

cos( θ2 ) − 1√3(− sin( θ2 ))

1√3

sin( θ2 ) 1√3

cos( θ2 )

In the next step P11 → pγ is calculated ( 12

+ → 12

+1−, ` = 1). Two

values for the spin s are possible: s = 12 , s = 3

2 . The Clebsch Gordan

coefficients depend on s leading to a different Tλ1λ2for the two

spins. The D-matrices depend only on J, λ and M , so that they are

the same for both cases. One finds:

T+ 12−1 = T− 1

2+1 = 0 and

T− 12−1 = T+ 1

2+1 = α1 3

2(− 1

3) + α1 12(+

√2

3 ) = −a

Hadron Spectrosopy, HUGS, June 2003 112

Page 116: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

fγp→P11= fTP11→pγ =

0 −a 0 0

0 0 −a 0

And for the whole process:

γp→ P11 → pη:

fγp→P11→pη =

0 + 1√3a cos( θ2 ) − 1√

3a sin( θ2 ) 0

0 − 1√3a sin( θ2 ) − 1√

3a cos( θ2 ) 0

which leads again to a flat angular distribution; the differential

cross section does not depend on θ.

Hadron Spectrosopy, HUGS, June 2003 113

Page 117: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Finally we assume that both resonances are produced; their

interference leads to a non-flat angular distribution:

fγp→(S11+P11)→pη =

0 (− 2√3S11 + a√

3P11) cos( θ2 ) (− 2√

3S11 − a√

3P11) sin( θ2 ) 0

0 (− 2√3S11 − a√

3P11) sin( θ2 ) ( 2√

3S11 − a√

3P11) cos( θ2 ) 0

with s = 2√3S11 and p = a√

3P11 we get:

dΩ∼ 1

4· 2

[

sin2(θ

2) · |s+ p|2 + cos2(

θ

2) · |s− p|2

]

∼ |s|2 + |p|2 − 2Re(s∗p) · cos(θ)

The interference term 2Re(s∗p) · cos(θ) produces a non-flat angular

distribution.

Hadron Spectrosopy, HUGS, June 2003 114

Page 118: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

3.5 Flavor structure of mesons

Isoscalar coefficients for meson decays

• a2(1320) → |η >1π = g1

• a2(1320) → |η >8π =

q

1

5g8

• a2(1320) → |η >ssπ = 0 →

g1 = −q

4

5g8

R(a2(1320) → η8π)

R(a2(1320) → η1π)= 1/2.

3 couplings:

! ""#

! ""

#

$

% %

& $ ' ' &

'

% % ! "

#

(

! ""#

! ""

#

$ $

& $ $ &

! "

#

• 1: C’=1 (dijk) f2(1270), f2(1525) → ππ, ηη, ηη′,KK

• 81: C’=1 (dijk) f2(1270), f2(1525) → ππ, ηη, ηη′,KK

and a2(1320) → ηπ,KK; K∗

2(1430) → Kπ,Kη,Kη′

• 82: C’=-1 (fijk) a2(1320) → ρπHadron Spectrosopy, HUGS, June 2003 115

Page 119: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

SU(3) couplings for π and ρ like mesons.

decay symmetric antisymmetric

π → ππ 0√

2√3

π → KK 1√6

√3√10

π → πη, πφ 0cos θη−

√2 sin θη√

5

π → πη′, πω 0sin θη+

√2 cos θη√5

SU(3) couplings for K like mesons without nonet mixing.

decay symmetric antisymmetric

K → Kπ 3√20

12

K → Kη,Kφcos θη+2

√2 sin θη√

20

cos θη

2

K → Kη′,Kω 2√

2 cos θη−sin θη√20

sin θη

2

Hadron Spectrosopy, HUGS, June 2003 116

Page 120: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

SU(3) couplings for η′, f2(1270) and ω (dominant uu and dd) like

mesons with nonet mixing. i and f denote the initial and final state

nonet mixing angle respectively.

decay symmetric antisymmetric

f → ππ√

3√

2 cos θf+sin θf√10

0

f → KKsin θf−2

√2 cos θf√

10

sin θf2

f → ηη, φφ− cos θ2η sin θf−

√2(2 sin θf cos θη sin θη−cos θf )√

50

f → η′η′, ωωsin θ2η sin θf+

√2(2 sin θf cos θη sin θη+cos θf )√

50

f → ηη′, φωsin θf (

√2(cos θ2η−sin θ2η)−cos θη sin θη√

50

Hadron Spectrosopy, HUGS, June 2003 117

Page 121: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

SU(3) couplings for η, f ′2(1525) and φ (dominant ss) like mesons

with nonet mixing. i and f denote the initial and final state nonet

mixing angle respectively.

decay symmetric antisymmetric

f ′ → ππ√

3√

2 sin θf−cos θf√10

0

f ′ → KKcos θf+2

√2 sin θf√

10

cos θf2

f ′ → ηη, φφ− cos θ2η cos θf−

√2(2 cos θf cos θη sin θη+sin θf )√

50

f ′ → η′η′, ωωsin θ2η sin θf+

√2(2 sin θf cos θη sin θη+cos θf )√

50

f ′ → ηη′, φωcos θf (

√2(cos θ2η−sin θ2η)−cos θη sin θη√

50

Hadron Spectrosopy, HUGS, June 2003 118

Page 122: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Fits

The matrix element M

dΓ =1

32π2|M|2 q

m2dΩ

contains a coupling constant, CT→PS+PS or CT→V+PS (which is

calculable in dynamical models), the SU(3) amplitudes cisoscalar and

a dynamical function F(q) with q being the breakup momentum.

B2(qR) =

13(qR)2

9 + 3(qR) + 9(qR)2

BW (m) =m0Γ0

m2 −m20 − im0Γ0

Hadron Spectrosopy, HUGS, June 2003 119

Page 123: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Decay Data Fit χ2

Γ σΓ Γ

a2 → πη 15.95±1.32 24.8 2.99

a2 → πη′ 0.63±0.12 1.2 4.39

a2 → KK 5.39±0.88 5.2 0.01

f2 → ππ 157.0 ±5.0 117.1 2.77

f2 → KK 8.5 ±1.0 8.0 0.08

f2 → ηη 0.8 ±1.0 1.5 0.44

f ′2 → ππ 4.2 ±1.9 3.7 0.07

f ′2 → KK 55.7 ±5.0 48.6 0.43

f ′2 → ηη 6.1 ±1.9 5.3 0.12

f ′2 → ηη′ 0.0 ±0.8 0.7 0.77

K2 → Kπ 48.9 ±1.7 61.1 0.99

K2 → Kη 0.14±0.28 0.2 0.02

Decay Data Fit χ2

Γ σΓ Γ

a2 → πρ 77.1± 3.5 66.0 0.67

f2 → K∗K 0.0± 1.8 0.2 0.01

f ′2 → K∗K 10.0±10.0 11.8 0.03

K2 → Kρ 8.7± 0.8 11.5 1.29

K2 → Kω 2.7± 0.8 1.0 0.00

K2 → K∗π 24.8± 1.7 24.1 0.02

K2 → K∗η 0.0± 1.0 0.9 0.81

Results of the final fit. The χ2 values include 20% SU(3) symmetry

breaking.

Hadron Spectrosopy, HUGS, June 2003 120

Page 124: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

What have we learned ?

• Tensor meson decays are compatble with SU(3) assuming 20%

symmetry breaking

Θps = −(14.4 ± 2.9)

Θvec = −(37.5 ± 8.0)

Θten = (28.3 ± 1.6)

λ = 0.77 ± 0.1

R = 0.2 ± 0.04 fm

CT→PS+PS = 1.11 ± 0.05

CT→PS+V = 2.07 ± 0.13

Why is λ not 0.225 ?

Hadron Spectrosopy, HUGS, June 2003 121

Page 125: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Diagrams of qq decays into

two strange mesons (a)

and into two (b),

three (c)

and more (d)

nonstrange mesons.

Diagrams of the type

(e), (f) and (g) are suppressed

due to the OZI rule.

SU(3) compares only a) and b)

a)

f)

e)

g)

b)

c)

d)

(.......)

s

s

n

n

_

_

Hadron Spectrosopy, HUGS, June 2003 122

Page 126: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Summary

• QCD inspired models are well suited to describe meson mass

spectrum.

• Pseudoscalar and scalar meson sector tricky.

• QCD predicts other forms of hadonic matter:

Glueballs, hybrids, and multiquark states.

• Present interest focusses on mesons beyond the quark model.

Hadron Spectrosopy, HUGS, June 2003 123

Page 127: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The E/ι sagaand the first glueball

• Short history of the η(1440)

• The η(1440)in pp annihilation

• The η(1440) in γγ at LEP

• E/ι decays in the 3P0 model

• What do we conclude ?

Hadron Spectrosopy, HUGS, June 2003 124

Page 128: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

4 E/ι saga

4.1 Short history of the η(1440)

• Discovered 1967 in pp annihilation at rest into (KKπ)π+π− and

called E-meson

M = 1425 ± 7,Γ = 80± 10 MeV; JPC = 0−+

• Also seen, 1967, in π−p → nKKπ; pπ− ∼ 3 GeV/c,

still called E-meson

M = 1420 ± 20,Γ = 60± 20 MeV; JPC = 1++

• 1979 claim for η(1295); confirmed in several experiments

• E ’rediscovered’ 1980 in radiative J/ψ decays into (KKπ) and

called ι(1440)

M = 1440 ± 20,Γ = 50± 30 MeV; JPC = 0−+

Hadron Spectrosopy, HUGS, June 2003 125

Page 129: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

• Seen to be split into two components:

ηL → ηππ M = 1405± 5,Γ = 56± 6 MeV

ηH → KKπ M = 1475± 5,Γ = 81± 11 MeV

• 3 η states in mass range from 1280 to 1480 MeV

• The η(1295) is likely the radial excitation of the η

It is mass degenerate with the π(1300), hence there is ideal

mixing !

• The ηss is expected 240 MeV higher:

ηH could be its partner.

• The ηH cannot be a glueball due to its K∗K decay mode

The ηL is the first glueball !

Hadron Spectrosopy, HUGS, June 2003 126

Page 130: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

A few basics:

• A pure flavor octet η(xxxx) state decays into

K∗K but not into a0(980)π

• A pure flavor singlet η(xxxx) state decays into

a0(980)π but not into K∗K

• (uu + dd) and ss states decay into both K∗K and a0(980)π

• There are no flavor restrictions for ση

• Secondary decay modes are

K∗K and a0(980)π decay to KKπ (and may interfer)

a0(980)π and ση decay to ππη (and may interfer)

Hadron Spectrosopy, HUGS, June 2003 127

Page 131: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

⇑ 1295 MeV

The ι(1440) is a

strong signal in ra-

diative J/ψ decay.

The ι(1440) cannot

be described by

one Breit-Wigner

resonance.

There is no ev-

idence for the

η(1295) from radia-

tive J/ψ decay.

Hadron Spectrosopy, HUGS, June 2003 128

Page 132: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Caution:

As ss state the ηH should be

produced in

K− p → Λ ηH.

As ss state the ηH should not be

produced in

π− p → n ηH.

Λ

ss

P

K−

N

nn

P

π−

It is not ! But it is !

The η(1440) region does not contain a large ss component

Hadron Spectrosopy, HUGS, June 2003 129

Page 133: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

J/ψ decays into

γX, ωX, ΦX.

X = KKπ

Hadron Spectrosopy, HUGS, June 2003 130

Page 134: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

4.2 The η(1440) in pp annihilation

Study of the reaction pp → π+π−η(1440), η(1440),→ ηπ+π−:

1200 1250 1300 1350 1400 1450 1500 1550 1600

4000

4200

4400

4600

4800

Width 56 MeV47 MeV40 MeV64 MeV72 MeV80 MeV88 MeV96 MeV

Scan for a 0+0−+

resonance with dif-

ferent widths

Hadron Spectrosopy, HUGS, June 2003 131

Page 135: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

1100 1150 1200 1250 1300 13504810

4815

4820

4825

4830

4835

4840

4845

4850 Width53 MeV70 MeV80 MeV100 MeV120 MeV

20 30 40 50 60 70 80 90 100 1104818

4820

4822

4824

4826

4828

4830

4832

4834

4836

4838 Mass1275 MeV

1305 MeV1315 MeV1325 MeV

Scan for an additional 0+0−+ resonance with fixed widths (a) and

with fixed masses (b)

There is no evidence for the η(1295) from pp annihilation

Hadron Spectrosopy, HUGS, June 2003 132

Page 136: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

4.3 The η(1440) in γγ at LEP

No evidence for the

η(1295) from γγ fusion

γγ → η(1295):

CG(1,0)+(1,0)→(0,0) 6= 0

γγ 6→ f1(1285):

CG(1,0)+(1,0)→(1,0) = 0

γ∗γ → f1(1285):

CG(1,M)+(1,0)→(1,M) 6= 0

Hadron Spectrosopy, HUGS, June 2003 133

Page 137: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The Q2 or P2T dependence allows a separation of f1 and η

contributions: η(1440) is produced in γγ collisions

Hadron Spectrosopy, HUGS, June 2003 134

Page 138: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

One word of warning ?

Detection efficiency decreases with Q2 and is large for Q2 ∼ 0.

Why ?

Hadron Spectrosopy, HUGS, June 2003 135

Page 139: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The contribution from

γγ is mainly to

ηH → K∗K

Hadron Spectrosopy, HUGS, June 2003 136

Page 140: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

4.4 E/ι decays in the 3P0 model

• The η(1295) is only seen in π−p → n(ηππ) Not

in pp annihilation, nor in radiative J/ψ decay,nor in γγ fusion

• The η(1440) is not produced as ss state but decays into KKπ

• The η(1440) is too narrow !

The width of the π(1300) is 400± 200 MeV

The squared isoscalar coefficient for π(1300) → ρπ is 1/2; for

η(1440) → K∗K + cc is 3/2

The width of the η(1440) should be ∼ 600MeV.

We suggest that the origin of all these anomalies are due to a node

in the wave function of the η(1440) !

Matrix elements calculated within 3P0 model.

T. Barnes, F. E. Close, P. R. Page and E. S. Swanson, “Higher

quarkonia,” Phys. Rev. D 55, 4157 (1997)

Hadron Spectrosopy, HUGS, June 2003 137

Page 141: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Matrix elements for

decays of the η radial

excitation: (=ηR)

• ηR decay to K∗K

Matrix element van-

ishes for x2 = 15/2,

x = p/ [0.4GeV] =

1 GeV/c.

• ηR decay to a0(980)π

Matrix element

vanishes for

p = 0.45GeV/c.

• If ηR = η(1440), the

decay to a0(980)π

vanishes at the mass

1470 MeV.

Hadron Spectrosopy, HUGS, June 2003 138

Page 142: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

0

0.5

1

1.5

2

1300 1400 1500 16001350 1400 1450 1500 1550 16000

0.005

0.01

0.015

0.02

0.025

1300 1350 1400 1450 1500 1550 16000

0.1

0.2

0.3

0.4

0.5

-5x10

Undistorted BW matrix element distorted BW

The η(1440) → a0(980)π, → a0(980)π and → K∗K have different peak

positions; ηL and ηH could be one state.

Hadron Spectrosopy, HUGS, June 2003 139

Page 143: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

4.5 What do we conclude

• The η(1440) is split into two components, ηL and ηH The

splitting reflects the node of the 2S wave function.

• The node suppresses OZI allowed decays into a0(980)π and

allows K∗K decays.

• The η(1295) is not a qq meson.

• There is only one η state, the η(1440) in the mass range from

1200 to 1500 MeV and not 3 !

• The η(1440) wave function has a node;

the η(1440) is the radial excitation of the η.

• The η(1440) is not a glueball.

Warning lesson from ι(1440): you can build

up a case, convince the community and still be wrong !

And what is the radial excitation of the η′ ?

The η(1760), perhaps.Hadron Spectrosopy, HUGS, June 2003 140

Page 144: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The quest for

the scalar glueball• Where do we expect glueballs ?

• Glueballs in ”gluon-rich” processes

• Scalar mesons: data

• Scalar mesons: interpretation 1

• Scalar mesons: interpretation 1

• Conclusion

Hadron Spectrosopy, HUGS, June 2003 140

Page 145: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

5 The quest for the scalar glueball

5.1 Where do we

expect glueballs ?

The glueball spectrum from

an anisotropic lattice study

(Morningstar)

Pseudoscalar glueball

should have a mass of

about 2.5 GeV !

The η(1440) is not a

glueball.

Scalar glueball expected at

1.7 GeV

++ −+ +− −−PC

0

2

4

6

8

10

12

r 0mG

2++

0++

3++

0−+

2−+

0*−+

1+−

3+−

2+−

0+−

1−−

2−−

3−−

2*−+

0*++

0

1

2

3

4

mG (

GeV

)

Hadron Spectrosopy, HUGS, June 2003 141

Page 146: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

5.2 Glueballs in ”gluon-rich” processes

!" " "

" " "" "

!###

#####

" " " # # #$$$

$%&%&%&''''$$$$

%&%&%&''''()+

*, -. /01 2. .

$$$$

%&%&%&''''$$$$

%&%&%&'''' #

### # #" " "#### # #" " "

J/Ψ may convert In central production In pp annihilation

into 2 gluons and a two hadrons scatter quark-antiquark pairs

photon. The 2 gluons diffractively, no valence annihilate into gluons

interact and form quarks are exchanged. forming glueballs.

glueballs.

Hadron Spectrosopy, HUGS, June 2003 142

Page 147: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Radiative J/ψ decay

0

0

1000

1000

1000

3000

01.0 1.5 2.0

Mass (GeV)

500

2000

Even

ts/(0.

1 GeV

)

2000

6-96 7236A5

(a)

(b)

(c)

|a0,0|2

0

1000

0

1000

0

1000

1.61.2 2.0 1.61.2 2.0 1.61.2 2.0

Mass (GeV)

Eve

nts/

(0.1

GeV

)

6-96 7236A6

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

|a2,0|2 |a2,1|2 |a2,2|2

J/ψ radiative decay to two pseudoscalar mesons, (Mark III).

Top: J/ψ → γKSKS, middle: J/ψ → γK+K−, bottom: J/ψ → γππ.

f0(1450) f0(1700)Hadron Spectrosopy, HUGS, June 2003 143

Page 148: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

020406080

100120

1.5 2m (GeV/c2)

Eve

nts/

(35M

eV)

π+π-π+π- .

020406080

100120

1.5 2m (GeV/c2)

Eve

nts/

(35M

eV)

π+π-π+π- .

020406080

100120

1.5 2m (GeV/c2)

Eve

nts/

(35M

eV)

π+π-π+π- .

020406080

100120

1.5 2m (GeV/c2)

Eve

nts/

(35M

eV)

π+π-π+π- .

Partial wave decomposition of radiative J/ψ decays into 2π+π−

shows 3 distinct peaks at f0(1500), f0(1750), f0(2100), no f0(1370).

Hadron Spectrosopy, HUGS, June 2003 144

Page 149: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Central production

Dips at f0(980) and f0(1500)

Hadron Spectrosopy, HUGS, June 2003 145

Page 150: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Central production of

π+π−π+π−

π+π−π0π0

Peak-dip structure at 1400-1500 MeV in ρρ;

peak at 11500 MeV in σσ

Hadron Spectrosopy, HUGS, June 2003 146

Page 151: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

4π0 invariant mass from WA102

ηη

Peaks at 1500 MeV

Hadron Spectrosopy, HUGS, June 2003 147

Page 152: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

pp annihilation

vskip 10mm

Dalitz plots for pp annihilation at rest into 3|π0 > (left), |π0 >2|η >(right).

Hadron Spectrosopy, HUGS, June 2003 147

Page 153: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

2300

2400

2500

2600

2700

2800

2900

3000

x 10 3

1200 1300 1400 1500 1600 1700

x 103

m2(π0η,) [MeV2/c4]

m2 (η

η, ) [M

eV2 /c

4 ]

Dalitz plots for pp annihilation at rest into |π0 >|η >|η′ > (left),

KlKl|π0 > (right).

f0(1370) and f0(1500)

Hadron Spectrosopy, HUGS, June 2003 148

Page 154: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

m(π0π0π0π0)

0

200

400

600

800

1000

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

a)

m(π0π0π0π0)

0

200

400

600

800

1000

1200

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

b)

The 4|π0 > invariant mass in the reaction pn → |π− >4|π0 > . A fit

(including other amplitudes) with one scalar state fails; two scalar

resonances at 1370 and 1500 MeV give a good fit. Note that the

full 8-dimensional phase space is fitted and not just the mass

projection shown here.Hadron Spectrosopy, HUGS, June 2003 149

Page 155: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

f0(1370) f0(1500)

Γtot 275± 55 130 ± 30

Γσσ 120.5± 45.2 18.6± 12.5

Γρρ 62.2± 28.8 8.9± 8.2

Γπ∗π 41.6± 22.0 35.5± 29.2

Γa1π 14.10± 7.2 8.6± 6.6

Γππ 21.7± 9.9 44.1± 15.4

Γηη 0.41± 0.27 3.4± 1.2

Γηη′ 2.9± 1.0

ΓKK (7.9± 2.7) to (21.2± 7.2) 8.1± 2.8

Partial decay widths of the f0(1370) and f0(1500) from Crystal Barrel

data

Hadron Spectrosopy, HUGS, June 2003 150

Page 156: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

5.3 Scalar mesons: data

The Particle Data

Group lists 12 scalar

mesons. Within the

quark model we ex-

pect 4 ground state

mesons and 4 radial

excitations.

I = 1/2 I = 1 I = 0

f0(600)

a0(980) f0(980)

f0(1370)

K∗0(1430) a0(1490) f0(1500)

f0(1710)

K∗0(1950)

f0(2100)

f0(2200,2330)

Hadron Spectrosopy, HUGS, June 2003 151

Page 157: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

5.4 Scalar mesons: interpretation 1

I = 1/2 I = 1 I = 0

f0(600) σ meson

chiral partner of the π

a0(980) f0(980) KK molecules

f0(1370) qq states

K∗0(1430) a0(1490) f0(1500) Glueball

f0(1710)

K∗0 (1950)

f0(2100)

f0(2200,2330)

Hadron Spectrosopy, HUGS, June 2003 152

Page 158: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

K-matrix poles Bonn model, B

a0(989) f0(654) a0(1057) f0(665)

K∗

0(1168) a0(1555) f0(1203) K∗

0(1187) a0(1665) f0(1262)

f0(1560) f0(1554)

K∗

0(1850) K∗

0(1788)

f0(1822) f0(1870)

Hadron Spectrosopy, HUGS, June 2003 153

Page 159: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

5.5 Interpretation 2

There is a remarkable agreement between the K-matrix poles from

the analysis of Anisovich et al. and model B from Metsch et al.

• What are K-matrix and what are T-matrix poles ?

The T-matrix poles define the position of a peak in the

cross section; they are the quantities which go into the PDG

The K-matrix is used to parameterise the scattering

amplitude in a probability conserving way (adding two Breit

Wigner resonance amplitudes may exceed the modulus one; one

ππ in, two ππ out, that must be wrong !).

• In the limit of vanishing decay couplings of a resonance, its

Breit-Wigner pole approaches the K-matrix pole:

the K-matrix pole could be the resonance position of a ’naked’

resonance with all decay modes switch off !

Hadron Spectrosopy, HUGS, June 2003 154

Page 160: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

5.6 Conclusion:

Do glueballs exist ?

still an unresolved issue !

We do find natural explanations for the spectrum without request

for the presence of a glueball.

There is also no compelling evidence for the existence of hybrids

Hadron Spectrosopy, HUGS, June 2003 155

Page 161: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

BARYONS

• The particles: quarks and leptons

• The interactions

• Quark models for mesons

λρ

Hadron Spectrosopy, HUGS, June 2003 155

Page 162: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

6 Baryons Experimental Status

The Particle Data Group lists:

Octet N Σ Λ Ξ

Decuplet ∆ Σ Ξ Ω

Singlet Λ

**** 11 7 6 9 2 1

*** 3 3 4 5 4 1

** 6 6 8 1 2 2

* 2 6 8 3 3 0

No J - - 5 - 8 4

Total 22 22 26 18 11 4

• ∼ 100 resonances

• ∼ 85 known spin and

parity

• ∼ 50 established

baryons of known spin

parity

• K. Hagiwara et al.,

Phys. Rev. D 66,

010001 (2002).

Hadron Spectrosopy, HUGS, June 2003 156

Page 163: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Theoretical models and results

• Assume quarks move in an effective confinement potential

generated by a very fast color exchange between quarks

(antisymmetrising the total wave function)

• Assume the light quarks acquire effective mass by spontanous

symmetry breaking

• Assume residual interactions

– One gluon exchange

relativized quark model,

S. Capstick and N. Isgur, Phys. Rev. D 34 (1986) 2809.

OGE fixed to HFS (N-∆)

L · S large, in contrast to data

Set to zero, (comp. by L · S from Thomas prec. ?)

Hadron Spectrosopy, HUGS, June 2003 157

Page 164: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

– Goldstone (pion) exchange

Take spin-spin, neglect tensor interactions,

L. Y. Glozman, W. Plessas, K. Varga and

R. F. Wagenbrunn,

Phys. Rev. D 58 (1998) 094030.

– Instanton interactions

Relativistic quark model with instanton-induced forces

U. Loring, B. C. Metsch and H. R. Petry,

Eur. Phys. J. A 10 (2001) 395-446, 447-486.

• Solve equation of motion

(using wave functions of the harmonic oscillator)

Hadron Spectrosopy, HUGS, June 2003 158

Page 165: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

∆∗ resonances with one − gluon exchange OGE model

Godfrey, Isgur and others

π 1/2+ 3/2+ 5/2+ 7/2+ 9/2+ 11/2+ 13/2+ 15/2+ 1/2- 3/2- 5/2- 7/2- 9/2- 11/2- 13/2- 15/2-J

Mas

s [M

eV]

1000

1500

2000

2500

3000

*

****

****

***

*** ****

******

*

**

****

**

****

**

*

****

* ***

*

*

**

**

Hadron Spectrosopy, HUGS, June 2003 159

Page 166: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

∆∗ resonances with instanton induced forces Bonn model

U. Loring, B. Metsch, H. Petry and others

πP P33 S D31 F F D GH G II3 1135 37 39 H3 11 3 13 3 15 3 1333 35 37 3931KKL2T 2J

1232

20001950

1700

2150

1940 1930

2200

2750

1620

23502400

1900

2300

2420

2950

2390

19051920

1600

1750

1910

J 1/2+ 3/2+ 5/2+ 7/2+ 9/2+ 11/2+ 13/2+ 15/2+ 1/2- 3/2- 5/2- 7/2- 9/2- 11/2- 13/2- 15/2-

Mas

s [M

eV]

1000

1500

2000

2500

3000

*

********

*****

****

**

**

****

***

**

**

****

**

**

*

*

*

*

*******

***

Hadron Spectrosopy, HUGS, June 2003 160

Page 167: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

N∗ resonances with one− gluon exchange OGE model

Godfrey, Isgur and others

π 1/2+ 3/2+ 5/2+ 7/2+ 9/2+ 11/2+ 13/2+ 1/2- 3/2- 5/2- 7/2- 9/2- 11/2- 13/2-J

Mas

s [M

eV]

1000

1500

2000

2500

3000

****

****

*

****

**

****

** **

****

**

****

****

*

****

***

**

****

** ********

***

S

S S

***

Hadron Spectrosopy, HUGS, June 2003 161

Page 168: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

N∗ resonances with instanton induced forces Bonn model

U. Loring, B. Metsch, H. Petry and others

π2T 2JL P11 D13 1 11 1 13 1 11 1 13S DF F G I IH H191715 K 11 13 15 17 19GP

1720

1535

1675

1440

939

1900

19902000

2700

2090

1650

1520

1700

2600

1710

2100

1680

2190

22502200

2080

2220

1986

1897 1895

1/2+ 3/2+ 5/2+ 7/2+ 9/2+ 11/2+ 13/2+ 1/2- 3/2- 5/2- 7/2- 9/2- 11/2- 13/2-J

Mas

s [M

eV]

1000

1500

2000

2500

3000

****

*

**

****

**

* **

****

**

***

S **

***

****

****

**

****

****

****

****

***

****

****

S S

Hadron Spectrosopy, HUGS, June 2003 162

Page 169: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Many problems still unsolved:

→ What is the relation between quark models

and structure functions ?

→ Which model is right ?

→ Is it true that one interaction dominates ?

→ Decay properties of resonances

→ Missing resonances

→ Low mass of Roper, ∆3/2+(1600) ...

→ Low mass of negative-parity ∆∗’s at 1950 MeV

Here:

Try to get at physics from phenomenolgy

Hadron Spectrosopy, HUGS, June 2003 163

Page 170: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The Baryon Wave Function

|qqq >= |color >A · |space, spin,flavor >S

O(6) SU(6)

The total wave function must be antisymmetric w.r.t. the exchange

of any two quarks. The wave function is antisymmetric, hence the

space-spin-flavor wave function must be symmetric. We now

construct wave functions.

SU(6)

Baryons (with 3 quarks): 3 flavors x 2 spins.

6 ⊗ 6⊗ 6 = 56⊕ 70M ⊕ 70M ⊕ 20

56 = 410 ⊕ 28

70 = 210 ⊕ 48 ⊕ 28 ⊕ 21

20 = 28 ⊕ 41

Hadron Spectrosopy, HUGS, June 2003 164

Page 171: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

The 56-plet contains

N∗’s with spin 1/2

∆∗’s with spin 3/2

The 70-plet contains

N∗’s with spin 1/2 and with spin 3/2

∆∗’s with spin 1/2

The singlet contains

N∗’s with spin 1/2

(8M) have a mixed flavor symmetry,

the 10 multiplet is symmetric,

the 1 antisymmetric in flavor space.

Hadron Spectrosopy, HUGS, June 2003 165

Page 172: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Phenomenological approach to the baryon mass spectrum

using Regge trajectories

L0 1 2 3 4 5 6 7 8

]2 [

GeV

2M

0

1

2

3

4

5

6

7

8

9

(770)ρ

(1318)2a

(1691)3ρ

(2020)4a

(2330)5ρ (2450)6a

(782)ω

(1275)2f

(1667)3ω

(2044)4f

(2510)6f

Mesons with J = L +

S

lie on a Regge tra-

jectory

with a slope of 1.142

GeV2.

Hadron Spectrosopy, HUGS, June 2003 166

Page 173: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Meson and baryon trajectories

]2M

[GeV

0

1

2

3

4

5

6

7

8

9

23

27

211

215 J

(770)ρ

(1320)2a

(1690)3ρ

(2020)4a

(2350)5ρ (2450)6a

(782)ω

(1270)2f

(1670)3ω

(2050)4f

(2510)6f

(1232)+3/2∆

(1950)+7/2∆

(2420)+11/2∆

(2950)+15/2∆

∆∗’s with L even and

J = L + 3/2 have

the same slope as

mesons.

Hadron Spectrosopy, HUGS, June 2003 167

Page 174: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Spin-orbit couplings

0

1

2

3

[a]

2M

-5/2N(1675)

-3/2N(1700)

-1/2N(1650)

+7/2N(1990)

+5/2N(2000) (1900)

+3/2N(2100)

+1/2N

-3/2∆(1700)

-1/2∆(1620)

+7/2∆(1950)

+5/2∆(1895)

+3/2∆(1935)

+1/2∆(1895)

∆∗’s and N∗’s

assigned to super-

multiplets with

defined orbital an-

gular momentum.

L(2) + S(3/2) =

J(7/2+ ,5/2+ ,3/2+ ,1/2+).

L(1) + S(3/2) =

J(5/2+ ,3/2+ ,1/2+)

L(1) + S(1/2)

= J(3/2+ ,1/2+)Hadron Spectrosopy, HUGS, June 2003 168

Page 175: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Multiplet structure of N∗ and ∆∗

D S L N Mass (5)

56 1/2 0 0-3 N1/2+(939) N1/2+(1440) N1/2+(1710) 1N1/2+(2100) 939 MeV

3/2 0 0-3 ∆3/2+(1232) ∆3/2+(1600) ∆3/2+(1920) 1232 MeV

70 1/2 1 0 N1/2−(1535) N3/2−(1520) 1530 MeV

3/2 1 0 N1/2−(1650) N3/2−(1700) N5/2−(1675) 1631 MeV

1/2 1 0 ∆1/2−(1620) ∆3/2−(1700) 1631 MeV

56 1/2 1 1 N1/2− N3/2− 1779 MeV

3/2 1 1 a∆1/2−(1900) b∆3/2−(1940) c∆5/2−(1930) 1950 MeV

70 1/2 1 2 1N1/2−(2090) 2N3/2−(2080) 2151 MeV

3/2 1 2 N1/2− N3/2− N5/2− 2223 MeV

1/2 1 2 ∆1/2−(2150) ∆3/2− 2223 MeV

56 1/2 2 0 N3/2+(1720) N5/2+(1680) 1779 MeV

3/2 2 0 a∆1/2+(1910) b∆3/2+(1920) c∆5/2+ (1905) d∆7/2+(1950) 1950 MeV

70 1/2 2 0 N3/2+ N5/2+ 1866 MeV

3/2 2 0 N1/2+2N3/2+(1900) 3N5/2+(2000) 4N7/2+(1990) 1950 MeV

1/2 2 0 ∆3/2+ ∆5/2+ 1950 MeV

Hadron Spectrosopy, HUGS, June 2003 169

Page 176: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Negative-parity ∆’s

L0 1 2 3 4 5 6 7 8

]2[G

eV2

M

0

1

2

3

4

5

6

7

8

9

(1232)+3/2∆

(1950)+7/2∆

(2420)+11/2∆

(2950)+15/2∆

(1700)-3/2∆

(2200)-7/2∆∆∗’s with odd L and

J = L+1/2 fall on the

same trajectory.

Hadron Spectrosopy, HUGS, June 2003 170

Page 177: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

N?’s and ∆’s with S = 3/2

L0 1 2 3 4 5 6 7 8

]2[G

eV2

M

0

1

2

3

4

5

6

7

8

9

(1232)+3/2∆

(1950)+7/2∆

(2420)+11/2∆

(2950)+15/2∆

(1675)-5/2N

(1990)+7/2N

(2250)-9/2NN∗’s with intrinsic

spin 3/2 fall on the

same trajectory.

Hadron Spectrosopy, HUGS, June 2003 171

Page 178: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

N?’s (S = 3/2) and ∆’s (S = 1/2, 3/2)

L0 1 2 3 4 5 6 7 8

]2 [

GeV

2M

0

1

2

3

4

5

6

7

8

9

(1232)+3/2∆

(1950)+7/2∆

(2300)+11/2∆

(2950)+15/2∆

(1720)-3/2∆

(2220)-7/2∆

(1675)-5/2N

(1990)+7/2N

(2240)-9/2N

The lowest ∆∗ (with

spin 1/2 and 3/2)

and the N∗’s with in-

trinsic spin 3/2 and

J = L + 3/2 fall on

the same Regge tra-

jectory.

Hadron Spectrosopy, HUGS, June 2003 172

Page 179: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

What is about N∗ with intrinsic spin S = 1/2 ?

J0 1 2 3 4 5 6 7 8

]2[G

eV2

M

0

1

2

3

4

5

6

7

8

9

(939)+1/2N

(1535)-1/2N (1520)-3/2N

(1720)+3/2N (1680)+5/2N

(2190)-7/2N

(2220)+9/2N

(2600)-11/2N

(2700)+13/2NThe N∗ masses (with

intrinsic spin S =

1/2) lie below the

standard Regge tra-

jectory. They are

smaller by about 0.6

GeV2 for N∗ in the

56-plet, and by 0.3

GeV2 for N∗ in the

70-plet.

Hadron Spectrosopy, HUGS, June 2003 173

Page 180: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

! "# $ % & % '

( ! "# $ ' ! "# ) & '

* ! "# $ % & ' + "# ) , '

- ! "# $ &, ' ( ! "# ) '

+ "# $ , ' ( + "# ) % '

. "# $ ' * ! "# ) , '

( + "# $ % ' * + "# ) '

( . "# $ , ' - + "# ) , '

* + "# $ ' . "# ) , , '

* . "# $ % ' / "# ) , % '

0 "# $ , , , ' * / "# ) , '

( 0 "# $ , & ' ! ! "# ) , '

! + "# $ , '

1 2 ' 1 2 '

3 & 4 5 # & 3 , & 4 5 #

2 76 8

( ! "# ) ' 9 ! "# ) , '

( + "# ) , ' 9 + "# ) '

( / "# ) , ' 9 / "# ) , , '

1 2 ' 1 2 '

% , 3 % 4 5 # 3 & 4 5 #

Hadron Spectrosopy, HUGS, June 2003 174

Page 181: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Radial excitations

L0 1 2 3 4 5 6 7 8

]2[G

eV2

M

0

1

2

3

4

5

6

7

8

9

1.43≈ (1440) +1/2N 1.63≈ (1600) +3/2∆

(1900)-1/2∆ (1930)-5/2∆ 1.95≈ (1930) -3/2∆

2.23≈ (2200) +5/2∆

(2350) -5/2∆ 2.47≈ (2400) -9/2∆

2.89≈ (2750) -13/2∆

(2150)-1/2∆

(2390)+5/2∆

Radial excitations have masses larger

by one hω, like mesons

Hadron Spectrosopy, HUGS, June 2003 175

Page 182: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Baryon δM2 (GeV2) Baryon δM2 (GeV2)

N1/2+(939) ∆3/2+(1232)

N1/2+(1440) 1 · 1.18 ∆3/2+(1600) 1 · 1.04N1/2+(1710) 2 · 1.02 ∆3/2+(1920) 2 · 1.08N1/2+(2100) 3 · 1.18∆1/2−(1620) ∆3/2−(1700)

∆1/2−(1900) 1 · 0.99 ∆3/2−(1940) 1 · 0.87∆1/2−(2150) 2 · 1.00N1/2−(1530) N3/2−(1520)

N1/2−(1897) 1 · 1.26 N3/2−(1895) 1 · 1.28N1/2−(2090) 2 · 1.01 N3/2−(2080) 2 · 1.01Λ1/2+(1115) Σ1/2+(1193)

Λ1/2+(1600) 1 · 1.24 Σ1/2+(1560) 1 · 1.04Λ1/2+(1810) 2 · 0.98 Σ1/2+(1880) 2 · 1.06

Radial excitations of baryons; in red: two Saphir resonances.Hadron Spectrosopy, HUGS, June 2003 176

Page 183: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Observations and conclusions

1. The slope of the Regge trajectory for mesons is the same as for

∆∗, a = 1.142GeV2 ⇒ Effective quark - diquark interaction !

2. N and ∆ resonances with spin S = 3/2 lie on a common Regge

trajectory.

⇒ No significant genuine octet-decuplet splitting.

3. ∆∗ resonances with S=1/2 and S=3/2 are on the same Regge

trajectory.

⇒ No significant genuine spin-spin interaction.

4. N∗’s and ∆∗’s can be grouped into supermultiplets with defined

L and S but different J. ⇒ No significant L · S splitting.

5. There is a mass shift ∝ to (q1q2 − q2q1)(↑↓ − ↓↑) in baryonic

wave functions. ⇒ Instanton interactions are important.

Hadron Spectrosopy, HUGS, June 2003 178

Page 184: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

6. Daughter trajectories have the same slope and an intercept

which is higher by a = 1.142GeV2 per n, both for mesons and

baryons.

⇒ Effective quark - diquark interaction !

7. For L larger than 3,

N∗’s have J = L + 1/2 ;

∆∗’s have J = L + 3/2 ⇒ Spin and flavor are locked !

These observations can be condensed into a baryon mass formula

Hadron Spectrosopy, HUGS, June 2003 178

Page 185: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

A mass formula for baryon resonances

E. Klempt, Phys. Rev. C 66 (2002) 058201

M2 = M2∆ +

ns

3·M2

s + a · (L + N) − si · Isym

where

M2s =

(

M2Ω −M2

)

, si =(

M2∆ − M2

N

)

,

MN,M∆,MΩ are input parameters (PDG), ns number of strange

quarks in a baryon. a = 1.142/GeV2 Regge slope (from meson

spectrum). L = lρ + lλ, N = nρ + nλ, L+2N harmonic-oscillator

band N.

Isym is the fraction of the wave function (normalized to the nucleon

wave function) which is antisymmetric in spin and flavor:

Isym = 1 for S=1/2 and octet in 56-plet;

Isym = 1/2 for S=1/2 and octet in 70-plet;

Isym = 3/2 for S=1/2 and singlet;

Isym = 0 otherwise.Hadron Spectrosopy, HUGS, June 2003 179

Page 186: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

• χ2 = 105 for 97 data points.

• All but 4 observed states are predicted:

⇒ No evidence for (baryonic) hybrids !

⇒ No evidence for pentaquarks !

However, a new resonance is reported in several experiments, the

Z+ which decays to nK+.

Quark content:

(u,d,d) + (u, s) = (u,u,d,d, s) pentaquark !

Hadron Spectrosopy, HUGS, June 2003 180

Page 187: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Is there evidence for chiral symmetry restoration in the

high-mass nucleon spectrum ?

L. Y. Glozman, Phys. Lett. B 541, 115 (2002)

Quarks are (nearly) massless; there is chiral symmetry. At low

energies, chiral symmetry is broken, e.g. by instanton-induced

interactions:

• Quarks acquire mass

• The masses of pion and of f0(600) are different

• The mass of the N1/2+(938) and of the N1/2−(1535) are different.

Chiral symmetry might be restored

• at large temperatures

• and high densities

• at high excitation energies ???

Hadron Spectrosopy, HUGS, June 2003 181

Page 188: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

J = 12

1 N1/2+(2100) N1/2−(2090) a ∆1/2+(1910) ∆1/2−(1900)

J = 32

2 N3/2+(1900) N3/2−(2080) b ∆3/2+(1920) ∆3/2−(1940)

J = 52

3 N5/2+(2000) N5/2−(2200) c ∆5/2+(1905) ∆5/2−(1930)

J = 72

4 N7/2+(1990) N7/2−(2190) d ∆7/2+(1950) ∆7/2−(2200)

J = 92

5 N9/2+(2220) N9/2−(2250) e ∆9/2+(2300) ∆9/2−(2400)

J = 112

6 N11/2+ N11/2−(2600) f ∆11/2+(2420) ∆11/2−

J = 132

7 N13/2+(2700) N13/2− g ∆13/2+ ∆13/2−(2750)

J = 152

8 N15/2+ N15/2− h ∆15/2+(2950) ∆15/2−

Parity doublets of N∗ and ∆∗ resonances of high mass, after

Glozman. The states in color are predicted to have the same mass

as their chiral partner when chiral symmetry is restored in the

high-mass excitation spectrum of baryon resonances. We suggest

that the states marked with in red should have considerably higher

masses than their chiral partners while those in blue should be

degenerate in mass with corresponding states of opposite parity.

Hadron Spectrosopy, HUGS, June 2003 182

Page 189: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

High ∆ states with negative parity

There are three high-mass ∆ states with negative parity:

∆5/2−(1930) ∆9/2−(2400) ∆13/2−(2750)

Possible L,S configurations are:

Unlikely

∆5/2−(1930) ∆9/2−(2400) ∆13/2−(2750)

L=3, S=1/2 L=5, S=1/2 L=7, S=1/2

Likely

∆5/2−(1930) ∆9/2−(2400) ∆13/2−(2750)

L=1, S=3/2 L=3, S=3/2 L=5, S=3/2

Flavor wave function: symmetric; spin wave function: symmetric.

→ spacial wave function must be symmetric !

One unit of radial excitation !Hadron Spectrosopy, HUGS, June 2003 183

Page 190: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

∆∗ N∗

E. Klempt, Phys Lett. B 559 (2003) 114

Hadron Spectrosopy, HUGS, June 2003 184

Page 191: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

7 Summary and Conclusions

• Quantum Chromodynamics is (likely) the correct theory of

strong interactions.

• However, it is untested at low energies.

• Spectroscopy is a powerful tool to scrutinize ideas what the

effective particles are that govern he dynamics and how they

interact.

Hadron Spectrosopy, HUGS, June 2003 185

Page 192: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

• QCD oriented model have seen great successes:

• Quark models describe rather successfully the spectrum of

mesons and baryons, and their decays, form factors, transition

form factors, magnetic moments, ...

• QCD-oriented models predict new classes of hadrons: glueballs

and mesonic and baryonic hybrids. These predictions have

provided an important stimulus to the field.

Hadron Spectrosopy, HUGS, June 2003 186

Page 193: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

• QCD oriented model have important failures:

• Different (conflicting) models provide a description of similar

quality (even though instanton induced models are better).

• Quark models provide no link between the partonic degrees of

freedom seen in deep inelastic scattering and the constituent

quark.

• Quark models are in conflict with the flux tube picture.

• Inspite of 20 years of intensive searches, there is no compelling

evidence for the existence of glueballs and hybrids.

Hadron Spectrosopy, HUGS, June 2003 187

Page 194: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

A sketch of quark dynamics

There is a contradiction:

1. Baryon resonances are quark-diquark excitations

2. Baryon resonances need the full multiplet structure

Solution:

1. refers to the color interaction

2. refers to the flavor decomposition

Example:

N3/2−(1520) L = 1 S = 1/2 → J = 3/2

Both harmonic oscillators are coherently excited (in flavour space).

Dynamics is given by color !

Flavour diquark 6= Colour diquark

Hadron Spectrosopy, HUGS, June 2003 188

Page 195: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

1. Confinement Colour-neutral (Pomeron-like)

Quarks polarise vacuum

Vacuum transmits interaction

When two quarks are separated, the space between them is

filled with polarised vacuum. The net color charge remains

unchanged, the energy density is constant. This gives a linear

confinement potential.

2. Flavor exchange Meson exchange (long range)

and/or instanton interactionsΛ = 1 GeV = Λχ

3. Color exchange Gluon exchange (short range)

Screened by polarised vacuumΛ = 200 MeV = ΛQCD

Hadron Spectrosopy, HUGS, June 2003 189

Page 196: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

FAQ

• What are the effective degrees of freedom?

Quarks polarise the quark and gluon condensates; quark plus

polarisation cloud form a constituent quark which carries

defined color. Color exchange is screened by the polarisation

cloud. Flavor exchange is fast: flavor is not a property of

constituent quarks.

• Why are quarks confined ?

The net color-charge of a quark plus polarisation cloud is the

color of the current quark before ’dressing’. When quarks are

separated, constituent-quark masses increase with distance.

The color ’source’ needs a ’color’ sink. The energy density

along the string due to the polarised condensates is constant.

Hadron Spectrosopy, HUGS, June 2003 190

Page 197: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

• What are the effective forces ?

Confinement originates from Pomeron-exchange-like forces

transmitted by the polarisation of the vacuum condensates.

Flavor-exchange between constituent quarks is important and

occurs with a frequency of 1/τ ∼ Λχ. It could be realised by

meson exchange or by instantons at the surface between two

constituent quarks. Instanton interactions play an important

role.

Hadron Spectrosopy, HUGS, June 2003 191

Page 198: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

Related topics:

• Spin crisis

Quark spin induces polarisation into condensates;

the polarised gluon-condensate provides the gluonic

contribution to the proton spin

quark condensate provides the quark and orbital (3P0)

contributions

•3P0 model for decays

A qq pair from condensate shifted to mass shell

• New interpretation of glueballs and hybrids

Do hybrids exist ? Does the flux tube filled with polarised

condensates support transverse oscillations/rotations ? Or only

longitudinal ’acustical’ shock waves ?

Can a state of localised polarised-condensate propagate in

space (in a soliton-like solution) ?

Hadron Spectrosopy, HUGS, June 2003 192

Page 199: HADRON SPECTROSCOPY AND STRONG QCDuu +d d + Y (s s) + Z (glue) j 0 >= X 0 p1 2 u u+dd + Y 0 (s s) + Z 0 (glue) light quark strange quark inert Z = Z 0 ˘ 0 See: T. Feldmann, \Quark

You have been an extremely nice class!

I hope you enjoy the coming lectures and willreturn to work with new ideas and enthusiasm !

Thank you !

Good bye !

Hadron Spectrosopy, HUGS, June 2003 193