72
H. Isobe, 2004/11/1, Taiyo za sshikai “Transport of solar wind into Earth’s magnet osphere thorough rolled-up Kelvin-Helmh oltz vortices” H. Hasegawa et al. 2004, Nature, 430, 755 “Helioseismic observation of the structure a nd dynamics of a rotating sunspot beneath the solar surface” J. Zhao & A. G. Kosovichev 2003, ApJ, 591, 4 46 “Helioseimic observations of magnetohydrodyn amics of the solar interior” A. Kosovichev in Magnetohydrodynamics of Stellar In terior Cambridge, Sep 6-17, 2004

H. Isobe, 2004/11/1, Taiyo zasshikai

  • Upload
    adler

  • View
    29

  • Download
    0

Embed Size (px)

DESCRIPTION

“Transport of solar wind into Earth’s magnetosphere thorough rolled-up Kelvin-Helmholtz vortices” H. Hasegawa et al. 2004, Nature, 430, 755 “Helioseismic observation of the structure and dynamics of a rotating sunspot beneath the solar surface” J. Zhao & A. G. Kosovichev 2003, ApJ, 591, 446 - PowerPoint PPT Presentation

Citation preview

Page 1: H. Isobe, 2004/11/1, Taiyo zasshikai

H. Isobe, 2004/11/1, Taiyo zasshikai

“Transport of solar wind into Earth’s magnetosphere thorough rolled-up Kelvin-Helmholtz vortices”

H. Hasegawa et al. 2004, Nature, 430, 755

“Helioseismic observation of the structure and dynamics of a rotating sunspot beneath the solar surface”

J. Zhao & A. G. Kosovichev 2003, ApJ, 591, 446

“Helioseimic observations of magnetohydrodynamics of the solar interior”

A. Kosovichev in Magnetohydrodynamics of Stellar Interior Cambridge, Sep 6-17, 2004

Page 2: H. Isobe, 2004/11/1, Taiyo zasshikai

“Transport of solar wind into Earth’s magnetosphere thorough rolled-up Kelvin-H

elmholtz vortices”

H. Hasegawa, M. Fujimoto, T.-D. Phan, A. Balogh, M. W. Dumlop, C. Hashimoto, R. TanDokoro 2004, Natu

re, 430, 755

Page 3: H. Isobe, 2004/11/1, Taiyo zasshikai

• The mechanism by which the solar wind enters Earth’s magnetosphere is unknown.

• Reconnection at the low latitude magnetopause?

• However, the plasma content in the outer magnetosphere increases during notrhward solar-wind magnetic field conditions, when reconnection is less efficient.

• Alternative mechanism is associated with nonlinear phase of the Kelvin-Helmholtz instability.

• Here they show the evidence of K-H instability in the in-situ observation.

Page 4: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 5: H. Isobe, 2004/11/1, Taiyo zasshikai

Cluster mission

Multipoint in situ measurement by four Cluster spacecraft forming a tetrahedron. => Detection of the nonlinear stage of Kelvin-Helmholtz vortices.

Page 6: H. Isobe, 2004/11/1, Taiyo zasshikai

20:42 20:26

Ion energyspectrum

Ion Tempera-ture by C1

Plasmadensity

Position of the sattelites

C1C1C2?C2?

C4C4C3C3

•C1 is inner than C3 and C4•Red bar in the 3rd row indicate instances when C1 observed heigher density.

magnetopause

solar wind

Page 7: H. Isobe, 2004/11/1, Taiyo zasshikai

V

B

Synthesized B vector from 3D MHD simulation.Consistent with K-H origin vortices.

Page 8: H. Isobe, 2004/11/1, Taiyo zasshikai

Mixing of wind/magnetosphere plasma

Black: satellite in the solar wind.Red: satellite in the magnetosphere.

The double peaks of the red curve indicate the mixing of the solar-wind plasma (<2 keV) and the magnetospheric plasma (>5keV).

Page 9: H. Isobe, 2004/11/1, Taiyo zasshikai

Conclution

• Evidence of nonlinear development of the Kelvin-Helmholtz instability by in situ observation of four Cluster satellites.

• Also found is the mixing of solar wind and magnetospheric plasma in the K-H regiion.

• Support the idea that the transport of the solar wind plasma into the magnetosphere is associated with nonlinear K-H.

• Microscopic process for the plasma transportation is not clear. No signature of local reconnection.

Page 10: H. Isobe, 2004/11/1, Taiyo zasshikai

Helioseismic observation of the structure and dynamics of a rotating sunsp

ot beneath the solar surfaceJ. Zhao & A. G. Kosovichev 2003, ApJ, 591, 446

•Time-dependent (local) helioseismology (data:MDI)

•Evidence of sub-photospheric twist of rotating sunspots

•Vortex motion

Page 11: H. Isobe, 2004/11/1, Taiyo zasshikai

NOAA 9114, 2000 Aug. 4-12 (SOHO/MDI)

•The main sunspot rotates rapidly (200° in 3 days). •The rotation is clearly visible because of the protruding feature A.

•Solid line: trace of smaller sunspot (indicated by red arrow).•The small sunspot moves arond the main spot and finally merges.

Page 12: H. Isobe, 2004/11/1, Taiyo zasshikai

Sound speed variation at the depth of 6Mm.•Sound speed variation δc/c relative to the quiet sun. Red is positive and blue is negative, raiges from -0.02 - 0.08.•Contour: line-of-sight magnetic field (600 - 1600 G)

Protruding structure similar to A is also visible at z=6Mm, but forms an angle of 〜 45°. Signature of subphotoshpheric twist?

UT16:20, Aug. 7 UT12:39 Aug. 8

Page 13: H. Isobe, 2004/11/1, Taiyo zasshikai

Flow field at z=0-3 (top) and 9-12 (bottom) Mm

Aug. 7 Aug. 8

•Color: vertical velocity. Red=0.5 km/s (downward), Blue= -0.1〜 0.2 km/s (upward)

•Arrows: horizontal velocity. Largest arrow is 0.5 km/s.

•In upper layer (0-3Mm), converging flows with downdraft. Mainly counterclockwise vortex.•In deeper layer (9-12 Mm), upward divergent flows. Clockwise vortex.

Page 14: H. Isobe, 2004/11/1, Taiyo zasshikai

Kinetic helicity α≡v ・ (∇×v)/|v|2

•The vertical component of kinetic helicity, as a possible origin of magnetic twist, is calculated.

•αz=-1 〜 -6×10-8 m-1 , which is the same order of magnetude as the typical current helicity (Pevtsov et al. 1995)

Page 15: H. Isobe, 2004/11/1, Taiyo zasshikai

Error estimate

horizontal

vertical

Monte Carlo simulation to estimate the error.

Error is larger in vertical velocity near z=4-6Mm.

Effect of umbra has been tested. Qualitatively OK.

Page 16: H. Isobe, 2004/11/1, Taiyo zasshikai

Conclusion

• More than 4Mm below the sunspot, the sound speed is larger than that in the quiet sun (Kosovchev et al. 2000, Sol. Phys.)

• Distribution of the sound speed variation at z=6Mm shows similar shape of the sunspot at z=0. If the shape of sound speed variation reflect the local structure of flux tube, it is a signature of sub-photospheric twist.

• Vortex motion below the spot. Kinetic helicity is the same order of magnitude as typical value of magnetic helicity.

Page 17: H. Isobe, 2004/11/1, Taiyo zasshikai

Helioseimic observations of magnetohydrodynamics of the solar interior

A. Kosovichev in Magnetohydrodynamics of Stellar Interior Cam

bridge, Sep 6-17, 2004

The viewgraphs (PPT, PDF etc.) of the conference can be downloaded at:http://www.newton.cam.ac.uk/programmes/MSI/ws.html

Page 18: H. Isobe, 2004/11/1, Taiyo zasshikai

Isaac Newton Institute for mathematical science

•The proof of the Fermat’s last theorem was done here in 1993.

Page 19: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 20: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 21: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 22: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 23: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 24: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 25: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 26: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 27: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 28: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 29: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 30: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 31: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 32: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 33: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 34: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 35: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 36: H. Isobe, 2004/11/1, Taiyo zasshikai

QuickTime˛ Ç∆YUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 37: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 38: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 39: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 40: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 41: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 42: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 43: H. Isobe, 2004/11/1, Taiyo zasshikai

QuickTime˛ Ç∆YUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 44: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 45: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 46: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 47: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 48: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 49: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 50: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 51: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 52: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 53: H. Isobe, 2004/11/1, Taiyo zasshikai

QuickTime˛ Ç∆YUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 54: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 55: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 56: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 57: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 58: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 59: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 60: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 61: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 62: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 63: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 64: H. Isobe, 2004/11/1, Taiyo zasshikai

QuickTime˛ Ç∆YUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 65: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 66: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 67: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 68: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 69: H. Isobe, 2004/11/1, Taiyo zasshikai

QuickTime˛ Ç∆YUV420 ÉRÅ[ÉfÉbÉN êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 70: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 71: H. Isobe, 2004/11/1, Taiyo zasshikai
Page 72: H. Isobe, 2004/11/1, Taiyo zasshikai