Guidance non-linear.pdf

  • Upload
    elias-j

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

  • 8/11/2019 Guidance non-linear.pdf

    1/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    NONNON--LINEAR CONTROL OFLINEAR CONTROL OFWHEELED MOBILE ROBOTSWHEELED MOBILE ROBOTS

    Maria Isabel Ribeiro

    Pedro Lima

    [email protected] [email protected]

    Instituto Superior Tcnico (IST)

    Instituto de Sistemas e Robtica (ISR)

    Av.Rovisco Pais, 1

    1049-001 LisboaPORTUGAL

    May.2002

    all rights reserved

  • 8/11/2019 Guidance non-linear.pdf

    2/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Course Outline

    tarefasPLANEAMENTO DE

    TAREFAS

    PLANEAMENTO DE

    MOVIMENTO

    AUTO-LOCALIZAO(long baseline, short baseline,feature matching)

    MAPA DOMUNDO

    FUSOSENSORIAL

    CONTROLO

    CONDUO

    ACTUADORESSENSORES

    VECULO

    informao processada apartir dos dados dos sensores

    actualizaodo mapa

    mapaglobal

    Informao enviadaaos actuadores

    Deteco deobstculos

    Posio e/ouvelocidadesdesejadas

    (seguir trajectria

    /evitar obstculos)

    Motores, rodas,hlices, superfciiesde defleco

    mapalocal

    Trajectria desejada(pos+vel+ace)

    Caractersticas domeio envolvente

    Trajectria estimada(pos+vel+ace)

    Sonar, laser, viso,encoders, giroscpios

  • 8/11/2019 Guidance non-linear.pdf

    3/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Guidance

    sensor

    measurements

    operati

    onpoint

    posture

    estimate

    joint

    state

    feedback

    PathPlanner

    GuidanceJoint

    ControllerVehicle

    Localization

    obstacles

    target

    pat

    h

    or

    tra

    jectory

    jo

    int

    set

    po

    ints

    (e.g.,

    whee

    l

    ve

    loc

    it

    ies

    )

    jo

    in

    t

    torques

    (e.g.,m

    otor

    inputs

    )

    GUIDANCEtake the robot from the current posture to the desired

    posture, possibly following a pre-determined path ortrajectory, while avoiding obstacles

    GUIDANCEGUIDANCEtake the robot from the current posture to the desired

    posture, possibly following a pre-determined path ortrajectory, while avoiding obstacles

  • 8/11/2019 Guidance non-linear.pdf

    4/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Guidance Methodologies

    State(posture)-feedback methods:

    posture stabilization (initial and final postures given; no

    path or trajectory pre-determined; obstacles notconsidered; may lead to large unexpected paths)

    trajectory tracking (requires pre-planned path) virtual vehicle tracking (requires pre-plannedtrajectory)

    Potential-Field like methods

    potential fields (holonomic vehicles) generalized potential f ields (non-holonomic vehicles) modified potential fields (non-holonomic vehicles)

    Vector Field Histogram (VHF) like methods

    nearness diagram navigation (holonomic vehicles) freezone (non-holonomic vehicles)

    Some Guidance methodologiesSome Guidance methodologies

    NON-LINEAR CONTROL DESIGNFOR MOBILE ROBOTS

  • 8/11/2019 Guidance non-linear.pdf

    5/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Control of Mobile Robots

    Three distintic problems: Trajectory Tracking or Posture Tracking

    Path Following

    Point Stabilization

  • 8/11/2019 Guidance non-linear.pdf

    6/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Trajectory Tracking

    Vehicle of unicycle type

    The trajectory tracking problem for a WMR of the unicycletype is usually formulated with the introduction of a

    vir tual reference vehicle to be tracked.

    =

    ==

    !

    !

    !

    sinvy

    cosvx

    ),y,x(z =

    v

    position and orientation withrespect to a fixed frame

    linear velocity

    angular velocity

    kinematic model

    Is a simplified model, but Captures the nonholonomy property which

    characterizes most WMR and is the core ofthe difficulties involved in the control of thesevehicles

    reference vehicle

    ref

    x

    y

    refy

    refx

    { }B

  • 8/11/2019 Guidance non-linear.pdf

    7/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Trajectory Tracking

    refref

    refrefref

    refrefref

    sinvy

    cosvx

    =

    =

    =

    !

    !

    !

    Kinematic model of the Reference Vehicle

    )t(vref )t(ref Bounded Bounded derivatives Do not tend to zero as t tends to infinity

    ),y,x(z refrefrefref =

    Control Objective

    Drive the errors refrefref -,yy,xx to zero

    Express the errors in the {B} frame

    =

    =

    ref

    ref

    ref

    3

    2

    1

    yy

    xx

    100

    0cossin

    0sincos

    e

    e

    e

    e

    DifferentiatingIntroducing the change of inputs

    =+=

    ref2

    3ref1

    u

    ecosvvu

  • 8/11/2019 Guidance non-linear.pdf

    8/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Trajectory Tracking

    +

    +

    =2

    1

    ref3u

    u

    10

    00

    01

    v

    0

    esin

    0

    e

    100

    00

    00

    e!

    non-linear dynamic systemcontrol variables

    Question? Is it possible to design a feedback law u=f(e) such that the error

    converges to zero? Is this law linear or non-linear ?

    Two different solutions:

    Linear feedback control

    Nonlinear feedback control

  • 8/11/2019 Guidance non-linear.pdf

    9/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Trajectory Tracking

    LINEAR FEEDBACK CONTROL

    +

    +

    =2

    1

    ref3u

    u

    10

    00

    01

    v

    0

    esin

    0

    e

    100

    00

    00

    e!

    0u

    0e

    ==linearize about the

    equilibrium point

    +

    =2

    1

    ref

    ref

    u

    u

    10

    00

    01

    e

    100

    00)t(

    0)t(0

    e!

    linear time-varying dynamic system

    refref

    refref

    v)t(v

    )t(

    ==

    Assuming

    linear time invariant dynamic system

    Is it possible to design a linear feedback law u=f(e) such thatthe error converges to zero?

    Is the dynamic system controllable ?

  • 8/11/2019 Guidance non-linear.pdf

    10/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Trajectory Tracking

    =

    000010

    00v00v0001

    refref

    refref

    2

    ref

    c

    0v refref ==If the SLIT is non-controllable

    the reference robot at rest

    the error cannot be taken tozero in finite time

    otherwise

    Keu=

    =

    3

    2

    1

    232221

    131211

    2

    1

    e

    e

    e

    KKK

    KKK

    u

    u

    ijK Chosen by pole placement

    closed loop poles 0)aas2s)(a2s( 22 =+++

    undetermined

    system

    ku1 =

    332ref22

    111

    eke)vsgn(ku

    eku

    ==

    a2k

    |v|

    ak

    a2k

    3

    ref

    2r

    2

    2

    1

    =

    =

    =

    If vr tends to zero, k2 increases withouth boun

  • 8/11/2019 Guidance non-linear.pdf

    11/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Trajectory Tracking

    closed loop poles 0)aas2s)(a2s( 22 =+++

    332r22

    111

    eke)vsgn(ku

    eku

    ==

    2ref

    2ref3

    ref2

    2ref

    2ref1

    bvw2k

    |v|bk

    bvw2k

    +=

    =

    +=

    To avoid the previous problem:

    The closed-loop poles depend on the values of vrand wr

    2ref

    2ref bvwa +=

  • 8/11/2019 Guidance non-linear.pdf

    12/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Trajectory Tracking

    NONLINEAR FEEDBACK CONTROL

    +

    +

    =2

    1

    ref3u

    u

    10

    00

    01

    v

    0

    esin

    0

    e

    100

    00

    00

    e!

    3refref32

    3

    3ref42

    1refref11

    e)w,v(kee

    esinvku

    e)w,v(ku

    =

    =

    k4 positive constant

    k1 continuos function strictly positive in RxR-(0,0)k3 continuos function strictly positive in RxR-(0,0)

    See the analogy with the linear contol

    PropertyProperty: This control globally asymptoticallystabilizies the origin e=0

    demonstration using Lyapunov stability theory

    bk

    bvw2)w,v(k)w,v(k

    4

    2ref

    2refrefref3refref1

    =

    +==

  • 8/11/2019 Guidance non-linear.pdf

    13/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Path Following

    Objective:Objective:

    Steer the vehicle at a constant forward speedalong a predefined geometric path that is givenin a time-free parametrization.

    x

    y{ }B

    "

    Path

    d

    Approach:Approach: The controller should compute

    The distance of the vehicle to the path

    The orientation error between the vehicles main axis andthe tangent to the path

    The controller should act on the angular velocity

    to drive both to zero

  • 8/11/2019 Guidance non-linear.pdf

    14/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Path Following

    x

    y{ }B

    "

    Path

    d

    M

    M is the orthogonal projection of the robots position P on the pathM exists and is uniquely defined if the path satisfies some conditions

    ),,P( NT Serret-Frenet frame moving along the path. The vector is the tangent vector to the path in the

    closest point to the vehicle The vector is the normal

    N

    N

    T

    T

    is the distance between P and M

    s is the signed curvilinear distance along the path, from some initial path tothe point M

    d(s) is the angle betwen the vehicles x-axis and the tange to the path at thepoint M.

    c(s) is the paths curvature at the point M, assumed uniformly bounded anddifferentiable

    is the orientation error

    "

    d~ =

  • 8/11/2019 Guidance non-linear.pdf

    15/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Path Following

    A new set of state coordinates for the mobile robot

    The error dynamics can be derived writing thevehicle kinematic model in the Serret-Frenet frame:

    )~,,s( "

    They coincide with x,y, in the particular caswhere the path coincides with the x-axis

    "

    !

    "!

    "

    !

    )s(c1

    )s(c~

    cosvw

    ~

    ~sinv

    )s(c1

    ~cosv

    s

    =

    =

    =

    PROBLEM FORMULATION

    Given a path in the x-y plane and the mobile robot translational velocity,v(t), (assumed to be bounded) together with its time-derivative dv(t)/dt,

    the path following problem consists of finding a (smooth) feedbackcontrol law

    such that

    ))t(v,~

    ,,s(k = "

    0)t(~

    lim

    0)t(lim

    t

    t

    =

    =

    "

  • 8/11/2019 Guidance non-linear.pdf

    16/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Path Following

    LINEAR FEEDBACK CONTROL

    "

    !

    "!

    "

    !

    )s(c1

    )s(c~

    cosvw

    ~

    ~sinv

    )s(c1

    ~cosv

    s

    =

    =

    =

    u~

    ~sinv

    )s(c1

    ~cosv

    s

    =

    =

    =

    !

    "!

    "

    !

    ")s(c1

    )s(c~

    cosvwu

    =

    Two different solutions:

    Linear feedback control

    Nonlinear feedback control

    Linearize the dynamics around the equilibrium point )0~,0( =="

    )t(u)t(~

    )t(~

    )t(v)t(

    =

    =!

    "!

    Linearization of thelast two equations

  • 8/11/2019 Guidance non-linear.pdf

    17/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Path Following

    The linear system isCONTROLLABLE

    ASYMPTOTICALY

    STABILIZABLE BY LINEARSTATE FEEDBACK

    Linear stabil izing feedback

    = ~|v|kvku 32 " 0k,0k 32 >>

    0vk|v|k 223 =++ ""!"!! Closed-loop differential equation

    0kk 2'

    3'' =++ """

    0aas2s 22 =++

    =

    =

    t

    0

    d|v|

    ' "

    "transformation

    Distance gone by point M along the p

    Desired closed-loopcharaceristic equation

    If

    v(t)=v=cte 0

  • 8/11/2019 Guidance non-linear.pdf

    18/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Path Following

    NONLINEAR FEEDBACK CONTROL

    u~

    ~sinv

    )s(c1

    ~cosv

    s

    =

    =

    =

    !

    "!

    "

    !

    Nonlinear control law

    = ~)v(k~

    ~sin

    vku 2 "

    with

    0k2>

    ).(k continuous function strictly positive

    In order to have the two (linear and nonlinear) controllersbehave similarly near chose0~,0 =="

    |v|k)v(k 3=

    with

    22

    3

    ak

    a2k

    =

    =

  • 8/11/2019 Guidance non-linear.pdf

    19/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Path Following

    Property

    Under the assumption

    0)t(vlimt

    the non-linear control

    =~

    )v(k~

    ~sin

    vku 2 "asymptotically stabilizes )0

    ~,0( =="

    provided that the vehicles initial configuration is such that

    2

    2

    2

    2

    )s(csup(lim

    1)0(

    ~

    k

    1)0(

  • 8/11/2019 Guidance non-linear.pdf

    20/21

    2002 - Pedro Lima, M. Isabel RibeiroRobtica Mvel

    Point Stabilization

    Given

    An arbitrary posture

    Find

    A control law

    which stabilizes asymptotically z-zd about zero,whatever the initial robots posture z(0)

    )t,zz(kv

    d=

    ),y,x(zd =

    COROLLARY

    There is no smooth control law k(z) that can solve thepoint stabilization problem for the considered class ofsystems.

    3 ALTERNATIVES

    Smooth (differentiable) time-varying nonlinear feedback k(z,t) Piecewise continuous control laws k(z) Time-varying piecewise continuous control laws k(z,t)

  • 8/11/2019 Guidance non-linear.pdf

    21/21

    References

    C. Canudas de Wit, H. Khennouf, C. Samson, O.Sordalen, Nonlinear Control Design for Mobile Robots inRecent Developments in Mobile Robots, World Scientific,1993. Reading assignment

    Carlos Canudas de Wit, Bruno Siciliano and Georges

    Bastin (Eds), "Theory of Robot Control", 1996.