Click here to load reader

Grinda Lamelara Simetrica

  • View
    80

  • Download
    11

Embed Size (px)

DESCRIPTION

Verificari Conform Eurocod 5

Text of Grinda Lamelara Simetrica

  • Ferma F1 Page: 1/23Sheet: 1

    SYSTEM LAYOUTSYSTEM LAYOUT

    GRAPHICAL REPRESENTATION

    1.5

    94

    14.700

    0.30014.4000.300

    0.3

    50

    0.3

    50

    15.000

    1.9

    44

    Material: Glulam Timber GL24h Width: 20.00 cm Height: 194.42 cm Volume: 3.44 m3

    2.018 m

    GRAPHICAL REPRESENTATION

    DETAILSMaximum Influence of Grain to Tapered Edge

    Use Limitation 20.00

    Special Settings for GlulamEffect of Cross-Section Dimensions on Material PropertiesIncrease in strength fm,k and ft,0,k acc. to:3.3(3) for glulam with h 600 mm (bending) or b 600 mm (tension)

  • Ferma F1 Page: 2/23Sheet: 1

    DETAILS

    Reduction of Internal ForcesMoment Reduction on SupportReduction of shear forces according to 6.1.7(3) for force at distance h from the edge of a support (h = beam height along support axis)

    Design Settings

    Reduction of stiffness with coefficient 1 / (1 + kdef) due to creep effects in

    Service Classes 2 and 3 according to DIN EN 1995-1-1/NA: 2010-12, NA. 5.9

    DATA FOR NATIONAL ANNEXPartial Factor for Material Properties

    Fundamental combinations for glulam timber M : 1.250Fundamental combinations for solid timber M : 1.300Accidental combinations M : 1.000Combinations for fire design M,fi : 1.000

    Limit Values of Deformations acc. to Tab. 7.2 - Characteristic and Frequent Combination of ActionsSpan Cantilevered Beam

    winst l / 300 lk / 150

    Limit Values of Deformations - Quasi-permanent Design Situationwfin - wc l / 250 lk / 125

    wfin l / 150 lk / 75

    Modification Factor kmodLDC 1 2 3-Permanent 0.600 0.600 0.500-Long-term 0.700 0.700 0.550-Medium-term 0.800 0.800 0.650-Short-term 0.900 0.900 0.700-Instantaneous 1.100 1.100 0.900

    Data for Fire ResistanceSoftwood Glulam Timber Hardwood

    Charring Rate n : 0.80 0.70 0.55 [mm/min]Increased Charring d0 : 7.00 7.00 7.00 [mm]Factor kfi : 1.250 1.150 1.250

    USED STANDARDS[1] EN 1995-1-1:2004+AC:2006+A1:2008 Eurocode 5: Design of timber structures - Part 1-1: General -

    Common rules and rules for buildings[2] EN 1995-1-2:2004+AC:2009-03 Eurocode 5: Design of timber structures - Part 1-2: General -

    Structural fire design[3] EN 1990:2002+A1:2005+AC:2010-04 Eurocode: Basis of structural design[4] EN 1991-1-1:2002+AC:2009-03 Eurocode 1: Actions on structures - Part 1-1: General actions -

    Densities, self-weight, imposed loads for buildings[5] EN 1991-1-3:2003+AC:2009-03 Eurocode 1: Actions on structures - Part 1-3: General actions - Snow

    loads[6] EN

    1991-1-4:2005+AC:2010-01+A1:2010-01Eurocode 1: Actions on structures - Part 1-4: General actions - Wind loads

    [7] EN 14080:2013-08 Timber structures - Glued laminated timber and glued solid timber - Requirements

    [8] EN 338:2009-10 Structural timber - Strength classes

    BEAM TYPE AND MATERIALBeam Type

    Beam Type: Double Tapered Beam

    MaterialMaterial Glulam Timber GL24h - EN 14080:2013-08

    Charact. Strength for Bending fm,k : 24.000 MPaCharact. Strength for Tension Parallel ft,0,k : 19.200 MPaCharact. Strength for Tension Perpendicular to Grain

    ft,90,k : 0.500 MPa

    Charact. Strength for Compression Parallel fc,0,k : 24.000 MPa

  • Ferma F1 Page: 3/23Sheet: 1

    BEAM TYPE AND MATERIALCharact. Strength for Compression Perpendic. fc,90,k : 2.500 MPaCharact. Strength for Shear/Torsion fv,k : 3.500 MPaShear Modulus Gmean : 650.000 MPaModulus of Elasticity Parallel E0.05 : 9600.000 MPaShear Modulus G05 : 540.000 MPaSpecific Weight : 4.20 kN/m3

    Coefficient of Thermal Expansion : 0.000005 1/C

    GEOMETRYBuilding Dimensions

    Building Height H : 3.500 mBuilding Depth B : 15.000 mBeam Spacing a : 2.500 mDistance to Roof Edge : 0.000 mLoad Factor for Continuity k : 1.000

    Roof Beam GeometryBeam Length L : 15.000 mAxial Spacing l : 14.700 mSupport Width Left la : 30.00 cmSupport Width Right lb : 30.00 cmInclination Angle : 12.00 Beam Height on Ridge hap : 194.42 cmBeam Height on Edge hs : 35.00 cmBeam Height, Support Center ha : 38.19 cm

    Cross-sectionCross-Section Width b : 20.00 cmLamella Thickness t : 2.40 cm

    Data for Lateral BucklingBeam Endangered by Lateral BucklingLateral Supports AvailableSpacing of Lateral Supports c : 1.100 mBracing Distance e : 20.00 cmLateral supports do not resist to fire

    Information - ParametersCoat Surface of Beam AS : 40.62 m2

    Beam Volume V : 3.44 m3

    Beam Weight G : 1.445 t

    LOAD DATAPermanent Loads

    Roof StructureFlat Tiles, Flat Clay Roofing Tile incl. Lathing

    : 0.550 kN/m2 RA

    Vapour Barrier : 0.020 kN/m2 RARock Wool : 0.200 kN/m2 RAPurlins : 0.150 kN/m2 RAVapour Barrier : 0.020 kN/m2 RALaminated Boards : 0.207 kN/m2 RA acc. to DIN 68 705 Part 4Softwood : 0.115 kN/m2 RARoof Structure gk,2 : 1.262 kN/m2 RA

    gk,2 : 3.155 kN/m RASelf-weight of Beam (Average) gk,1 : 0.958 kN/m RA

    gk : 4.113 kN/m RA

    Consider with factor : 1.000

    Snow LoadSnow Load of Overhang :Snow Thickness d : 1.000 mTopography Type : NormalExposure Ce : 1.0Snow Load - Define Manually sk : 1.450 kN/m2 BA

    sk : 3.625 kN/m BA

    Wind Load

  • Ferma F1 Page: 4/23Sheet: 1

    LOAD DATA

    Coefficients for Wind Load GenerationCoefficient of Orography C0 : 1.00Coefficient of Wind Direction Cdir : 1.00Coefficient of Seasons Cseason : 1.00Coefficient of Turbulency kl : 1.00Air Density : 1.250 kg/m3

    Wind Load q(z) : 0.528 kN/m2 RAq(z) : 1.320 kN/m RA

    Service ClassService Class SECL : 2

    CONTROL PARAMETERSDesign of

    Static equilibrium EQUUltimate limit state STRServiceability limit stateFire resistanceSupport compressionDisplay support forcesDisplay deformations

    Data for Serviceability Limit State DesignPrecamber w0 : 0.0 mm

    Data for Fire ResistanceFire Resistance Class R 30

    Sides exposed to fire LeftRightTopBottom

    Support ModelingLeft Support Horizontal fixed-hingedRight Support Horizontal free-hingedSupports On Center Line

    Calculation ParametersGenerate supplementary combinations from favorable permanent actionsDistribute permanent load span-by-span

    Number of member divisions for result diagrams 10Number of internal divisions of tapered members 10

    RESULT COMBINATIONSRC Result Combinations Load Cases Design LDC Factor Max.

    Description Situation kmod Ratio

    Ultimate Limit State Design

    RC1 g 1.35*LC1 UB Permanent 0.600 0.72RC2 g + s 1.35*LC1 + 1.50*LC41 UB Short-term 0.900 0.85RC3 g + s(l) 1.35*LC1 + 1.50*LC42 UB Short-term 0.900 0.80RC4 g + s(r) 1.35*LC1 + 1.50*LC43 UB Short-term 0.900 0.80RC5 g + s + w(q,l,AA) 1.35*LC1 + 1.50*LC41 + 0.90*LC51 UB Short-term 0.900 0.80RC6 g + s + w(q,l,BB) 1.35*LC1 + 1.50*LC41 + 0.90*LC52 UB Short-term 0.900 0.86RC7 g + s + w(q,l,AB) 1.35*LC1 + 1.50*LC41 + 0.90*LC53 UB Short-term 0.900 0.84RC8 g + s + w(q,l,BA) 1.35*LC1 + 1.50*LC41 + 0.90*LC54 UB Short-term 0.900 0.85RC9 g + s + w(q,r,AA) 1.35*LC1 + 1.50*LC41 + 0.90*LC55 UB Short-term 0.900 0.80RC10 g + s + w(q,l,BB) 1.35*LC1 + 1.50*LC41 + 0.90*LC56 UB Short-term 0.900 0.86RC11 g + s + w(q,r,AB) 1.35*LC1 + 1.50*LC41 + 0.90*LC57 UB Short-term 0.900 0.84RC12 g + s + w(q,l,BA) 1.35*LC1 + 1.50*LC41 + 0.90*LC58 UB Short-term 0.900 0.85RC13 g + s + w(p,A) 1.35*LC1 + 1.50*LC41 + 0.90*LC59 UB Short-term 0.900 0.79RC14 g + s + w(p,B) 1.35*LC1 + 1.50*LC41 + 0.90*LC60 UB Short-term 0.900 0.80RC15 g + s(l) + w(q,l,

    AA)1.35*LC1 + 1.50*LC42 + 0.90*LC51 UB Short-term 0.900 0.76

    RC16 g + s(l) + w(q,l, 1.35*LC1 + 1.50*LC42 + 0.90*LC52 UB Short-term 0.900 0.82

    RESULTS

    Building Height H : 3.500 mTerrain Category TC : Category IVFundamental Wind Velocity vb,0 : 35.00 m/sBasic dynamic wind pressure qb,0 : 0.450 kN/m2

  • Ferma F1 Page: 5/23Sheet: 1

    RESULT COMBINATIONSRC Result Combinations Load Cases Design LDC Factor Max.

    Description Situation kmod Ratio

    BB)RC17 g + s(l) + w(q,l,

    AB)1.35*LC1 + 1.50*LC42 + 0.90*LC53 UB Short-term 0.900 0.77

    RC18 g + s(l) + w(q,l,BA)

    1.35*LC1 + 1.50*LC42 + 0.90*LC54 UB Short-term 0.900 0.80

    RC19 g + s(l) + w(q,r,AA)

    1.35*LC1 + 1.50*LC42 + 0.90*LC55 UB Short-term 0.900 0.76

    RC20 g + s(l) + w(q,l,BB)

    1.35*LC1 + 1.50*LC42 + 0.90*LC56 UB Short-term 0.900 0.81

    RC21 g + s(l) + w(q,r,AB)

    1.35*LC1 + 1.50*LC42 + 0.90*LC57 UB Short-term 0.900 0.80

    RC22 g + s(l) + w(q,l,BA)

    1.35*LC1 + 1.50*LC42 + 0.90*LC58 UB Short-term 0.900 0.77

    RC23 g + s(l) + w(p,A) 1.35*LC1 + 1.50*LC42 + 0.90*LC59 UB Short-term 0.900 0.74RC24 g + s(l) + w(p,B) 1.35*LC1 + 1.50*LC42 + 0.90*LC60 UB Short-term 0.900 0.75RC25 g + s(r) + w(q,l,

    AA)1.35*LC1 + 1.50*LC43 + 0.90*LC51 UB Short-term 0.900 0.76

    RC26 g + s(r) + w(q,l,BB)

    1.35*LC1 + 1.50*LC43 + 0.90*LC52 UB Short-term 0.900 0.81

    RC27 g + s(r) + w(q,l,AB)

    1.35*LC1 + 1.50*LC43 + 0.90*LC53 UB Short-term 0.900 0.79

    RC28 g + s(r) + w(q,l,BA)

    1.35*LC1 + 1.50*LC43 + 0.90*LC54 UB Short-term 0.900 0.77

    RC29 g + s(r) + w(q,r,AA)

    1.35*LC1 + 1.50*LC43 + 0.90*LC55 UB Short-term 0.900 0.76

    RC30 g + s(r) + w(q,l,BB)

    1.35*LC1 + 1.50*LC43 + 0.90*LC56 UB Short-term 0.900 0.82

    RC31 g + s(r) + w(q,r,AB)

    1.35*LC1 + 1.50*LC43 + 0.90*LC57 UB Short-term 0.900 0.77

    RC32 g + s(r) + w(q,l,BA)

    1.35*LC1 + 1.50*LC43 + 0.90*LC58 UB Short-term 0.900 0.80

    RC33 g + s(r) + w(p,A) 1.35*LC1 + 1.50*LC43 + 0.90*LC59 UB Short-term 0.900 0.74RC34 g + s(r) + w(p,B) 1.35*LC1 + 1.50*LC43 + 0.90*LC60 UB Short-term 0.900 0.75RC35 g + w(q,l,AA) 1.35*LC1 + 1.50*LC51 UB Short-term 0.900 0.40RC36 g + w(q,l,BB) 1.35*LC1 + 1.50*LC52 UB Short-term 0.900 0.50RC37 g + w(q,l,AB) 1.35*LC1 + 1.50*LC53 UB Short-term 0.900 0.46RC38 g + w(q,l,BA) 1.35*LC1 + 1.50*LC54 UB Short-term 0.900 0.48RC39 g + w(q