5

Green & Sustainable Chemistry 2016| Poster programme file[P.003] Supported metal catalysts on covalent triazine frameworks in the selective aerobic oxidation of 5-hmf J. Artz*, R

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Green & Sustainable Chemistry 2016| Poster programme file[P.003] Supported metal catalysts on covalent triazine frameworks in the selective aerobic oxidation of 5-hmf J. Artz*, R
Page 2: Green & Sustainable Chemistry 2016| Poster programme file[P.003] Supported metal catalysts on covalent triazine frameworks in the selective aerobic oxidation of 5-hmf J. Artz*, R
Page 3: Green & Sustainable Chemistry 2016| Poster programme file[P.003] Supported metal catalysts on covalent triazine frameworks in the selective aerobic oxidation of 5-hmf J. Artz*, R

Green & Sustainable Chemistry 2016| Poster programme

Poster Programme

17:00-18:30-Sunday, 3th April 2016

12:30-13:30-Monday, 4th April 2016

13:00-14:00-Tuesday, 5th April 2016

12:00-13:00-Wednesday, 6th April 2016

[P.001] Synthesis of zeolites and mesoporous silica via recycling power plant bottom ash containing high Ca2+

impurities

Y. Lee1, J. Soe

1, J. Ahn

1 ,2, W. Ahn*

1,

1Inha University, Republic of Korea,

2KIGAM, Republic of Korea

[P.002] The Effect of the method of preparation on the Composition and Bioactivities of the Essential oil of Ixora

finlaysoniana Wall. ex G. Don. (Family Rubiaceae)

A.I.A. Ali*, M.T. Ibrahim, K. Meselhy, A. Temraz, A. Sleem, Misr International University, Egypt

[P.003] Supported metal catalysts on covalent triazine frameworks in the selective aerobic oxidation of 5-hmf

J. Artz*, R. Palkovits, RWTH Aachen University, Germany

[P.004] H2 production from the steam reforming of propionic acid generated in wastewater treatment

F.O.D. Figueiredo1, A.F. Lucrédio

1, J.M. Assaf

2, E.M. Assaf*

1,

1University of São Paulo, Brazil,

2Federal University of

São Carlos, Brazil

[P.005] A review of chemical solvents for CO2 absorption process

S. Babamohammadi*1, A. Shamiri

1 ,2, M.K. Aroua

1,

1University of Malaya, Malaysia,

2UCSI University, Malaysia

[P.006] Hydrogen production on graphite electrode modified by Polyaniline/Chitosan/AU nanocomposite

D. Balun Kayan*, M. Ilhan, D. Koçak, Aksaray University, Turkey

[P.007] Engineering of advanced Poly (Lactic Acid) (PLA) polymers for manufacturing of coffee capsules

M. Barletta*1, M. Puopolo

1 ,2, V. Tagliaferri

1, S. Vesco

1,

1Università degli Studi di Roma Tor Vergata, Italy,

2Texas

Agricultural & Mechanical University, USA

[P.008] Demonstrative pilot plant for the valorisation of non-ferreous metal waste

R. Beneito-Ruíz*, J. Fortes-Monteiro, A. Merlos-Rico, E. Añó-Montalvá, L. Rey-Martinez, Instituto Tecnologico del

Juguete (AIJU), Spain

[P.009] Isothermal vapor-liquid equilibria of diesel and biodiesel compounds

M. Benziane*1, K. Khimeche

2, I. Mokbel

3, A. Dahmani

4, J. Jose

1,

1Ecole Supérieure du Matériel ESM, Algeria,

2Ecole

Militaire Polytechnique EMP, Algeria, 3

Université de Lyon, France, 4

Laboratoire de thermodynamique et modélisation

moléculaire, Algeria

[P.010] Microcrystalline cellulose prepared from soft wood using organosolv process

D. Trache2, M. Benziane*

1, A. Donnot

3, K. Khimeche

2, R. Benelmir

3, N. Brosse

3,

1Ecole Supérieure du Matériel ESM,

Algeria, 2

Ecole Militaire Polytechnique EMP, Algeria, 3

Université de Lorraine, France

[P.011] Biomass conversion into activated carbon: Effects of pre-treatment of sawdust precursors

D. Bergna*1 ,2

, H. Romar1 ,2

, S. Tuomikoski1, U. Lassi

1 ,2,

1University of Oulu, Finland,

2Kokkola University Consortium

Chydenius, University of Jyvaskyla, Finland

[P.012] Bioremediation for recycling of polluted soil - our experience with petroleum hydrocarbons

V.P. Beškoski*, G. Gojgic-Cvijovic, M. Ilic, S. Miletic, J. Milic, J. Avdalovic, M.M. Vrvic, University of Belgrade, Serbia

[P.013] Preparation and characterization of cross-linked narrow molecular weight distribution chitosan pyruvic acid

derivatives for heavy metal removal

P.O. Boamah*1 ,2

, Y. Huang1, M. Hua

1, J. Onumah

2, Q. Zhang

1 ,3,

1Jiangsu University, China,

2Bolgatanga Polytechnic,

Ghana, 3

Hainan University, China

[P.014] Effect of thermal treatment on peat humic acid characteristics

L.M. Bolsunovskaya*, N.V. Chukhareva, T.V. Korotchenko, National Research Tomsk Polytechnic University, Russia

[P.015] Recycling rare earths from permanent magnets (NdFeB and SmCo) by electrochemistry in ionic liquids

C. Bonnaud*1, I. Billard

1, N. Papaiconomou

1, E. Chainet

1,

1Univ. Grenoble Alpes LEPMI, France,

2CNRS LEPMI, France

[P.017] "Metal munching moulds" - Fungal extraction of copper, zinc, and lead from industrial sand

C. Fabbri, H. Brandl*, University of Zurich, Switzerland

[P.018] A facile, solid-phase route to renewable aromatic chemicals from biobased furanics

H.C. Genuino1, S. Thiyagarajan

1 ,2, J.C. Van der Waal

3, E. De Jong

3, J. Van Haveren

2, B.M. Weckhuysen

1, D.S. Van Es

2,

Page 4: Green & Sustainable Chemistry 2016| Poster programme file[P.003] Supported metal catalysts on covalent triazine frameworks in the selective aerobic oxidation of 5-hmf J. Artz*, R

���������� � ����������� ���������������� ������������ �� � �� ������ ���� ���

������������������������� ����������������� �������� ����������� ��������� ������������ ������������

����������� ��������������

� ��!�����"�� ���#�$�%���&��������&�&�!���'������&�"����%�� ���'����&�#���(��#������� ���$���&��� ����'������&� �� �� )!�*��� &��$� % �� � �� �'(���!��� %�� � ���� (��&��(��� "�����&� � �'���$� �&�� �&��&����&��� � �� ��� &��$� �� #���&�!��� �&��� ��� �&����� �&����&������� ���������+&&���&�%�!��,���#������ ��(�(���(���&����#���"�#��'#����$����%��� &� '���!�������� !����������&� "� ��� �&�� ��� ����������� � �#� � � �� �((������&� "��������� �&�� &��#����$� ���(���� �&����� "� -$'��&#� '������&�' � ����&�� "�'� � ����!����$� ������ �� �� ������� ����� !���'������&� (����#��� �((����� �� � #�&�� "� �&���'(���&��&������������"�'���!�����&�����%����'&�������#��&��������!�(�����&�� ������ �����'�&�� "� (��#���� ���� �� �&������ � �� ����� "� !����������&� !���'#����& �!��#�'�&����&� �&�� ����&�#����&� "��%��� !$� �&��&���� '�.�&�/������&� %���� �((������ � ���&������ ������"����(��#��&�%����#(�������01��/���2�������(�����#'� $�����!&��&���"����'�.�'#'�3�'&� �� ���&��&�����&�%�����#����������1�4��/���2��)556��""����$*�%�� �� �����&�������&� "� (�����&�� ����&�� �&�� ������(�&�� ) (�&�*� �&�� �� ��'�&�� "� � �� 7�8�"�����&9�� �����'(���&��&��!����������&�"� $�����!&�(��#��&��%����'&������#�&���'(�� �&������.������� � �� �'(���&� "� � �� �&���#'� "�'������&�'� � �&��� ���(�&��&��&� � ��!���'������&����� �!#�� � �� �����&#'!����'#&���� ��:1

;�:1

:1��<=/������

� ����'���� ���'�&�&��!��������� �����&�#�� $�����!&�(��#��&�������#����"��&���$�!��&���� �� � �� "��%�&�� (����>������������ �������������� � ������� ��������������� ��������������� ���#�$��&"��'�� �������&��&� #���!��(������!���'������&�"�� ������&��� ���!��������(������&������#���&�!������������+��%�'�������,����� ��'&�-���%�� �� ��(��&��(���"�����&�� �'���$��&���&��&����&��(�����#����$��#����� ���!�&���"�&���������""����&�� ���&���&'�&���?�� �� �����#���&�"��&��'�&���& �������&�(��#���"�� ���&���&'�&���&���!�����"�����%�������#��� �% �� ���#������&��&����������!��������$��

@�$%��>�����'������& �����!�����&���#' ���.����� �����&�� �'���$�

Page 5: Green & Sustainable Chemistry 2016| Poster programme file[P.003] Supported metal catalysts on covalent triazine frameworks in the selective aerobic oxidation of 5-hmf J. Artz*, R

Material and methods The biopile for bioremediation was prepared on a waterproof asphalt surface of approximately 1500 m2. The biopile consisted of: • 270 m3 of soil heavily polluted with oil hydrocarbons • 60 m3 of softwood sawdust as the additional carbon source

and bulking component • 300 m3 of un-graded river sand added as a bulking and

porosity increasing material. The biopile (approximately 600 m3 of material, around 1000 tons) components were mixed with a front-end loader, and finally, raked using a tractor fitted with a harrow. To increase the rate of biodegradation biostimulation, bioaugmentation and re-inoculation followed by intensive mixing/aeration were applied every 15 days. Total petroleum hydrocarbons (TPH) were analyzed in accordance with ISO 16703 and DIN EN 14345. For qualitative analysis, comprehensive two dimensional gas chromatography – mass spectrometry (GC×GC-MS) performed on GCMS-QP2010 Ultra (Shimadzu, Kyoto, Japan) and GC×GC thermal modulator (Zoex Corp.). A Rtx®-1 (RESTEK) and BPX50 (SGE Analytical Science) columns, thermal modulation of 6 sec. Software GCMS Solution (Shimadzu), ChromSquare Ver.2 and GCImage.

Bioremediation for recycling of polluted soil - our experience with petroleum hydrocarbons

V.P. Beškoski1, G. Gojgić-Cvijović2, M. Ilić2, S. Miletić2, J. Milić2, J. Avdalović2, M.M. Vrvić1 1Faculty of Chemistry, University of Belgrade, Serbia

2Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia

[email protected]

Introduction Bioremediation is a (bio)technology which is compatible with principles of green chemistry and engineering. This technology is sustainable since it conserves and generates the soil as a “non-renewable” resource [1]. A consortium of zymogenous microorganisms can conduct complex processes of degradation, while at the same time, being more resistant to changes in the ecosystem than just a single microbial species [2]. This paper present results of our multi-year work on microbiological biodegradation of oil and oil derivatives through the application of selected and naturally adapted consortia of zymogenous microorganisms, staring from the laboratory level to in situ/ex situ bioremediation procedures applied to thousands of tons.

The initial levels of soil pollution were up to cc. 40 g/kg dry matter of total petroleum hydrocarbons and after maximum 6 months the concentration was reduced to cc. 0.5 g/kg dry matter (99% efficacy) with the disintegration of n-alkanes, mono and di-aromatics, persistent steranes and triterpanes (hopanes) and a segment of the NSO-fraction!

Start

135 days

45 daysPyrene

Mono-aromatic

Di-aromatics

Tri-aromatics

n-alkanes

Tetra-aromatics

References 1. Kaushik, G., Applied Environmental Biotechnology: Present Scenario and Future Trends, Springer, 2015. 2. Bertrand et al., Environmental Microbiology: Fundamentals and Applications, Springer, 2015.

Objectives The object of this study was bioremediation on industrial scale of the soil polluted with petroleum hydrocarbons by consortia of zymogenous microorganisms isolated from petroleum contaminated soil, with the main aim to conduct polluted soil recycling.

Conclusion All fractions of petroleum hydrocarbons were reduced except tetra-aromatics such as pyrene. This study shows that successful industrial scale bioremediation can be conducted using consortia of zymogenous microorganisms. With the reduction of contamination, selective pressure of the environment and abiotic factors were reduced, which resulted in increased soil biodiversity.

Results and Discussion The composition of the consortium of microorganisms changed, depending on the bioremediation stage, but the total number amounted to 107-109 CFU/g all the time. The dominant hydrocarbon degrading (HD) bacteria belonged to the following species: Pseudomonas, Achromobacter, Bacillus, Micromonospora, Rhodococcus.

Hydrocarbon degraders GenBank No. 1. Pseudomonas sp. JF826528.1; JQ292806.1 2. Achromobacter sp. JF826529.1 3. Bacillus sp. JF826526 4. Micromonospora sp. JF826530.1 5. Rhodococcus sp. JQ065876.1; JX965395.1

180 days

-20 0 20 40 60 80 100 120 140 160 180 200

0

20

40

Time (day)

TPH

(g/k

g)

6.5

7.0

7.5

8.0

8.5

9.0

HD (log CFU/g)

Start

Short Code: 158d67a