25
Graphs Slide credits: K. Wayne, Princeton U. C. E. Leiserson and E. Demaine, MIT K. Birman, Cornell U.

Graphs Slide credits: K. Wayne, Princeton U. C. E. Leiserson and E. Demaine, MIT K. Birman, Cornell U

Embed Size (px)

DESCRIPTION

These are Graphs K5K5 K 3,3 =

Citation preview

Page 1: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Graphs

Slide credits: K. Wayne, Princeton U. C. E. Leiserson and E. Demaine, MIT K. Birman, Cornell U.

Page 2: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

These are not Graphs

...not the kind we mean, anyway

Page 3: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

These are Graphs

K5 K3,3

=

Page 4: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Applications of Graphs

Communication networks Routing and shortest path problems Commodity distribution (flow) Traffic control Resource allocation Geometric modeling ...

Page 5: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Undirected Graphs

Undirected graph. G = (V, E) is an ordered pair consisting of V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = |V|, m = |E|. Two nodes connected by an edge are said to be neighbor.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }n = 8m = 11

Page 6: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U
Page 7: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Some Properties of Undirected Graph

|E|= O(V2) If G is connected |E|≥|V|–1

– An undirected graph is connected if for every pair of nodes u

and v, there is a path between u and v. deg(V) is defined as the number of edges incident to V

– Handshaking lemma: Σv∈V deg(v) = 2|E|

Page 8: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Directed Graphs

Directed graph. G = (V, E) Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another. Directedness of graph is crucial. Modern web search engines exploit hyperlink structure to rank

web pages by importance.

Page 9: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

World Wide Web

Web graph. Node: web page. Edge: hyperlink from one page to another.

cnn.com

cnnsi.comnovell.comnetscape.com timewarner.com

hbo.com

sorpranos.com

Page 10: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge. Two representations of each edge. Space proportional to n2. Checking if (u, v) is an edge takes O(1) time. Identifying all edges takes O(n2) time. Use for dense graph

1 2 3 4 5 6 7 81 0 1 1 0 0 0 0 02 1 0 1 1 1 0 0 03 1 1 0 0 1 0 1 14 0 1 0 1 1 0 0 05 0 1 1 1 0 1 0 06 0 0 0 0 1 0 0 07 0 0 1 0 0 0 0 18 0 0 1 0 0 0 1 0

Page 11: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists. Two representations of each edge. Space proportional to m + n. Checking if (u, v) is an edge takes O(deg(u)) time. Identifying all edges takes O(m + n) time. Use for sparse graph

1 2 3234 2 55

67 3 88

1 3 4 51 2 5 87

2 3 4 65

degree = number of neighbors of u

3 7

Page 12: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes v1, v2, …, vk-1, vk with the property that each consecutive pair vi, vi+1 is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Page 13: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Cycles

Def. A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

Page 14: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

G is connected. G does not contain a cycle. G has n-1 edges.

Page 15: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

Page 16: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Graph Traversal

Problem: Search for a certain node or traverse all nodes in the graph

Depth First Search– Once a possible path is found, continue the search until

the end of the path Breadth First Search

– Start several paths at a time, and advance in each one step at a time

Page 17: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Depth First Traversal

A natural way to do Depth-first search (BFS) is using recursion.

DFS( Node c ) {Mark c "Visited”For each neighbor n of c

If n "Unvisited" DFS( n )}

Possible visit sequence: 1, 2, 4, 5, 6, 3, 8, 7

Page 18: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Breadth First Traversal

Breadth-first search (BFS) not naturally recursive. Use a queue so that vertices are visited in order according

to their distance from the starting vertex.

BFS(Node v) { create a queue Q enqueue v onto Q mark v “Visited” while Q is not empty { dequeue t from Q for each neighbor u of t do

if u is not marked { mark u “Visited” enqueue u onto Q

}}

Page 19: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Breadth First Search

L0

L1

L2

L3

Visit sequence: 1, 2, 3, 4, 5, 7, 8, 6

Page 20: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Applications: Finding a Path

Find path from source vertex s to destination vertex d Use graph search starting at s and terminating as soon as we

reach d Need to remember edges traversed Use depth – first search

Page 21: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

DFS

EF

G

B

CD

A start

destination

A DFS on A ADFS on BB

A

DFS on CBC

AB Return to call on BD Call DFS on D

ABD

Call DFS on GG found destination - done!Path is implicitly stored in DFS recursionPath is: A, B, D, G

DFS Process

Page 22: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Minimum spanning trees

Minimum spanning tree. Given a connected undirected graph G = (V, E) with real-valued edge weights ce, an MST is a subset of the edges T E such that T is a spanning tree whose sum of edge weights is minimized.

Page 23: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Minimum spanning trees

Page 24: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Greedy Algorithms

Prim's algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

Theorem. Let T be the MST of G= (V, E), and let A⊆V. Suppose that (u, v) ∈ E is the least-weight edge connecting A to V–A. Then, (u, v) ∈T.

Page 25: Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U

Greedy Algorithms

Proof:• Suppose (u, v) ∉T.• Consider the unique simple path from u to v in T.• Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in V–A to get a lower-weight MST