31
Graphene: Materials in the Flatland K.S. Novoselov

Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

  • Upload
    lykhue

  • View
    223

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

GrapheneMaterials in the Flatland

KS Novoselov

thinnest imaginable material strongest material ever measured (theoretical limit)

stiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T(million times of those in copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

GrapheneMaterials in the Flatland

KS Novoselov

The First Two-Dimensional Crystal

Unusual Electronic Properties

Promising For Applications

Three Key-Points

The First Two-Dimensional CrystalThree Key-Points

Two-Dimensional Form of Carbon

3d2d1d0d

R F CurlHW KrotoR E Smalley 1985Nobel prize 1996

ldquoBuckyballrdquo CarbonNanotube

Multi-wall 1991Single-wall 1993

Graphite1564Borrowdale

Graphene

http

vif

slato

fsla

livejo

urna

lcom

289

07h

tmlt

hrea

d=28

395

http

www

stan

forde

dugr

oupG

GG1D

html

Carbon Allotropes

Graphene2d

Carbon Nanotube Graphite

3d1d0d

ldquoBuckyballrdquo

All Natural Materials Are 3D

3D

heig

ht

largest known flat hydrocarbon

222 atoms or 37 benzene rings(K Muumlllen 2002)

Strongly layered materialCan We Cheat Nature

Slice down to one atomic plane

Into The Pencil Trace

graphite trace on oxidized Si wafer

01 mm

~100 layersKurtz 1991

Dujardin 1997Ohashi 1997Ruoff 1999

10 to 30 layersKim 2005

McEuen 2005

1-5 layers Manchester 2004

sdot

first 2D material demonstrated - Manchester Science lsquo04

1 microm

Into The Pencil Trace

graphite trace on oxidized Si wafer

first 2D material demonstrated - Manchester Science lsquo04

1 microm

1 mm

Other 2D Crystals

Novoselov et al PNAS (2005)

1 microm 2D Bi2Sr2CaCu2Ox in SEM

From 3D systems

2D MoS2 in optics

5 microm

1microm

0Aring 8Aring 23Aring2D NbSe2 in AFM

10 microm

2D boron nitride in optics

High QualityDifferent From 3D Precursor

Other 2D Crystals

Cinfin + infinF =gt (CF)infin Cinfin + infinH =gt (CH)infin

graphaneManchester Science lsquo09

By Chemical Reaction

FLUOROGRAPHENE ( )graFaneManchester Small lsquo10

New Class of Crystalline Materials

2-DIMENSIONALATOMIC CRYSTALS

Studied ()Graphene

Large Variety of Material

Properties

UnexploredNbSe2

MoS2

MgB2BiSCCO

Lightly TouchedBoron-Nitride

Graphane

Fluorographene

A Dream Back From The FLATLAND

Materials on Demand

What kind of properties would this material possess

2D-Crystals-Based Heterostructures

Graphene Boron-Nitride

NbSe2

GraFane

Graphane

MoS2

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 2: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

thinnest imaginable material strongest material ever measured (theoretical limit)

stiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T(million times of those in copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

GrapheneMaterials in the Flatland

KS Novoselov

The First Two-Dimensional Crystal

Unusual Electronic Properties

Promising For Applications

Three Key-Points

The First Two-Dimensional CrystalThree Key-Points

Two-Dimensional Form of Carbon

3d2d1d0d

R F CurlHW KrotoR E Smalley 1985Nobel prize 1996

ldquoBuckyballrdquo CarbonNanotube

Multi-wall 1991Single-wall 1993

Graphite1564Borrowdale

Graphene

http

vif

slato

fsla

livejo

urna

lcom

289

07h

tmlt

hrea

d=28

395

http

www

stan

forde

dugr

oupG

GG1D

html

Carbon Allotropes

Graphene2d

Carbon Nanotube Graphite

3d1d0d

ldquoBuckyballrdquo

All Natural Materials Are 3D

3D

heig

ht

largest known flat hydrocarbon

222 atoms or 37 benzene rings(K Muumlllen 2002)

Strongly layered materialCan We Cheat Nature

Slice down to one atomic plane

Into The Pencil Trace

graphite trace on oxidized Si wafer

01 mm

~100 layersKurtz 1991

Dujardin 1997Ohashi 1997Ruoff 1999

10 to 30 layersKim 2005

McEuen 2005

1-5 layers Manchester 2004

sdot

first 2D material demonstrated - Manchester Science lsquo04

1 microm

Into The Pencil Trace

graphite trace on oxidized Si wafer

first 2D material demonstrated - Manchester Science lsquo04

1 microm

1 mm

Other 2D Crystals

Novoselov et al PNAS (2005)

1 microm 2D Bi2Sr2CaCu2Ox in SEM

From 3D systems

2D MoS2 in optics

5 microm

1microm

0Aring 8Aring 23Aring2D NbSe2 in AFM

10 microm

2D boron nitride in optics

High QualityDifferent From 3D Precursor

Other 2D Crystals

Cinfin + infinF =gt (CF)infin Cinfin + infinH =gt (CH)infin

graphaneManchester Science lsquo09

By Chemical Reaction

FLUOROGRAPHENE ( )graFaneManchester Small lsquo10

New Class of Crystalline Materials

2-DIMENSIONALATOMIC CRYSTALS

Studied ()Graphene

Large Variety of Material

Properties

UnexploredNbSe2

MoS2

MgB2BiSCCO

Lightly TouchedBoron-Nitride

Graphane

Fluorographene

A Dream Back From The FLATLAND

Materials on Demand

What kind of properties would this material possess

2D-Crystals-Based Heterostructures

Graphene Boron-Nitride

NbSe2

GraFane

Graphane

MoS2

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 3: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

The First Two-Dimensional Crystal

Unusual Electronic Properties

Promising For Applications

Three Key-Points

The First Two-Dimensional CrystalThree Key-Points

Two-Dimensional Form of Carbon

3d2d1d0d

R F CurlHW KrotoR E Smalley 1985Nobel prize 1996

ldquoBuckyballrdquo CarbonNanotube

Multi-wall 1991Single-wall 1993

Graphite1564Borrowdale

Graphene

http

vif

slato

fsla

livejo

urna

lcom

289

07h

tmlt

hrea

d=28

395

http

www

stan

forde

dugr

oupG

GG1D

html

Carbon Allotropes

Graphene2d

Carbon Nanotube Graphite

3d1d0d

ldquoBuckyballrdquo

All Natural Materials Are 3D

3D

heig

ht

largest known flat hydrocarbon

222 atoms or 37 benzene rings(K Muumlllen 2002)

Strongly layered materialCan We Cheat Nature

Slice down to one atomic plane

Into The Pencil Trace

graphite trace on oxidized Si wafer

01 mm

~100 layersKurtz 1991

Dujardin 1997Ohashi 1997Ruoff 1999

10 to 30 layersKim 2005

McEuen 2005

1-5 layers Manchester 2004

sdot

first 2D material demonstrated - Manchester Science lsquo04

1 microm

Into The Pencil Trace

graphite trace on oxidized Si wafer

first 2D material demonstrated - Manchester Science lsquo04

1 microm

1 mm

Other 2D Crystals

Novoselov et al PNAS (2005)

1 microm 2D Bi2Sr2CaCu2Ox in SEM

From 3D systems

2D MoS2 in optics

5 microm

1microm

0Aring 8Aring 23Aring2D NbSe2 in AFM

10 microm

2D boron nitride in optics

High QualityDifferent From 3D Precursor

Other 2D Crystals

Cinfin + infinF =gt (CF)infin Cinfin + infinH =gt (CH)infin

graphaneManchester Science lsquo09

By Chemical Reaction

FLUOROGRAPHENE ( )graFaneManchester Small lsquo10

New Class of Crystalline Materials

2-DIMENSIONALATOMIC CRYSTALS

Studied ()Graphene

Large Variety of Material

Properties

UnexploredNbSe2

MoS2

MgB2BiSCCO

Lightly TouchedBoron-Nitride

Graphane

Fluorographene

A Dream Back From The FLATLAND

Materials on Demand

What kind of properties would this material possess

2D-Crystals-Based Heterostructures

Graphene Boron-Nitride

NbSe2

GraFane

Graphane

MoS2

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 4: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

The First Two-Dimensional CrystalThree Key-Points

Two-Dimensional Form of Carbon

3d2d1d0d

R F CurlHW KrotoR E Smalley 1985Nobel prize 1996

ldquoBuckyballrdquo CarbonNanotube

Multi-wall 1991Single-wall 1993

Graphite1564Borrowdale

Graphene

http

vif

slato

fsla

livejo

urna

lcom

289

07h

tmlt

hrea

d=28

395

http

www

stan

forde

dugr

oupG

GG1D

html

Carbon Allotropes

Graphene2d

Carbon Nanotube Graphite

3d1d0d

ldquoBuckyballrdquo

All Natural Materials Are 3D

3D

heig

ht

largest known flat hydrocarbon

222 atoms or 37 benzene rings(K Muumlllen 2002)

Strongly layered materialCan We Cheat Nature

Slice down to one atomic plane

Into The Pencil Trace

graphite trace on oxidized Si wafer

01 mm

~100 layersKurtz 1991

Dujardin 1997Ohashi 1997Ruoff 1999

10 to 30 layersKim 2005

McEuen 2005

1-5 layers Manchester 2004

sdot

first 2D material demonstrated - Manchester Science lsquo04

1 microm

Into The Pencil Trace

graphite trace on oxidized Si wafer

first 2D material demonstrated - Manchester Science lsquo04

1 microm

1 mm

Other 2D Crystals

Novoselov et al PNAS (2005)

1 microm 2D Bi2Sr2CaCu2Ox in SEM

From 3D systems

2D MoS2 in optics

5 microm

1microm

0Aring 8Aring 23Aring2D NbSe2 in AFM

10 microm

2D boron nitride in optics

High QualityDifferent From 3D Precursor

Other 2D Crystals

Cinfin + infinF =gt (CF)infin Cinfin + infinH =gt (CH)infin

graphaneManchester Science lsquo09

By Chemical Reaction

FLUOROGRAPHENE ( )graFaneManchester Small lsquo10

New Class of Crystalline Materials

2-DIMENSIONALATOMIC CRYSTALS

Studied ()Graphene

Large Variety of Material

Properties

UnexploredNbSe2

MoS2

MgB2BiSCCO

Lightly TouchedBoron-Nitride

Graphane

Fluorographene

A Dream Back From The FLATLAND

Materials on Demand

What kind of properties would this material possess

2D-Crystals-Based Heterostructures

Graphene Boron-Nitride

NbSe2

GraFane

Graphane

MoS2

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 5: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Two-Dimensional Form of Carbon

3d2d1d0d

R F CurlHW KrotoR E Smalley 1985Nobel prize 1996

ldquoBuckyballrdquo CarbonNanotube

Multi-wall 1991Single-wall 1993

Graphite1564Borrowdale

Graphene

http

vif

slato

fsla

livejo

urna

lcom

289

07h

tmlt

hrea

d=28

395

http

www

stan

forde

dugr

oupG

GG1D

html

Carbon Allotropes

Graphene2d

Carbon Nanotube Graphite

3d1d0d

ldquoBuckyballrdquo

All Natural Materials Are 3D

3D

heig

ht

largest known flat hydrocarbon

222 atoms or 37 benzene rings(K Muumlllen 2002)

Strongly layered materialCan We Cheat Nature

Slice down to one atomic plane

Into The Pencil Trace

graphite trace on oxidized Si wafer

01 mm

~100 layersKurtz 1991

Dujardin 1997Ohashi 1997Ruoff 1999

10 to 30 layersKim 2005

McEuen 2005

1-5 layers Manchester 2004

sdot

first 2D material demonstrated - Manchester Science lsquo04

1 microm

Into The Pencil Trace

graphite trace on oxidized Si wafer

first 2D material demonstrated - Manchester Science lsquo04

1 microm

1 mm

Other 2D Crystals

Novoselov et al PNAS (2005)

1 microm 2D Bi2Sr2CaCu2Ox in SEM

From 3D systems

2D MoS2 in optics

5 microm

1microm

0Aring 8Aring 23Aring2D NbSe2 in AFM

10 microm

2D boron nitride in optics

High QualityDifferent From 3D Precursor

Other 2D Crystals

Cinfin + infinF =gt (CF)infin Cinfin + infinH =gt (CH)infin

graphaneManchester Science lsquo09

By Chemical Reaction

FLUOROGRAPHENE ( )graFaneManchester Small lsquo10

New Class of Crystalline Materials

2-DIMENSIONALATOMIC CRYSTALS

Studied ()Graphene

Large Variety of Material

Properties

UnexploredNbSe2

MoS2

MgB2BiSCCO

Lightly TouchedBoron-Nitride

Graphane

Fluorographene

A Dream Back From The FLATLAND

Materials on Demand

What kind of properties would this material possess

2D-Crystals-Based Heterostructures

Graphene Boron-Nitride

NbSe2

GraFane

Graphane

MoS2

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 6: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Carbon Allotropes

Graphene2d

Carbon Nanotube Graphite

3d1d0d

ldquoBuckyballrdquo

All Natural Materials Are 3D

3D

heig

ht

largest known flat hydrocarbon

222 atoms or 37 benzene rings(K Muumlllen 2002)

Strongly layered materialCan We Cheat Nature

Slice down to one atomic plane

Into The Pencil Trace

graphite trace on oxidized Si wafer

01 mm

~100 layersKurtz 1991

Dujardin 1997Ohashi 1997Ruoff 1999

10 to 30 layersKim 2005

McEuen 2005

1-5 layers Manchester 2004

sdot

first 2D material demonstrated - Manchester Science lsquo04

1 microm

Into The Pencil Trace

graphite trace on oxidized Si wafer

first 2D material demonstrated - Manchester Science lsquo04

1 microm

1 mm

Other 2D Crystals

Novoselov et al PNAS (2005)

1 microm 2D Bi2Sr2CaCu2Ox in SEM

From 3D systems

2D MoS2 in optics

5 microm

1microm

0Aring 8Aring 23Aring2D NbSe2 in AFM

10 microm

2D boron nitride in optics

High QualityDifferent From 3D Precursor

Other 2D Crystals

Cinfin + infinF =gt (CF)infin Cinfin + infinH =gt (CH)infin

graphaneManchester Science lsquo09

By Chemical Reaction

FLUOROGRAPHENE ( )graFaneManchester Small lsquo10

New Class of Crystalline Materials

2-DIMENSIONALATOMIC CRYSTALS

Studied ()Graphene

Large Variety of Material

Properties

UnexploredNbSe2

MoS2

MgB2BiSCCO

Lightly TouchedBoron-Nitride

Graphane

Fluorographene

A Dream Back From The FLATLAND

Materials on Demand

What kind of properties would this material possess

2D-Crystals-Based Heterostructures

Graphene Boron-Nitride

NbSe2

GraFane

Graphane

MoS2

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 7: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

All Natural Materials Are 3D

3D

heig

ht

largest known flat hydrocarbon

222 atoms or 37 benzene rings(K Muumlllen 2002)

Strongly layered materialCan We Cheat Nature

Slice down to one atomic plane

Into The Pencil Trace

graphite trace on oxidized Si wafer

01 mm

~100 layersKurtz 1991

Dujardin 1997Ohashi 1997Ruoff 1999

10 to 30 layersKim 2005

McEuen 2005

1-5 layers Manchester 2004

sdot

first 2D material demonstrated - Manchester Science lsquo04

1 microm

Into The Pencil Trace

graphite trace on oxidized Si wafer

first 2D material demonstrated - Manchester Science lsquo04

1 microm

1 mm

Other 2D Crystals

Novoselov et al PNAS (2005)

1 microm 2D Bi2Sr2CaCu2Ox in SEM

From 3D systems

2D MoS2 in optics

5 microm

1microm

0Aring 8Aring 23Aring2D NbSe2 in AFM

10 microm

2D boron nitride in optics

High QualityDifferent From 3D Precursor

Other 2D Crystals

Cinfin + infinF =gt (CF)infin Cinfin + infinH =gt (CH)infin

graphaneManchester Science lsquo09

By Chemical Reaction

FLUOROGRAPHENE ( )graFaneManchester Small lsquo10

New Class of Crystalline Materials

2-DIMENSIONALATOMIC CRYSTALS

Studied ()Graphene

Large Variety of Material

Properties

UnexploredNbSe2

MoS2

MgB2BiSCCO

Lightly TouchedBoron-Nitride

Graphane

Fluorographene

A Dream Back From The FLATLAND

Materials on Demand

What kind of properties would this material possess

2D-Crystals-Based Heterostructures

Graphene Boron-Nitride

NbSe2

GraFane

Graphane

MoS2

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 8: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Strongly layered materialCan We Cheat Nature

Slice down to one atomic plane

Into The Pencil Trace

graphite trace on oxidized Si wafer

01 mm

~100 layersKurtz 1991

Dujardin 1997Ohashi 1997Ruoff 1999

10 to 30 layersKim 2005

McEuen 2005

1-5 layers Manchester 2004

sdot

first 2D material demonstrated - Manchester Science lsquo04

1 microm

Into The Pencil Trace

graphite trace on oxidized Si wafer

first 2D material demonstrated - Manchester Science lsquo04

1 microm

1 mm

Other 2D Crystals

Novoselov et al PNAS (2005)

1 microm 2D Bi2Sr2CaCu2Ox in SEM

From 3D systems

2D MoS2 in optics

5 microm

1microm

0Aring 8Aring 23Aring2D NbSe2 in AFM

10 microm

2D boron nitride in optics

High QualityDifferent From 3D Precursor

Other 2D Crystals

Cinfin + infinF =gt (CF)infin Cinfin + infinH =gt (CH)infin

graphaneManchester Science lsquo09

By Chemical Reaction

FLUOROGRAPHENE ( )graFaneManchester Small lsquo10

New Class of Crystalline Materials

2-DIMENSIONALATOMIC CRYSTALS

Studied ()Graphene

Large Variety of Material

Properties

UnexploredNbSe2

MoS2

MgB2BiSCCO

Lightly TouchedBoron-Nitride

Graphane

Fluorographene

A Dream Back From The FLATLAND

Materials on Demand

What kind of properties would this material possess

2D-Crystals-Based Heterostructures

Graphene Boron-Nitride

NbSe2

GraFane

Graphane

MoS2

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 9: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Into The Pencil Trace

graphite trace on oxidized Si wafer

01 mm

~100 layersKurtz 1991

Dujardin 1997Ohashi 1997Ruoff 1999

10 to 30 layersKim 2005

McEuen 2005

1-5 layers Manchester 2004

sdot

first 2D material demonstrated - Manchester Science lsquo04

1 microm

Into The Pencil Trace

graphite trace on oxidized Si wafer

first 2D material demonstrated - Manchester Science lsquo04

1 microm

1 mm

Other 2D Crystals

Novoselov et al PNAS (2005)

1 microm 2D Bi2Sr2CaCu2Ox in SEM

From 3D systems

2D MoS2 in optics

5 microm

1microm

0Aring 8Aring 23Aring2D NbSe2 in AFM

10 microm

2D boron nitride in optics

High QualityDifferent From 3D Precursor

Other 2D Crystals

Cinfin + infinF =gt (CF)infin Cinfin + infinH =gt (CH)infin

graphaneManchester Science lsquo09

By Chemical Reaction

FLUOROGRAPHENE ( )graFaneManchester Small lsquo10

New Class of Crystalline Materials

2-DIMENSIONALATOMIC CRYSTALS

Studied ()Graphene

Large Variety of Material

Properties

UnexploredNbSe2

MoS2

MgB2BiSCCO

Lightly TouchedBoron-Nitride

Graphane

Fluorographene

A Dream Back From The FLATLAND

Materials on Demand

What kind of properties would this material possess

2D-Crystals-Based Heterostructures

Graphene Boron-Nitride

NbSe2

GraFane

Graphane

MoS2

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 10: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Into The Pencil Trace

graphite trace on oxidized Si wafer

first 2D material demonstrated - Manchester Science lsquo04

1 microm

1 mm

Other 2D Crystals

Novoselov et al PNAS (2005)

1 microm 2D Bi2Sr2CaCu2Ox in SEM

From 3D systems

2D MoS2 in optics

5 microm

1microm

0Aring 8Aring 23Aring2D NbSe2 in AFM

10 microm

2D boron nitride in optics

High QualityDifferent From 3D Precursor

Other 2D Crystals

Cinfin + infinF =gt (CF)infin Cinfin + infinH =gt (CH)infin

graphaneManchester Science lsquo09

By Chemical Reaction

FLUOROGRAPHENE ( )graFaneManchester Small lsquo10

New Class of Crystalline Materials

2-DIMENSIONALATOMIC CRYSTALS

Studied ()Graphene

Large Variety of Material

Properties

UnexploredNbSe2

MoS2

MgB2BiSCCO

Lightly TouchedBoron-Nitride

Graphane

Fluorographene

A Dream Back From The FLATLAND

Materials on Demand

What kind of properties would this material possess

2D-Crystals-Based Heterostructures

Graphene Boron-Nitride

NbSe2

GraFane

Graphane

MoS2

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 11: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Other 2D Crystals

Novoselov et al PNAS (2005)

1 microm 2D Bi2Sr2CaCu2Ox in SEM

From 3D systems

2D MoS2 in optics

5 microm

1microm

0Aring 8Aring 23Aring2D NbSe2 in AFM

10 microm

2D boron nitride in optics

High QualityDifferent From 3D Precursor

Other 2D Crystals

Cinfin + infinF =gt (CF)infin Cinfin + infinH =gt (CH)infin

graphaneManchester Science lsquo09

By Chemical Reaction

FLUOROGRAPHENE ( )graFaneManchester Small lsquo10

New Class of Crystalline Materials

2-DIMENSIONALATOMIC CRYSTALS

Studied ()Graphene

Large Variety of Material

Properties

UnexploredNbSe2

MoS2

MgB2BiSCCO

Lightly TouchedBoron-Nitride

Graphane

Fluorographene

A Dream Back From The FLATLAND

Materials on Demand

What kind of properties would this material possess

2D-Crystals-Based Heterostructures

Graphene Boron-Nitride

NbSe2

GraFane

Graphane

MoS2

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 12: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Other 2D Crystals

Cinfin + infinF =gt (CF)infin Cinfin + infinH =gt (CH)infin

graphaneManchester Science lsquo09

By Chemical Reaction

FLUOROGRAPHENE ( )graFaneManchester Small lsquo10

New Class of Crystalline Materials

2-DIMENSIONALATOMIC CRYSTALS

Studied ()Graphene

Large Variety of Material

Properties

UnexploredNbSe2

MoS2

MgB2BiSCCO

Lightly TouchedBoron-Nitride

Graphane

Fluorographene

A Dream Back From The FLATLAND

Materials on Demand

What kind of properties would this material possess

2D-Crystals-Based Heterostructures

Graphene Boron-Nitride

NbSe2

GraFane

Graphane

MoS2

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 13: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

New Class of Crystalline Materials

2-DIMENSIONALATOMIC CRYSTALS

Studied ()Graphene

Large Variety of Material

Properties

UnexploredNbSe2

MoS2

MgB2BiSCCO

Lightly TouchedBoron-Nitride

Graphane

Fluorographene

A Dream Back From The FLATLAND

Materials on Demand

What kind of properties would this material possess

2D-Crystals-Based Heterostructures

Graphene Boron-Nitride

NbSe2

GraFane

Graphane

MoS2

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 14: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

A Dream Back From The FLATLAND

Materials on Demand

What kind of properties would this material possess

2D-Crystals-Based Heterostructures

Graphene Boron-Nitride

NbSe2

GraFane

Graphane

MoS2

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 15: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

2D-Crystals-Based Heterostructures

Graphene Boron-Nitride

NbSe2

GraFane

Graphane

MoS2

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 16: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

2D-Crystals-Based HeterostructuresNew Material

Bilayer GrapheneGraphene Graphiteultimately thin cleaves easilytwo layers ndash can slide

linear gapless spectrum semimetalparabolic gapless spectrum(chiral massive particles)GAP CAN BE OPENED

chemically active(new materials

graphane flurographene)

inertchemically less active

Manchester Nature Phys (2007)Zhang et al Nature (2009)

Kuzmenko et al PRB (2009)Young et al arXiv10045556v2

Oostinga et al Nature Mat (2007)

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 17: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

2D-Crystals-Based Heterostructures

Graphene

BN

BN

BN

Graphene

5microm

Strong Coupling(tunnelling regime)

WeakCoupling

(Coulomb interaction)

Coulomb Drag

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 18: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Unusual Electronic Properties

Three Key-Points

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 19: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

New Types of QuasiparticlesldquoSchroumldinger fermionsrdquo

lowast= mpH 2ˆˆ 2

Electron metal Hole metal

neutron starsamp accelerators

masslessDirac fermions

monolayer graphene

pvH F ˆˆ sdotσ= Semenoff

1984

massivechiral fermions

bilayer graphene

lowastsdotσ= mpH 2ˆˆ 2 Falko 2006

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 20: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Graphene Field Effect Transistors

SiO2Si

Au contacts

graphene

-100 -50 0 10050Vg (V)

ρ (kΩ)

0

2

4

6

T =10K

carrier mobility currently up to ~50000 cm2Vs at 300K

even when strongly doped~1000000 cm2Vs at 4K

(Andrei Kim amp Manchester group)intrinsic (phonon-limited) gt200000 cm2Vs at 300K

(higher than in any other material)

Massless particles in 2D

NEVER LOCALIZED Klein paradox O Klein Z Phys 53157 (1929) 41 407 (1927)MIKatsnelson et al Nature Physics (2006)

Young et al Nature Physics (2009)

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 21: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Graphene Transistors

3 μm

ballistic transport between source amp drain THz range

ultra high-F analogue transistorsHEMT designldquostandardrdquo mobilitieson-off ratio ~100Manchester Science rsquo04

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

100GHz 240nm channelndash better than Si

even with very modest mobility of 1500cm2Vsdots

420-2

V b m

V

-20

-40

0

20

-4

40

Vg V

Ponomarenko et al Science (2008)Ozyilmaz et al APL (2007)

Geim amp Novoselov Nature Mat (2007)Bunch et al Nano Lett (2005)

Miao et al Science (2007)Stampfer et al APL (2008)

50 nm

Graphene Quantum Dots

and Single Electron

Transistors

our smallest QD~1nmTop-Down Molecular Electronics

bullOnly few benzene ringsbullRemarkably stablebullSustains large currents

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 22: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Paper Cutting vs Paper PaintingNanoribbons Quantum Point Contacts Quantum Dots

Reactive Plasma Etching Hydrogenation

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 23: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Visualisation of Fine Structure Constant

bilayer

grap

hene

air

the fine structure constant observed

ldquowith a naked eyerdquoα = 1137 (plusmn2)

whi

te li

ght

tran

smitt

ance

(

)

98

100

96

500 25distance (microm)

πα

51 2 3 4

number of layers

88

100

96

92

whi

te li

ght t

rans

mitt

ance

(

)

πα

Manchester Science lsquo08

Do it at homeπα = 314 x 1137

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 24: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

2

1

3

45

Graphene-based Liquid Crystal Display

High TransparencyHigh ConductivityInert Material

V=0V V=30VV=15V V=100V1 glass2 graphene3 golden contact4 aligning layer5 liquid crystal

Manchester NanoLetters lsquo09

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 25: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Promising For Applications

Three Key-Points

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 26: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

What Has Graphene Ever Done For UsbullCreate Workplaces bullProvide Entertainment

bullGive Shelter

Not Free Standing

Tallahassee Florida USA

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 27: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Mass Production of Graphene

Release graphene by

etching Ni

fish by TEM grid

CVD growth on Ni Cu as part of 3D structureto quench flexural phonons

Suggested Geim amp Novoselov

Nature Mat (2007)Realised

MIT (2008)Yu(2008)

Hong (2009)Ruoff (2009)

Bommel 1975 (SiC)McConville 1986 (on Ni) Land 1992 (on Pt) Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)hellip hellip

graphene

Direct transfer onany surface

remove PMMA

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 28: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

First Graphene Products are Already There

TEM 200keV

Support for Biomoleculesin TEMUltraStrongUltraThinCrystalline

Tobacco Mosaic Virus on grapheneManchester 2010

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 29: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Mass Production of Graphene

Kim et al Nature (2009) Li et al Science(2009)

ρ ~40Ω transparency ~90 micro ~5000 cm2Vs

CVD growth amp transfer are well developed

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 30: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Wang Nano Lett (2008)SolarCells

All Major Applications are Realistic

Composite MaterialsMechanically Strong Conductive Optically Active

Photovoltaics(Samsung roadmap 2012)

Touch-screens

LCD

1microm

Photodetectors

ElectronicsRF Transistor

3 μm

Moon et al IEEE El Dev Lett (2009)Lin et al Nano Lett (2009)Lin et al Science (2010)

Gas Sensor

Strain Gauge

Variable Capacitor

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There
Page 31: Graphene: Materials in the Flatland - Nobelprize.org · graphane, flurographene) chemically less active . inert. Manchester, Nature Phys. (2007) Zhang et al, Nature (2009) Kuzmenko

Big Thanks

A Geim

Peter BLAKERahul NAIRDa JIANGLPONOMARENKODaniel ELIASR GORBACHEVSasha MAYOROVTolik FIRSOVSoeren NEUBECKIrina BARBOLINAZhenhua NIIbtsam RIAZRahul JALILTariq MOHIUDDINRui YANGTim BOOTH

Irina GRIGORIEVAErnie HILLFred SCHEDINSasha ZHUKOVS GRIGORENKOYuan ZHANGCinzia CASIRAGHIUrsel BANGERT

Sergey MOROZOVSergey DUBONOSMisha KATSNELSON A CASTRO NETOPaco GUINEALeonid LEVITOVDima ABANINAllan MacDONALDJos GIESBERSNuno PERESAlexey KUZMENKO Jannik MEYERDenis BASKOEduardo CASTROS Das SARMAMichal FUHRER

Philip KIMEva ANDREIAndrea FERRARIVolodia FALKOEd McCANNIris CRASSEE Yurii DUBROVSKIIT LATYCHEVSKAIAAntonio LOMBARDORobin NICHOLASDanil BOUKHVALOVJan Kees MAANUli ZEITLER Zhenia VDOVINYura KHANIN M DRESSELHOUSE

AND THE REST OF THE FUNTASTIC COMMUNITY

  • Slide Number 1
  • Slide Number 2
  • Three Key-Points
  • Three Key-Points
  • Two-Dimensional Form of Carbon
  • Carbon Allotropes
  • Slide Number 7
  • Slide Number 8
  • Slide Number 9
  • Slide Number 10
  • Slide Number 11
  • Slide Number 12
  • Slide Number 13
  • Slide Number 14
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Three Key-Points
  • Slide Number 19
  • Graphene Field Effect Transistors
  • Graphene Transistors
  • Slide Number 22
  • Slide Number 24
  • Three Key-Points
  • What Has Graphene Ever Done For Us
  • First Graphene Products are Already There