24
1 GPS 衛星定位原理 張嘉強 GPS 全球定位系統(Global Positioning System)在經歷過去二十多年的發 展過程,目前在各項理論及應用之技術上已趨成熟,並已成為當前最重要之一項 空間大地測量(Space Geodesy)定位技術。由於 GPS 具有相當高定位精度之工作 能力,並能有效地將測量工作由地區性(local)延伸到區域性(regional)甚或全 球性(global)之範圍,因此目前高精度之大地測量作業都已幾乎全面採用 GPS 之 定位技術及作業方法。 對於許多需要高品值大地觀測量以求得點位高精度三維坐標資料之科學應 用而言,GPS 定位可提供一個獲取、分析及建立此類大地觀測量之快速有效方法, 這也就是為何近年來各國相繼建立地區性或區域性 GPS 衛星監測站之主要原因。 在台灣地區,內政部為配合公共工程建設之需要而展開基本三角網重新設置 之「應用全球定位系統實施台閩地區基本控制點測量計畫」,於是自民國八十一 年起歷經四年先完成八個GPS 衛星追蹤站之設立,以期由此建立一組精密之基本 大地控制網[李彥弘等,1996] 。當此一區域性 GPS 衛星追蹤網開始提供穩定可靠 之觀測資料時,諸如大地測量網形之高等控制、衛星相關之坐標系統、區域性之 衛星軌道、差分 GPS 導航定位之主控站、地殼運動及變形之監測、大氣科學研究 及數值氣象預測等多項之應用,都可經由 GPS 衛星追蹤站之觀測資料進行處理。 此外,基於現況中的台灣地區三角點檢測成果沿用至今已近廿年,該傳統三 角點之位址早已受到各種人為及天然因素的破壞,同時其坐標成果之精度亦已不 敷當前各級控制測量上之所需﹐故配合國家整體發展之需要﹐內政部亦全面採用 GPS 衛星定位技術,建立了一個全新架構下,包含 105 個一等及 617 個二等衛星 控制點之台灣地區基本控制點[曾清涼,1997]。在此一基本控制網系建立後,後 續於較小區域內所進行之各項大地及工程測量應用(如地層下陷之監測等),即可 次第推展。 為使GPS 衛星定位技術之基本運用原理能有較清楚之說明,現即將其整理

GPS衛星定位原理 - w3.uch.edu.tww3.uch.edu.tw/ccchang50/gps_positioning.pdf · GPS定位系統係由三個主要運作的單元加以組成,它們分別是太空單元 (space

Embed Size (px)

Citation preview

1

GPS

GPS (Global Positioning System)

(Space Geodesy) GPS

(local)(regional)

(global) GPS

GPS

GPS

GPS

[1996] GPS

GPS

GPS

GPS 105 617

[,1997]

()

GPS

2

Wells et al (1986), Seeber

(1993) ,Leick (1995) Hofmann-Wellenhof et al (1997)

1

GPS NAVSTAR GPS (NAVigation Satellite with Time and Ranging Global

Positioning System)

GPS

1973

(range) GPS (signal)

(resection method)

(clock) GPS

GPS

GPS

(space segment)(control segment)(user segment)

GPS 24 20,200

55 1995

4 27 GPS

15

GPS L ( L1

L2) 10.23 MHz L 154 120

L1 L2 (L)()

L1= 1575.42 MHz = 19 cm

L2= 1227.60 MHz = 24 cm

PRN (pseudo random noise code)

C/A (coarse acquisition) 300 m

L11.023 MHzC/A(unencrypted)

P (precise)

30 m 10.23 MHz ,

L1 L2 P

(encrypted) Y

GPS 1

10.23 MHz

L11575.42 MHz

L21227.60 MHz

C/A 1.023 MHz

P 10.23 MHz

P 10.23 MHz

x1x0.1

x154

x120

50 BPS

1 GPS

GPS Colorado Springs Falcon

Colorado Springs, Hawaii, Ascension

Island, Diego Garcia Kwajalein

GPS

GPS

3

4

[Shank et al, 1994] L

Kalman

(satellite-state estimates)

S

(broadcast ephemeris)

GPS GPS

()

GPS GPS

2 GPS

GPS

(pseudo-range)

(carrier phase)

(bias)

1% 0.1 ms P

30 cm 10 P C/A

3 m [Wells et al, 1986]

GPS

C/A P

19 cm L1

2 mm

3

Doppler

s(t) s t r() r

rs()

5

rs s

rt( ) ( ) ( )= (1)

GPS

N (integer ambiguity)

(loss of lock)

[CCC1]: Page: 8 3-1

[CCC2]: Page: 8

(cycle slip)

GPS

GPS GPS

(PR) t

(c),

PR c trs

rs= ( ) (2)

GPS T dt

d

6

r r

s s

rs

rs

rs

rs

c d t dt

c t c d dt

= + +

= +

[( ) ( )]

( ) ( )

c T T= ( )

PR T c d dt t

(3)

(2)(3)

rs

rs

rs( ) ( ) ( ( ) ( )) = (4)

()(N)

rs

rs

rs

rf sc

T f d dt t N( ) ( ) ( ( ) ( ))= + (5)

(datm)

rs

rs

rs

rs

atmfc

T f d dt t N d( ) ( ) ( ( ) ( ))= + + (6)

(differential)

4

GPS

()

GPS

GPS

4.1

GPS

GPS

GPS

(single point positioning)

(relative positioning)

(baseline)[Wells et al, 1986]

7

dr db

B (7)

dr

db dr

B

(7)

GPS

(broadcast ephemeris)(precise ephemeris)

2-3 m GPS

GPS

GPS

GPS1992 1-2m 199410-20cm[Beutler

et al, 1994] 1997 5-10cm [Neilan et al, 1997]

GPS (orbit improvement)[

, 1996]

4.2

GPS

GPS

GPS GPS

(N)

8

N n= ( )1 610 (8)

n

( S )

S =10 (9) 6 Nds

s

GPS

(Ionosphere)(Troposphere)

100 1000

50

(1)

GPS

(TECtotal electron content)

0.51017 electrons/m2 5.01017 electrons/m2

(10) tcf

TEC= 40 32.

c f t

(group delay)

P

10 ns (nano seconds)

100 ns

(magnetic storms) 11

[Dixon,1991].

(3-10) L1 L2

GPS dt

GPS

dt t tL L= 1 2 (11)

(40.3TEC/c) A

A dt f fL L= ( )12

22

2 2 f fL L2 1 (12)

GPS

GPS

GPS L1/L2

(ionospherically free observable)

0.5 ppm [Dodson et al, 1993]

(2)

9

30GHz

GPSL1 L2

GPS

N P T e T e T= +77 642 12 92 3719002

. ( ) . ( ) ( ) (13)

P(mbar)T(K)e(mbar)

N(Nd)(Nw)

10

N P Td 77 642. ( )=

N e T e Tw = +12 92 3719002. ( ) ( )

90%

200-230

( ) csc( ) (e )

GPS [Brunner and Welsch,

1993] GPS

(mapping

function)

(scale factor)

4.3 SA A-S

GPS

[McNeff,

1989] GPS

11

SA (Selective Availability) A-S

(Anti-Spoofing)

(1) SA (Selective Availability)

SA (-process)

(dithering)(-process) [Georgiadou and Doucet, 1990]

SA C/A

20 m 100 m 30 m

156 m

SA

GPS

(2) A-S (Anti-Spoofing)

A-S GPS L1 L2 P

P W Y

Y

A-S GPS P

L2 GPS

A-S L2

(squaring)(cross-correlation)

(code-correlation squaring) P-W (P-W code tracking)

[Ashtech Inc, 1992].

4.4

GPS

12

(mean offset)(variation) GPS

()

(pattern)

8 mm [Braun et al, 1994]

2 10 cm [Larson, 1994]

GPS ()

GPS

GPS GPS

[Schupler and Clark, 1991]

GPS

( Trimble, Rogue Ashtech )

5 GPS

GPS

5.1 GPS

GPS (code

correlation technique) L1

C/A

13

L1

L1 C/A

L1

P P

L1 L2

A-S L2

P L2 A-S

L2 L2

L2 L2

Magnavox Company

Y P P

L2 L2

Allen Osborne Associates Inc

W P L1 L2

L1 L2 L1

Y L2 (Y2-Y1)

C/A C/A + (Y2-Y1) L2

Y1 Y2 L2

Ashtech Inc P-W

P W L1 L2 W

P W

W P GPS

L1 C/A Y1 L2 Y2

L2

5.2

GPS

a, b i (6)a

i b i

14

ai

ai

ai

ai

atmfc

T f d dt t N d( ) ( ) ( ( ) ( ))= + + (14)

bi

bi

bi

bi

atmfc

T f d dt t N d( ) ( ) ( ( ) ( ))= + + (15)

ab b a( ) ( ) ( )= i i i (16)

(14)(15)(16)

abi

ab ab abi

atmif

cT f d N d( ) ( ) ( )= + + (17)

(17)(14)

dt

a, b i, j

abij

abij

abij

atmfc

T N d( ) ( )= + + (18)

d

(1 2)

ijabij

ab atmfc

T d( ) ( )12 12= + (19)

(19)

10 km

L1

10 km L1/L2

L1 L2

5.3

GPS

(the least

squares adjustment)

GPS

GPS (a b)(i j)

15

abij

abij

abijf

cN= + (20)

abij

b a b ai

abij j j if

cN+ +)= ( (21)

a b

ai i

ai

ai

aX X Y Y Z Z= + + ( ) ( ) ( )2 2 2 1 2 (22)

(Xi, Yi, Zi) i (Xa, Ya, Za) a

i j a

b

a b p q

(p - 1) 3 + (q - 1)

V AX L= (23)

A X L

V

(t)(a b)(i

j)

16

a Y a Z a

b Yij

b Zij

b Nij

abij

abij

abij

t

a a a

b b b ab

abij

t X t Y t Z

t X t Y t Z t N

t t V

( ) ( ) ( )

( ) ( ) ( ) ( )

[ ( ) ( ) ]( )

Xij ij ij

Xij

+ + +

+ + +

= +0 (24a)

()

Xij ab

ij ja

ia

Yij

Zij

a

a

t t f X t X X t X( ) ( ) [ ( ( ) ) ( ( ) ) ]= = + 0 0

a aj

ai

abij

a

ja

aj

ia

ai

abij

a

ja

aj

ia

ai

a X c t t

t tY

fc

Y t Yt

Y t Yt

t tZ

fc

Z t Zt

Z t Zt

( ) ( )

( ) ( ) [ ( ( ) )( )

( ( ) )( )

]

( ) ( ) [ ( ( ) )( )

( ( ) )( )

]

= =

+

= =

+

0 0

0

0

0

0

0

0

0

0

(24b)

Xij ab

ij

b

jb

bj

ib

bi

Yij

Zij

b

b

b

t tX

fc

X t Xt

X t Xt

( ) ( ) [ ( ( ) )( )

( ( ) )( )

]= = + 0

0

0

0

abij

b

jb

bj

ib

bi

abij

b

jb

bj

ib

bi

t tY

fc

Y t Yt

Y t Yt

t tZ

fc

Z t Zt

Z t Zt

( ) ( ) [ ( ( ) )( )

( ( ) )( )

]

( ) ( ) [ ( ( ) )( )

( ( ) )( )

]

= =

+

= =

+

0

0

0

0

0

0

0

0

(24c)

Nij ab

ij

abijab

tt

N( )

( )= = 1

A

t t tt t tt t tt t tt t tt t

Xij

Yij

Zij

Xik

Yik

Zik

Xil

Yil

Zil

Xij

Yij

Zij

Xik

Yik

Zik

Xil

Yil

Zil

b b b

b b b

b b b

b b b

b b b

b b b

=

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2

1 0 00 1 00 0 1

( )t2

1 0 00 1 00 0 1

(24d)

( a)

(24a)

(i, j, k, l)(t1, t2)

(25a)

17

X

L

t tabij

abij

=

( ) ( )1 10

(25b)

XYZNNN

b

b

b

abij

abik

abil

=

(25c)

t tt tt tt tt t

abik

abik

abil

abil

abij

abij

abik

abik

abil

abil

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )

1 10

1 10

2 20

2 20

2 20

GPS

6

(topography)(geoid)

(ellipsoid)

6.1 GPS -WGS84

GPS

WGS84World Geodetic System, 1984WGS84

Z BIHBureau International de lHeure

Conventional Terrestrial Pole, CTPX BIH

CTP Y

X [Defense Mapping

18

Agency, 1987]

WGS84

1 GRS80

GRS80 IUGG[Moritz,

1980]WGS84 WGS84

C2,0GRS80 J2

8

1 WGS84

a 63781372 m

GM 39860050.6108 m3 s-2

C2,0 -484.166850.0013010-6

72921150.150010-11

rad s-1

C 2997924581.2 m s-1

f 1 / 298.257223563

6.2 -ITRF

VLBI(Very Long Baseline

Interferometry)SLR(Satellite Laser Ranging) GPS

IERSInternational

Earth Rotation Service ITRFIERS Terrestrial Reference Frame

IERS IAUInternational Astronomical Union IUGG

1987 1988 ITRF

ITRF

ITRF ITRF94 ABC

1993.00 ITRF94

VLBISLRDORIS GPS ITRF94

[Boucher et al, 1996]

SLR GPS

VLBISLR GPS

ITRF92 1988.0

NNR-NUVEL1A

ITRF GPS 1992 IGS(International GPS Service for

Geodynamics)ITRF IGS

GPS IGS ITRF

GPS [Boucher and Altamimi, 1996] GPS

GPS

ITRF

6.3 GPS

(orthometric height)

(mean sea level,MSL)

(geopotential number)

[Heiskanen and Moritz, 1984]

19

W gdHH= = 0 0 C W (26)

C

W

W0

g

dH

(H)

H (27) Cg

=

g (plumb line)

GPS (ellipsoidal height)

GPS

( WGS84)

(normal line)

(h)(H)(geoidal height)

(geoidal undulation) N ( 2)

H h N= (28)

100 m

[Schwarz and Sideris, 1993]

20

P

HTopography

h

NGeoid

Ellipsoid

2

GPSGPS(GPS

heighting) GPS

GPS GPS

GPS

[Zilkoski et al,

1992]

GPS GPS

21

H h N= (29)

H H h h N N2 1 2 1 2 1( ) = ( ) (30)

h GPS N

N

H [Rapp and

Balasubramania, 1992]

GPS

GPS

GPS

7 GPS -IGS

GPS

GPS

Epoch'92 IGS (International GPS

Service for Geodynamics) 1992 GPS

22

[Beutler,

1993] IAG (International Association of Geodesy)

IGS 1994 1 1 GPS

IGS

()(

)(

) (

)[Mueller, 1991]

IGS 150 GPS

IGS GPS (

)IGS GPS

IGS 1-2 m

5-10 cm IGS

ITRF ITRF IERS GPS

ITRF

8

1967 (Geodetic Reference System 1967GRS67)

,

GPS

GPS

WGS84

GPS

GPS

IERS

23

ITRF

[IERS, 1996]

GRS80

GPS ITRF

GPS

GPS 105 617

[,1997]

GPS

GPS GPS

1. GPS

2. GPS

3.

4. GPS

5.

6. GPS

7. GPS

24

GPS

1. 8 GPS 105 617

2. GPS

3. ITRF94 (1994 )

1997TWD97 (Taiwan Datum

1997)

4. GRS80 (1980

)

5. 2 121E

119E

2TM NE