67
Submitted To: ASSOC. PROF. DR. KABIR SADEGHI GIRNE AMERICAN UNEVERSTIY FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT Special Project CVEN 490 BY: Faris Abuobaid Laith Al-Habahbeh Mahmoud Jumaa

G.p presentation

Embed Size (px)

Citation preview

Page 1: G.p presentation

Submitted To: ASSOC. PROF. DR. KABIR SADEGHI

GIRNE AMERICAN UNEVERSTIYFACULTY OF ENGINEERINGCIVIL ENGINEERING DEPARTMENT

Special ProjectCVEN 490

BY:

Faris AbuobaidLaith Al-HabahbehMahmoud Jumaa

Page 2: G.p presentation

Project overview •Type of structure •Type of building •Location•Area•Members sections

Structural loads Calculation •Dead load •Live load •Environmental loads•Snow load•Wind load•Earthquake load

Analysis & design •Ribbed slab •Mat foundation •Beams & Columns

comparison•Members Comparison•Beams •Columns •Mat Foundation

•Total quantity comparison•Beams•Columns•Ribbed slab•Mat foundation

TABLE OF CONTENTS

Page 3: G.p presentation

Project Overview• Type of structure:

Reinforced Concrete structures (RC) • Type of building: Residential building (five story, including basement) • Location:

Baalbeck – Lebanon  • Area:

Area of one floor 687 m2

Total area 4122 m2

Page 4: G.p presentation

Project Overview• Columns :

Rectangular columns section• Beams:

Rectangular beams section• Slabs:

One way Ribbed Slabs• Foundations:

Raft foundation

Page 5: G.p presentation

STRUCTURAL LOADS CALCULATION

Page 6: G.p presentation

STRUCTURAL LOADS: ACCORDING TO UNIFORM BUILDING CODE – UBC97

I. DEAD LOAD

II. LIVE LOAD

III.ENVIRONMENTAL LOADS

a. SNOW LOAD

b. WIND LOAD

c. EARTHQUAKE LOAD

Page 7: G.p presentation

DEAD LOAD CALCULATION:

Material Unit weight g (kgf/m3)

Concrete 2500

Tile & fill 1845

Mortar 2250

block 1500

Asphalt 1600

Finishing 2200

Page 8: G.p presentation

Material Thickness (m) Total weight (kgf/m)Concrete 0.07 175Tile & fill 0.05 93Mortar 0.03 68Block 0.18 270Finishing 0.03 66Total   672

Material Thickness (m) Total weight (kgf/m)

Concrete 0.07 175

Block 0.18 270

Asphalt 0.02 32

Total   477

Total dead load for a typical floor:

Total dead load for roof:

Page 9: G.p presentation

LIVE LOAD CALCULATION:

Category Uniform Load (psf) Uniform Load (kgf/m)

Basic area 40 195.2

Exterior Balconies 60 292.8

Storage 40 195.2

Partitions 5 24.4

Corridors 51 250

Fires   114

Elevators   136

Stairs   488

Live loads according to UBC:

Page 10: G.p presentation

Category   Unit area (m2)

number Total (m2) Percentage (%)-typical floor

Percentage (%)-roof

Basic Area   414 4 1709.3 53 83

Balconies Balconies 1 54 4 216 7 8

  Balconies 2 17 4 68 2 3

  Balconies 3 22 4 88 2 3

Openings   4 4 16 0.5  

Corridors   100 4 400 12  

Elevator   3.2 5 16 0.5 1

Stairs   10.4 5 52 2 2

Partitions   23.4 4 94 3  

Storage   580.7 1 580.7 18  

             

Total       3240 100 100

Percentages of building categories.

Page 11: G.p presentation

Category   Percentage (%) Live load (kgf/m2) Final Live Load (kgf/m2)

Basic Area   53 195.2 104

Balconies Balconies 1 7 292.8 21

  Balconies 2 2 292.8 6

  Balconies 3 2 292.8 6

Openings   0.5 -  

Corridors   12 250 30

Elevator   0.5 136 1

Stairs   2 488 8

Partitions   3 24.4 1

Storage   18 195.2 36

Total       213

Live Load Calculation for typical floor:

For typical floors, Live Load: L.L=220 kgf/m2

Page 12: G.p presentation

Category   Percentage (%) Live load (kgf/m2) Final Live Load (kgf/m2)

Basic Area   97 195.2 190

Elevator   1 136 2

Stairs   2 488 10

Total   100   202

Live Load Calculation for roof:

For roof, live load: L.L= 210 kgf/m2

Page 13: G.p presentation

ENVIRONMENTAL LOAD CALCULATION:- SNOW LOAD:

For our project, it’s located in a region (1400m above sea level) where snow load is an important load for building.

Use snow load SL= 210 kgf/m2

Page 14: G.p presentation

- WIND LOAD:

Design wind pressure:

P = Ce Cq qs Iw

Ce 1.43 Table 16-G (appendix 1)

Cq 1.4 Table 16-H (appendix 1)

Iw 1 Table 16-K (appendix 1)

qs 16.4 psf = 0.785 KN/m2 Table 16-F (appendix 1)

P = 1.9 KN/m2 = 193.6 Kgf/ m2

For safety take P = 200 Kgf/ m2

Page 15: G.p presentation

- EARTHQUAKE LOAD:

Fx=

Fx : Force at level x (t)V : Base shear force (t)Wi, Wx : that portion of W located at or assigned to Level i or x, respectively.Hx : height of floor from ground level (m) Ft=0.07TVFor T≤0.7sec, take Ft=0.

Page 16: G.p presentation

Design base shear:

V=

The total design base shear need not exceed the following: 

V1= The total design base shear shall not be less than the following: 

V2= 0.11 Ca I WtWhere:

Cv : seismic coefficient, as set forth in Table 16-R (appendix 1).I : importance factor given in Table 16-K (appendix 1).R : numerical coefficient representative of the inherent over strength and global ductility capacity of lateral force- resisting systems, as set forth in Table 16-N (appendix 1).

Page 17: G.p presentation

T : elastic fundamental period of vibration, in seconds, of the structure in the direction under consideration.Wt : the total seismic dead load.

T= Ct (hn)3/4

Where:Ct : numerical coefficienthn : Total height of

building (m)

Wt= W×A

Where:

W=1.2DL+1.6LLA=Area of one floor = 648m2

Page 18: G.p presentation

Floor Height (m) Weight Wx (ton)1 3.8 7002 6.95 7003 10.1 7004 13.25 7005 16.4 568     Total (Wt)   3368t

Weight and height of floors:

Z 0.30 Table 16-I (appendix 1)

Cv 0.84 Table 16-R (appendix1)

I 1 Table 16-K (appendix 1)

R 5.5 Table 16-N (appendix 1)

Ca 0.36 Table 16-Q (appendix 1)

Ct 0.0731  

hn 16.4  

Values of coefficient:

Page 19: G.p presentation

W 3368 ton

T 0.657 sec

V 783ton

V1 552 ton

V2 134 ton

Base shear force values:

V2=134 ton ˂ V=783 ton ˂ V1= 552 ton Since V exceeds the maximum value recommended by UBC, we should use V1.i.e. V=552 ton.

Page 20: G.p presentation

Earthquake force Calculation:

Floor Height-x (m) Earthquake force- Fx (ton)

1 3.8 45

2 6.95 82

3 10.1 119

4 13.25 156

5 16.4 193

Values of Earthquake force at level x:

Page 21: G.p presentation

LOAD COMBINATION:

U = 1.4D U = 1.2D + 1.6L + 0.5(Lr or S ) U = 1.2D + 1.6(Lr or S ) + (1.0L or 0.5W) U = 1.2D + 1.0W + 1.0L + 0.5(Lr or S) U = 1.2D + 1.0E + 1.0L + 0.2S U = 0.9D + 1.0W U = 0.9D + 1.0E Where:

D: Dead loadL: Live Load S: Snow load W: Wind load E: Earthquake load

Page 22: G.p presentation

Ribbed Slab

Page 23: G.p presentation

Calculating the weight

D.L= 672 kgf/L.L = 220 kgf/

S.W = (0.52m × 0.07m × 2.25ton) + (0.18m × 0.012m × 2.5ton) + 0.02ton = 0.165 ton = 165 kgf/w = 1.2 D.L + 1.6 L.L = 1.1584 ton/

= 1.1584 ton/ + 165 kgf/ =1.3234 ton ≈ 1.4 ton/

Page 24: G.p presentation

Moment Distribution Method

Page 25: G.p presentation

= = 3.087 t.m

= = -1.233 t.m = = 1.233 t.m

= = -1.05 t.m = = 1.05 t.m

= = -0.565 t.m = = 0.565 t.m

= = -2.058 t.m = = 2.058 t.m

Fixed End Moment:

Page 26: G.p presentation
Page 27: G.p presentation

= = 0.0258 = 0.0193 =

Page 28: G.p presentation

For try and error :

=0.00335 < = 0.013 < = 0.0193 O.K

Page 29: G.p presentation

For : O.K

,

Page 30: G.p presentation

For : O.K

,

Page 31: G.p presentation

MAT FOUNDATION

Page 32: G.p presentation

Reasons For Mat Foundation

1- in the site that we have the bearing capacity for soil is 1.5 kgf/ is this value is law and the soil is weak to carry the whole loads.2- High water table under foundation, so it effect on the soil quality.3- Columns loads are so huge. (more than 50% of the

area is covered by conventional spread footing.

Page 33: G.p presentation

Designing By SAFEDesign Steps:1- import the Architecture drawing from AutoCAD2- Define the materials:

a) Concrete with compressive strength f’c=250 kgf/.b) Steel with yield stress Fy=4200 kgf/

3-Define Slab properties: a) We define the thickness t=80 cm b) We define the stiffness for foundation with same t=80 cm

Page 34: G.p presentation

Designing By SAFE• 4-Define soil sub-grade=120*bearing capacity.• 5-Assign loads for each columns.

Page 35: G.p presentation

RUN & DESIGN• The first checking after run the model is punching

shear, it should be less than 1 for each column

Page 36: G.p presentation

RUN & DESIGN• Deformation shape checking

Page 37: G.p presentation

RUN & DESIGNSlab stress top face Slab stress Bottom face

Page 38: G.p presentation

RUN & DESIGN• Moment Diagram

Page 39: G.p presentation

Analysis & Design of: Beams & Columns

Page 40: G.p presentation

SOFTWARE: ETABS

MATERIALS PROPERTIES:Analysis property data Design property data

Mass per unit volume (M)

245 kg/m3 Concert compressive strength(f’c)

250 kgf/cm2

Weight per unit volume (w)

2400 kgf/m3 Yield stress (fy)

4200 kgf/cm2

Modulus of elasticity (Es)

2.1x106 kgf/cm2    

Modulus of elasticity(Ec)

2.4x105    

Passion ratio(V)

0.2    

CODE: American Concrete Institute “ACI_318M_11”

Page 41: G.p presentation

SECTIONS:

Column sections:Column Dimensions (cm×cm)

C1 25×30

C2 25×60

C3 30×60

C4 25×25

Beams sections:

Beam Dimensions (cm×cm)

B1 25×40

B2 25×70

SBEAM 25×30

According to the moment and shear stress diagrams, we will know if these sections are ok or not.

Page 42: G.p presentation

LOADS ASSIGNING:

Live load Dead load :

Page 43: G.p presentation

LOADS ASSIGNING:

Snow load Wind load

Page 44: G.p presentation

LOADS ASSIGNING:

Earthquake load :

Page 45: G.p presentation

ANALYZING:

After running analysis, moment and shear diagram were overstressed for beams, as a result we change our sections.

New Beams sections:

Beam Dimensions (cm×cm)

B1 50×30

B2 80×30

SBEAM 40×30

Page 46: G.p presentation

Moment stress diagram:ANALYZING:

Page 47: G.p presentation

Shear stress diagram:ANALYZING:

Page 48: G.p presentation

DESIGNING: Beams Reinforcement Table:

Page 49: G.p presentation

Columns Reinforcement Table:

*C1, C2, C3, C4: Our columns.*C1’, C3’, C4’: Real columns.

DESIGNING:

Page 50: G.p presentation

Columns’ Stirrups Table:

DESIGNING:

Page 51: G.p presentation

COMPARISON

Page 52: G.p presentation

Structural Members Comparison Graphs: Beams comparison graphs:

Beam B1’-B1:

Page 53: G.p presentation

Beam B2’-B2:

Page 54: G.p presentation

Beam B3’-B3:

Page 55: G.p presentation

Beam B4’-B4:

Page 56: G.p presentation

Secondary Beam SB-2N:

Page 57: G.p presentation

Columns comparison graphs: Column C1’-C1:

Page 58: G.p presentation

Column C2

Page 59: G.p presentation

Column C3’-C3:

Page 60: G.p presentation

Column C4’-C4:

Page 61: G.p presentation

Stirrups of columns:

Page 62: G.p presentation

MAT (RAFT) foundation comparison graphs: MAT foundation top reinforcement:

Page 63: G.p presentation

MAT foundation top reinforcement:

Page 64: G.p presentation

Total Quantity Comparison Graphs: Beams

Page 65: G.p presentation

Columns:

Page 66: G.p presentation

Ripped slab:

Page 67: G.p presentation

MAT Foundation: