20
Kick-Off-Meeting PP 1167 PQP, 10-11 April 2008, Bonn Goals: An exciting new data set awaits exploitation: the comprehensive, 4D, high-resolution remote sensing data of COPS Address all CI science questions of COPS Derive new synergetic data which are relevant to CI process studies at all Supersites Evaluate and refine cumulus parameterisations in complex terrain with the observations Exploiting the Synergy of Remote Sensing Data to Analyse Convective Initiation Processes in Complex Terrain Andreas Behrendt, Sandip Pal , and Volker Wulfmeyer Institute of Physics and Meteorology, University of Hohenheim The different approaches for the CI trigger The different approaches for the CI trigger function can be validated with high-resolution function can be validated with high-resolution remote sensing data remote sensing data of temperature, humidity, wind, and clouds. of temperature, humidity, wind, and clouds. Values of disposable parameters can be Values of disposable parameters can be determined. determined.

Goals:

  • Upload
    calix

  • View
    41

  • Download
    0

Embed Size (px)

DESCRIPTION

Exploiting the Synergy of Remote Sensing Data to Analy s e Convective Initiation Processes in Complex Terrain. Andreas Behrendt , Sandip Pal , and Volker Wulfmeyer. Institute of Physics and Meteorology, University of Hohenheim. Goals: - PowerPoint PPT Presentation

Citation preview

Page 1: Goals:

Kick-Off-Meeting PP 1167 PQP, 10-11 April 2008, Bonn

Goals:

•An exciting new data set awaits exploitation: the comprehensive, 4D, high-resolution remote sensing data of COPS

•Address all CI science questions of COPS

•Derive new synergetic data which are relevant to CI process studies at all Supersites

•Evaluate and refine cumulus parameterisations in complex terrain with the observations

Exploiting the Synergy of Remote Sensing Data to Analyse Convective Initiation Processes in Complex Terrain

Andreas Behrendt, Sandip Pal, and Volker Wulfmeyer

Institute of Physics and Meteorology, University of Hohenheim

The different approaches for the CI trigger function can be The different approaches for the CI trigger function can be validated with high-resolution remote sensing data validated with high-resolution remote sensing data of temperature, humidity, wind, and clouds.of temperature, humidity, wind, and clouds.

Values of disposable parameters can be determined.Values of disposable parameters can be determined.

Page 2: Goals:

WP1: Intercomparison of COPS water vapor data, derive bias and RMS errors

WP2: Priority list of IOPs for CI case studies

WP3: Apply higher-order corrections to water vapor lidar data in order to reach better than 5 % accuracy

LEANDRE2LEANDRE2 DLR DIALDLR DIAL

COPS IOP 13a/b, 1/2 August 2007

Courtesy by C. Kiemle (DLR, Oberpfaffenhofen )

UHOH DIALUHOH DIAL

Courtesy by C. Flamant (CNRS, France)

Page 3: Goals:

WP4: Analyse the diurnal cycle of boundary layer variables and relate the result to QPF deficiencies

Synergetic Measurements at COPS Supersites

COPS IOP 9c, 20 July 2007

7a)

7b)

7c)

L

Synergetic measurements of ABL key parameters, COPS IOP 9c

UHOH DIALWater Vapor Mix. Rat.

CNR-MWRWater Vapor Mix. Rat.

Courtesy by: F. Madonna and G. Pappalardo

UHOH DIAL nad radiosondeWater Vapor Mix. Rat.intercomp.

UHOH RRL: Temp. UHOH RRL: dӨ/dz

UHOH RRL: βpar, 355 nm UHOH DIAL and RRL: Rel. Hum. IMK Doppler lidar: Raw SNR and vertical velocity Courtesy by: Katja Traeumner. Andreas Wiesser, IMK, KIT

Page 4: Goals:

dd/d/dzz

UHOH Rotational

Raman Lidar

par,355par,355

WP5: Investigate temperature lids in remote sensing data

WP6: Quantify gravity waves by remote sensing data

Courtesy by Marcus Radlach(IPM, UHOH)

Raw data resolution: 3.75 m, 10 s Gliding average: t = 60 s, z = 150 m

COPS IOP 4a, 19 June 2007

Page 5: Goals:

WP8: Investigate the small scale heterogeneity of water vapor, temperature, wind, clouds, aerosols and their relation to CI

WP7: Derive sensible and latent heat fluxes by collocated lidars at all Supersites

WP9: Combine simultaneous scanning data of water vapor and temperature: RH, , v, d/dz, dv/dz , buoyancy, CAPE, CIN

TARA Radar, TU DelftTARA Radar, TU Delft

q(t,z)q(t,z)w(t, z)w(t, z) w‘q‘ Lw‘q‘ LvvDoppler Lidar, Doppler Lidar,

U. Karlsruhe/FZKU. Karlsruhe/FZKWater Vapor DIAL, Water Vapor DIAL,

U. HohenheimU. Hohenheim

COPS IOP 8b, 15 July 2007w, Courtesy by: Katja Traeumner (IMK, KIT)

Resolution: 72 m, 1 s Gliding average: t =30 s

Page 6: Goals:

CI at the “Neuried Boundary“CI at the “Neuried Boundary“IOP 13b, 2 AugustIOP 13b, 2 August

DOW1DOW1 POLDIRADPOLDIRAD

DOW1DOW1

WP10: Employ clear-air echos of DOWs and POLDIRAD for CI

Courtesy byTammy Weckwerth (NCAR, USA)

Page 7: Goals:

WP4: Analyse the diurnal cycle of boundary layer variables and relate the result to QPF deficiencies

WP10: Employ clear-air echos of DOWs and POLDIRAD for CI

WP12: Compare case study results with D-PHASE model simulations, COPS-GRID re-analyses, and hybrid convection schemes in cooperation with the respective projects

WP8: Investigate the small scale heterogeneity of water vapor, temperature, wind, clouds, aerosols and their relation to CI

WP1: Intercomparison of COPS water vapor data, derive bias and RMS errors

WP2: Priority list of IOPs for CI case studies

WP3: Apply higher-order corrections to water vapor lidar data in order to reach better than 5 % accuracy

WP5: Investigate temperature lids in remote sensing data

WP6: Quantify gravity waves by remote sensing data

WP7: Derive sensible and latent heat fluxes by collocated lidars at all Supersites

WP9: Combine simultaneous scanning data of water vapor and temperature: RH, , v, d/dz, dv/dz , buoyancy, CAPE, CIN

WP11: Detailed case studies of CI events and comparison with parameterization concepts

Page 8: Goals:

DOWsDOWs

BASILBASIL

UHOH RRLUHOH RRL

LEANDRE2LEANDRE2

DLR DIALDLR DIAL

UHOH DIALUHOH DIAL

Courtesy: P. Di Girolamo (Italy)

Courtesy: M. Radlach (UHOH)

Page 9: Goals:

Questions...!!!!!

Page 10: Goals:

Scanning DIAL measurements

Page 11: Goals:

• UHOH WV DIAL (scanning)• UHOH RR lidar (scanning)• FZK WindTracer (scanning)• FZK cloud radar (45° scan)• UHOH X-Band (vertical) • UHH MRR• TARA• UK radiosondes • CNR MW radiometer (scan.)• UK aerosol in-situ analysis• GFZ GPS receiver• FZK soil moisture

• FZK WTR• MICCY (scan.)• UV MRR• UV radiosondes• Ceilometer• UV AWS network• GFZ GPS receiver• FZK soil moisture

• FZK and UBT sodars (entrance of Murg and Kinzig V.)• UF sodar (entrance of Rench V.)• UK sodar (Murg Valley)

• FZK RS station

„Burgundische Pforte“

• CNRS WV Raman lidar• CNRS TRESS =

Aerosol Raman LidarIR radiometer, sun ph.,

aerosol analysis• LaMP X-band (scanning)• LaMP K-band (vertical)• MF radiosondes• MF surf. flux stations (3)• MF soil moisture • MF UHF prof., sodar• GPS receiver

• UNIBAS Raman lidar • UK Doppler lidar• UK wind profiler• UK MWR• UHH cloud radar• UK radiosondes • UK sodar• UHH MRR• GFZ GPS receiver• FZK soil moisture

• FZK RS station

FZK

• AMF:RS, MWR, AERI, RWP, WACR,aerosol in-situ analysis

• Micropulse Lidar• IfT MWL• IfT WILI• HATPRO• 90/150 GHz• ADMIRARI (scanning) • UHH MRR• GFZ GPS receiver• FZK soil moisture

LidarsCloud radarsPrecip. radarsRadiometersRadiosondesSodars

HR S

V

M

Supersite Instrumentation

POLDIRADPOLDIRAD

• 2 mobile Doppler –On-Wheels

Page 12: Goals:

Buoyancy, CAPE, and CIN

Hei

gh

t

Temperature

Level of Neutral Buoyancy (LNB)

Level of Free Convection (LFC)

Lifting Condensation Level (LCL)

AmbientCurve

Lifting Curve

B > 0

B < 0

B < 0

Combination of temperature and water vapor remote sensing allows continuous profiling of• the ambient curve• CIN and CAPE • lids, capping inversionsdv/dz

Buoyancy

m/s2 = N/kg

Page 13: Goals:

Scanning temperature and aerosol measurements with UHOH RRL

Page 14: Goals:

DIAL measurements of water-vapour mixing ratio

Page 15: Goals:

COPS IOP 9c20 July 2007

Combination of primary data products of UHOH RRL and water-vapour DIAL

Page 16: Goals:

Transport and Chemical Conversion in Convective Systems (COPS-TRACKSCOPS-TRACKS)Period: 16.7. – 2.8.2007

EUMETSAT EUMETSAT special satellite operation modes and dataPeriod: 1. 6. – 31. 8.2007

Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region (D-PHASED-PHASE), WWRP Forecast and Demonstration Project (FDP)Period: 1. 6. – 30. 11.2007

European THORPEX Regional Campaign 2007 (ETReC 2007ETReC 2007)Period: 1.7. – 1.8.2007

European Summer Experiments 2007

General Observations Period (GOPGOP) Period: full year of 2007

Domain of the Convective and Orographically-induced Precipitation Study (COPSCOPS)), World Weather Research Program (WWRP) Research and Development Project (RDP)Period: 1. 6. – 31. 8.2007

Atmospheric Radiation Measurement (ARM) Program Mobile Facility (AMFAMF)Period: 1. 4. – 31. 12.2007

Page 17: Goals:

• UHOH WV DIAL (scanning)• UHOH RR Lidar (scanning)• FZK WindTracer (scanning)

• Ceilometer

• CNRS WV Raman lidar• CNRS Aerosol Raman Lidar

• UNIBAS Raman lidar • UK Doppler lidar (scanning)

• IfT MWL• IfT WILI (scanning)• Micropulse Lidar

6 H2O Lidars

3 Temperature Lidars

4 Aerosol Raman Lidars

4 Doppler Lidars

• LEANDRE2• WV DIAL • Doppler Lidar (scanning)

13 Lidars (platforms) with

HR S

V

MH

R S

V

M

Lidars

Ground-basedat supersites:

Airborne:

Page 18: Goals:

July1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IOP 5a 5b 6 7a 7b 8a 8b 8c 9a 9b 9c 10 11a 11b 12No. of CI events 2 8 1 0 3 0 1 * 3 0 6 5 0 0 1Airborne * no MSG rapid scan data available on this dayDLR DIAL x x x x x x x xLeandre2 x x x x x x x x x xMobileDOW1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xDOW2 x x x x x x x xSuSiHWV DIAL x x x x x x x x x x x x x x xRRL x x x x x x x x x x x x xWindtracer x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xCloudRadar x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xCNR MWR x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xSuSiRBASIL x x x x x x x x x x x x x x x x x x x x x x xDoppler Lidar x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xCloudRadar x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xTARA x x x x x x x x x x x x x x x x x x x xMWR x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xSuSiMBERTHA x x x x x x x x x x x x x x x x x x xWiLi x x x x x x x x x x x x x x x x x x x xMPL x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xCloudRadar x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xHATPRO x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xSuSiVTRESS x x x x x x x x x x x x x x x x x x x x x x x x xCNRS RL x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xSuSiSCeilometer x x x x x x x x x x x x x x x x x x x x x x x x x xWTR x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xMICCY x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xPOLDIRAD x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

COPS Remote Sensing Instruments

Page 19: Goals:

Messung mit dem neuen Wasserdampf-DIAL der U. Hohenheim und MM5-Vorhersage mit 2 km Gitterauflösung

DIAL

MM5

Page 20: Goals:

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223Time (UTC)

Fre

quen

cy

Latit

ude

(°)

Longitude (°)