44
Global visual Global visual perception perception Velitchko Manahilov Velitchko Manahilov Uma Shahani Uma Shahani Gael Gordon Gael Gordon William Simpson William Simpson

Global visual perception

  • Upload
    adora

  • View
    36

  • Download
    0

Embed Size (px)

DESCRIPTION

Global visual perception. Velitchko Manahilov Uma Shahani Gael Gordon William Simpson. Outline. Reverse correlation analysis Classification image approach Perceptive fields for global motion in individuals with: - normal vision - amblyopia - dyslexia - persistent migraine aura - PowerPoint PPT Presentation

Citation preview

Page 1: Global visual perception

Global visual perceptionGlobal visual perception

Velitchko ManahilovVelitchko Manahilov

Uma ShahaniUma Shahani

Gael GordonGael Gordon

William SimpsonWilliam Simpson

Page 2: Global visual perception

Outline

Reverse correlation analysis Classification image approach Perceptive fields for global motion in individuals with:

- normal vision

- amblyopia

- dyslexia

- persistent migraine aura Conclusions

Page 3: Global visual perception

Reverse correlation technique

Visual neurons are stimulated by noise images and the spike output is cross-correlated with the input.

Page 4: Global visual perception

Reverse correlation technique

Multifocal ERG & VEP

Page 5: Global visual perception

What is a classification image?

The classification image shows how the observer weights the information

in the image to reach a decision.

Page 6: Global visual perception

Signal Detection Theory

Page 7: Global visual perception

Noise+Signal

0 2 4 6 8 10

Internal response

Pro

ba

bili

ty

MISS HIT

Criterion response

Signal

Noise

Signal + Noise

Signal

Noise

Signal + Noise

+

+

+

+

<M>

+

+

+

+

<H>

Page 8: Global visual perception

Noise

0 2 4 6 8 10

Internal response

Pro

ba

bili

ty

Corr rej False alarm

Criterion response

+

+

+

+

<CR>

+

+

+

+

<FA>

Signal

Noise

Signal + Noise

Signal

Noise

Signal + Noise

Page 9: Global visual perception

Classification imageClassification image

+

+

+

+

<M>

+

+

+

+

<H>

+

+

+

+

<CR>

+

+

+

+

<FA>

CI = <H> - <M> + <FA> - <CR> =

Page 10: Global visual perception

Manahilov & Simpson, VR, 2005.

Page 11: Global visual perception

Beard & Ahumada, JOSA, 1999.

H-M F-C

Page 12: Global visual perception

Gold, J.M., Murray, R.F., Bennett, P.J., & Sekuler, A.B. Current Biology 2000.

Page 13: Global visual perception

Gosselin F. & Schyns P. Psychological Science, 14, 504-509, 2003.

Internal representation?Internal representation?

Observers were presented with 20,000 noise samples. They were told that the letter “S” was present on 50% of the trials. No more detail was given regarding the shape of the letter.

No signal was ever presented.

The classification image resembles the letter “S”.

Page 14: Global visual perception

Black discsdisc diameter - 20’

speed - 5 deg/s4 frames of 50 ms

display size - 10x10 deg

Global motion direction

Page 15: Global visual perception

SignalSignal

Response Response RightRight LeftLeft

RightRight RR (NRR (NRRRR)) LR (NLR (NLRLR))

LeftLeft RL (NRL (NRLRL)) LL (NLL (NLLLL))

RLLLLRRR N

ii

RL

N

ii

LL

N

ii

LR

N

ii

RR

RLN

LLN

LRN

RRN

imagetionClassifica1111

)(1

)(1

)(1

)(1

Page 16: Global visual perception

Perceptive field of ideal observerif MDi> 0 => Right if MDi< 0 => Left

Page 17: Global visual perception

Global motion directionnormal observers

Subj. DD

-100

10

-10

0

10-10

0

10

20

Distance (deg)

(a) Classification Image

Distance (deg)

Am

plit

ude

-100

10

-10

0

100

10

20

Distance (deg)

(b) Classification Image p<0.001

Distance (deg)

Am

plit

ude

Perc Correct: 84 %

Distance (deg)

Dis

tanc

e (d

eg)

-5 0 5

-5

0

5

-10

0

10

Trials: 600

Distance (deg)-5 0 5

-5

0

5

-10

0

10

Page 18: Global visual perception

Global motion directionnormal observers

Subj. JPK

-100

10

-10

0

10-20

0

20

40

Distance (deg)

(a) Classification Image

Distance (deg)

Am

plit

ude

-100

10

-10

0

100

20

40

Distance (deg)

(b) Classification Image p<0.001

Distance (deg)

Am

plit

ude

Perc Correct: 88 %

Distance (deg)

Dis

tanc

e (d

eg)

-5 0 5

-5

0

5

-20

0

20

Trials: 600

Distance (deg)-5 0 5

-5

0

5

-20

0

20

Page 19: Global visual perception

Global motion directionnormal observers

Subj. IMK

-100

10

-10

0

10-20

0

20

40

Distance (deg)

(a) Classification Image

Distance (deg)

Am

plit

ude

-100

10

-10

0

100

10

20

30

Distance (deg)

(b) Classification Image p<0.001

Distance (deg)

Am

plit

ude

Perc Correct: 81 %

Distance (deg)

Dis

tanc

e (d

eg)

-5 0 5

-5

0

5

-20

-10

0

10

20

Trials: 600

Distance (deg)-5 0 5

-5

0

5

-20

-10

0

10

20

Page 20: Global visual perception

Global motion directionnormal observers

Subj. LS

-100

10

-10

0

10-10

0

10

20

Distance (deg)

(a) Classification Image

Distance (deg)

Am

plit

ude

-100

10

-10

0

100

10

20

Distance (deg)

(b) Classification Image p<0.001

Distance (deg)

Am

plit

ude

Perc Correct: 83 %

Distance (deg)

Dis

tanc

e (d

eg)

-5 0 5

-5

0

5

-15

-10

-5

0

5

10

15Trials: 600

Distance (deg)-5 0 5

-5

0

5

-15

-10

-5

0

5

10

15

Page 21: Global visual perception

Global motion directionnormal observers

Average

-100

10

-10

0

10-20

0

20

40

Distance (deg)

(a) Classification Image

Distance (deg)

Am

plit

ude

-100

10

-10

0

100

10

20

30

Distance (deg)

(b) Classification Image p<0.001

Distance (deg)

Am

plit

ude

Perc Correct: 83 %

Distance (deg)

Dis

tanc

e (d

eg)

-5 0 5

-5

0

5

-20

-10

0

10

20

Trials: 2400

Distance (deg)-5 0 5

-5

0

5

-20

-10

0

10

20

Page 22: Global visual perception

AmblyopiaAmblyopia (lazy eye) is the loss or lack of development of central vision in one eye.

It is unrelated to any eye health problem and is not correctable with lenses. It can result from a failure to use both eyes together.

Lazy eye is often associated with crossed-eyes or a large difference in the refractive errors between the two eyes.

It usually develops before the age of 6, and it does not affect side vision.

Page 23: Global visual perception

Global motion direction

Subj. CH Amblyopic eye Fellow eye

-100

10

-10

0

10-10

0

10

20

30

Distance (deg)

(a) Classification Image

Distance (deg)

Am

plit

ude

-100

10

-10

0

100

10

20

30

Distance (deg)

(b) Classification Image p<0.001

Distance (deg)

Am

plit

ude

Perc Correct: 76 %

Distance (deg)

Dis

tanc

e (d

eg)

-5 0 5

-5

0

5

-30

-20

-10

0

10

20

30Trials: 600

Distance (deg)-5 0 5

-5

0

5

-20

0

20

-100

10

-10

0

10-10

0

10

20

30

Distance (deg)

(a) Classification Image

Distance (deg)

Am

plit

ude

-100

10

-10

0

100

10

20

30

Distance (deg)

(b) Classification Image p<0.001

Distance (deg)

Am

plit

ude

Perc Correct: 88 %

Distance (deg)

Dis

tanc

e (d

eg)

-5 0 5

-5

0

5

-30

-20

-10

0

10

20

30Trials: 600

Distance (deg)-5 0 5

-5

0

5

-10

-5

0

5

10

Page 24: Global visual perception

Global motion direction

Subj. KH Amblyopic eye Fellow eye

Page 25: Global visual perception

Global motion direction

Subj. LW Amblyopic eye Fellow eye

-100

10

-10

0

10-10

0

10

20

Distance (deg)

(a) Classification Image

Distance (deg)

Am

plit

ude

-100

10

-10

0

100

10

20

Distance (deg)

(b) Classification Image p<0.001

Distance (deg)

Am

plit

ude

Perc Correct: 72 %

Distance (deg)

Dis

tanc

e (d

eg)

-5 0 5

-5

0

5

-20

-10

0

10

20Trials: 600

Distance (deg)-5 0 5

-5

0

5

-10

-5

0

5

10

-100

10

-10

0

10-10

0

10

20

Distance (deg)

(a) Classification Image

Distance (deg)

Am

plit

ude

-100

10

-10

0

100

10

20

Distance (deg)

(b) Classification Image p<0.001

Distance (deg)

Am

plit

ude

Perc Correct: 73 %

Distance (deg)

Dis

tanc

e (d

eg)

-5 0 5

-5

0

5

-20

-10

0

10

20Trials: 600

Distance (deg)-5 0 5

-5

0

5

-20

0

20

Page 26: Global visual perception

Global motion direction

Average Amblyopic eye Fellow eye

Page 27: Global visual perception

Global motion direction

Subj. DD Subj. JPK VA 6/18

Page 28: Global visual perception

Global motion direction

CH

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Relative motion direction (deg)

Pro

po

rtio

n c

orr

ect

re

spo

nse

s

AE 9x9

Page 29: Global visual perception

Global motion direction

CH

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Relative motion direction (deg)

Pro

po

rtio

n c

orr

ect

re

spo

nse

s

FE 9x9

AE 9x9

Page 30: Global visual perception

Global motion direction

CH

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Relative motion direction (deg)

Pro

po

rtio

n c

orr

ect

re

spo

nse

s

FE 9x9

AE 9x9

FE 3x3

Page 31: Global visual perception

Global motion direction

CH

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Relative motion direction (deg)

Pro

po

rtio

n c

orr

ect

re

spo

nse

s

FE 9x9AE 9x9FE 3x3AE 3x3

Page 32: Global visual perception

Dyslexia

Developmental dyslexia is manifested as a difficulty with reading given normal individual intelligence that cannot be explained by other factors such as sensory acuity, learning opportunities or brain injuries.

Page 33: Global visual perception

Global motion direction

Dyslexia

Page 34: Global visual perception

Global motion direction

Dyslexia

Page 35: Global visual perception

Global motion direction

Dyslexia

Average

Page 36: Global visual perception

Persistent Migraine Aura

Persistent migraine aura is a rare but well documented complication of migraine.

Patients experience continuous aura lasting weeks or months.

These patients offer a unique opportunity to examine the migraineous brain during the aura phase of the attack.

Page 37: Global visual perception

Global motion direction

Persistent Migraine Aura

Page 38: Global visual perception

Global motion direction

Persistent Migraine Aura

Page 39: Global visual perception

Global motion direction

Persistent Migraine Aura

Average

Page 40: Global visual perception

SUMMARY

1. Classification image technique provides a new powerful tool for estimating the observers’ behavioural template for detecting objects.

4. The wider perceptive fields of these individuals may be related to reduced suppression of global (attentional) mechanisms which allows integrating motion information over a much larger field.

2. Normal observers use localised perceptive fields when integrate global motion information. They extract motion information from central moving discs and suppress peripheral items.

3. The perceptive fields of individuals with amblyopia, dyslexia and persistent migraine aura are wider than the perceptive fields of normal observers.

5. In the presence of environmental noise, these individuals may have deficits in exclusion of unwanted distractors.

Page 41: Global visual perception

Thank you.Thank you.

Page 42: Global visual perception

Perceptual noise-exclusion deficits Perceptual noise-exclusion deficits in dyslexiain dyslexia

Sperling et al., (2005). Nature Neuroscience, 8, 862-863.

Page 43: Global visual perception

Perceptual noise-exclusion deficits Perceptual noise-exclusion deficits in dyslexiain dyslexia

0.0

0.3

0.6

0.9

1.2

No Noise High Noise

Co

ntr

ast

thre

sho

ld (

%)

Non-dyslexics Dyslexics16

8

4

2

1

Page 44: Global visual perception

Global motion direction

Persistent Migraine Aura

0

0.05

0.1

0.15

0.2

0.25

Control (n=7) Persistent Aura (n=5)

Effi

cien

cy

2

2

ideald

realdEfficiency