Global, Regional, and Urban Climate Effects of Air Pollutants Mark Z. Jacobson Dept. of Civil & Environmental Engineering Stanford University

Embed Size (px)

Citation preview

  • Slide 1

Global, Regional, and Urban Climate Effects of Air Pollutants Mark Z. Jacobson Dept. of Civil & Environmental Engineering Stanford University Slide 2 Modeled CO 2 (g) and Modeled v Measured Ocean pH 1751-2003 CO 2 (g) mixing ratio (ppmv) Surface ocean pH Data from Friedli et al. (1986) and Keeling and Whorf (2003) Slide 3 Modeled Ocean Profiles 2004; 2104 Under SRES A1B Emission Scenario Depth (m) Slide 4 Effect of CO 2 (g) on Atmospheric Acids Mixing ratio (ppbv) Slide 5 Slide 6 Comparison of ff BC Climate Responses 1. Jacobson (JGR 107, D19, 2002). Size resolved (1 distribution) multi-component aerosols, size-resolved cloud formation on aerosols, size-resolved treatment of first and part of second indirect effects, climatological snow/ice albedo, emissions of Cooke et al. (1999), 2-D ocean module, many feedbacks. Fossil fuel BC+OM: +0.3 K (5-y average) +0.35 K (last year) Range of all simulations (+0.15 to +0.5) 2. Ibid. (JGR 2004, in press). Same as (1) but treated first and second indirect effects, calculated snow/ice albedo, used early Bond et al. (2004) inventory. Fossil fuel + biofuel BC+OM: +0.27 K (10-y avg. snow contrib. +0.06 K) 3. Ibid. Recent results. Same as (2) but used most recent Bond et al (2004) emission,, used two distributions (emitted ff+bf BC+OM and emitted other + heterocoagulated BC) and 10 layers of energy diffusion to deep ocean. Fossil fuel + biofuel BC+OM: +0.29 K (6-y avg.) Slide 7 Ten-Year-Avg. Globally-Averaged Temperature Profile Differences Pressure (hPa) With snow/sea ice absorption and with-w/o ff+bf BC+OM Pressure (hPa) Contribution of BC absorption by snow/sea ice Slide 8 Temperature Changes Due to Eliminating Emission of Anthropogenic CO 2, CH 4, and f.f. BC+OM Cooling (K) after eliminating anthropogenic emission Slide 9 Observed and Modeled Temp. Diff. w-w/o GHG and Aerosols Schneider and Held (2001) Latitude (degrees) (4 y an. avg.) (January only Slide 10 Modeled (4 y avg.) Temp. Diff. w-w/o Anth. GHG alone Latitude (degrees) Slide 11 Modeled (4 y avg.) and Radiosonde Vertical Temp. (K) dif. w-w/o GHG and Aerosols Radiosonde data Angell et al. (1999) Temperature deviation (K) Altitude (km) 300-100 mb 9-16 km 100-30 mb 16-24 km Slide 12 Feb. & Aug. California Column BC Dif. w-w/o Anth. Aer. Latitude (degrees) Slide 13 Column POM Dif. w-w/o Anth. Aer. Latitude (degrees) Slide 14 Column SOM Dif. w-w/o Anth. Aer. Latitude (degrees) Slide 15 Column S(VI) Dif. w-w/o Anth. Aer. Latitude (degrees) Slide 16 Column NO 3 - Dif. w-w/o Anth. Aer. Latitude (degrees) Slide 17 Column NH 4 + Dif. w-w/o Anth. Aer. Latitude (degrees) Slide 18 Column Aerosol LWC Dif. w-w/o Anth.Aer. Latitude (degrees) Slide 19 Column Total Aerosol Dif. w-w/o Anth. Aer. Latitude (degrees) Slide 20 Aerosol 550 nm Optical Depth Dif. w-w/o Anth.Aer. Latitude (degrees) Slide 21 Cloud 550 nm Optical Depth Dif. w- w/o Anth.Aer. Latitude (degrees) Slide 22 Cloud 550 nm Scattering Optical Depth Profile Dif. Pressure (hPa) Slide 23 Down-Up Surface Solar Radiation Dif. w-w/o Anth.Aer. Latitude (degrees) Slide 24 Down-Up Surface Thermal-IR Radiation Dif. w-w/o Anth.Aer. Latitude (degrees) Slide 25 Irradiance Profile Dif. Over California Pressure (hPa) Slide 26 Near-surface Temperature Dif. w- w/o Anth.Aer. Latitude (degrees) Slide 27 Zonal Temp. Profile Dif. w-w/o Anth.Aer. Altitude (km) Slide 28 Temperature Profile Dif. Over California Pressure (hPa) Slide 29 Near-surface RH Dif. w-w/o Anth.Aer. Latitude (degrees) Slide 30 Zonal RH Dif. w-w/o Anth.Aer. Altitude (km) Slide 31 Cloud LWC Dif. w-w/o Anth.Aer. Latitude (degrees) Slide 32 Cloud Liquid and Ice Profile Dif. Over California Pressure (hPa) Slide 33 Modeled vs. Measured Feb. 1999 Precipitation Latitude (degrees) Slide 34 Modeled Feb. 1999 vs. Measured Feb. Clim. Prec. Latitude (degrees) Data courtesy of Guido Franco Slide 35 Precipitation Dif. w-w/o Anth.Aer. Latitude (degrees) Slide 36 Baseline BC in precipitation Latitude (degrees) Slide 37 SCAB Column Total Aerosol Dif. w- w/o Anth.Aer. Latitude (degrees) Slide 38 SCAB Aerosol Optical Depth Dif. w- w/o Anth.Aer. Latitude (degrees) Slide 39 SCAB Cloud Optical Depth Dif. w- w/o Anth.Aer. Latitude (degrees) Slide 40 Cloud 550 nm Scattering Optical Depth Profile Dif. Pressure (hPa) Slide 41 SCAB Down-Up Surface Solar Radiation Dif. w-w/o Anth.Aer. Latitude (degrees) Slide 42 SCAB Downward UV Radiation Dif. w-w/o Anth.Aer. Latitude (degrees) Slide 43 SCAB Near-Surface OH Dif. w-w/o Anth.Aer. Latitude (degrees) Slide 44 SCAB Down-Up Surface Thermal-IR Radiation Dif. w-w/o Anth.Aer. Latitude (degrees) Slide 45 Irradiance Profile Dif. Over SCAB Pressure (hPa) Slide 46 SCAB Near-Surface Temperature Dif. w-w/o Anth.Aer. Latitude (degrees) Slide 47 Temperature Profile Dif. Over SCAB Pressure (hPa) Slide 48 SCAB Baseline Precipitation Latitude (degrees) Slide 49 SCAB Precipitation Dif. w-w/o Anth.Aer. Latitude (degrees) Slide 50 Summary Globally-averaged surface ocean pH may have decreased from about 8.25 to 8.14 from 1751 to 2004 Under the SREAS A1B emission scenario, pH may decrease to 7.85 in 2100, for an increase in the hydrogen ion by a factor of 2.5 since 1751. Ocean acidification may increase concentrations of atmospheric acids and decrease those of bases, although the magnitude is uncertain. Three global simulation results suggest a warming due to ff+bf BC of +0.25 to +0.3 K in the 5- to 10-year average with a range of +0.15 K to +0.5 K Maximum warming and cooling due to anthropogenic GHGs and aerosols exceed those of GHGs alone. Aerosols act on top of GHGs to enhance extreme warm and cool climate conditions. Modeled aerosol particles and gas-phase precursors appear to decrease precipitation in mountainous regions and increase it beyond the mountains, cool surface-air temperatures, slightly increase atmospheric temperatures, reduce solar and UV radiation and OH, and increase thermal-IR radiation to the surface in California.