14
“Global” Hydrodynamic Analysis of the Molecular Flexibility of Konjac Glucomannans Gordon Morris School of Biosciences

“Global” Hydrodynamic Analysis of the Molecular Flexibility of Konjac Glucomannans Gordon Morris School of Biosciences

Embed Size (px)

Citation preview

“Global” Hydrodynamic Analysis of the Molecular

Flexibility of Konjac Glucomannans

Gordon Morris

School of Biosciences

Outline:

1. Introduction

2. Hydrodynamic characterisations

3. Conformational analyses

4. Conclusions and Future Work

Why characterisation of Konjac glucomannan (KGM) is important

Introduction:

- Widely used but poorly understood health food supplement

- Reported potential interaction with wheat gliadins: application in gluten removal

- Biopolymer of interest in diabetes research

1. Extracted from the tubers of Amorphophullus Konjac C. Koch

2. Water-soluble gum

3. -(14) -D-glucose (G) and -D-mannose (M) - G:M ratio 1:1.6- C-6 acetylation (5 – 10 %)

KGM:

Hydrodynamic characterisations:

Sedimentation Velocity in the Analytical Ultracentrifuge- sedimentation coefficient, s0

20,w

- concentration dependence of sedimentation, ks

Size Exclusion Chromatography coupled to Multi-Angle Laser Light Scattering

- weight average molar mass, Mw

Viscometry- intrinsic viscosity, []

Sample Mw

(g mol-1)

[]

(ml g-1)

s020,w

(S)

ks

(ml g-1)

KGM-1 740000

± 20000

1300

± 15

3.40

± 0.02

665

± 20

KGM-2 695000

± 20000

1190

± 25

3.00

± 0.03

455

± 25

KGM-3 305000

± 10000

775

± 5

2.50

± 0.10

275

± 30

KGM-4 240000

± 5000

565

± 10

1.67

± 0.20

115

± 30

KGM-5 210000

± 5000

475

± 5

1.92

± 0.10

160

± 30

Results:

Conformational analyses:

1. Sedimentation conformation zoning

2. Bushin-Bohdanecky approach

3. Yamakawa-Fujii approach

4. Combined “global” analysis: HYDFIT

5. Mark-Houwink-Kuhn-Sakurada (MHKS) relation

6. Wales-van Holde & frictional ratios

0.5 1.0 1.5 2.0 2.5-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

log

(1

0-11 ksML)

log (1012[s]/ML)

A

B

C

D

E

0.5 1.0 1.5 2.0 2.5-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

log

(1

0-11 ksML)

log (1012[s]/ML)

A

B

C

D

E

0 .5 1 .0 1 .5 2 .0 2 .5

-0 .5

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

3 .5

Extra rigid rode.g. schizophyllan

Rigid rode.g. xanthan

Semi-flexible coile.g. pectinRandom coil

e.g. pullulan

Globulare.g. glycogen

SedimentationConformation Zoning:

KGM: semi-flexible coil

Pavlov et al. (1997). Trends in Analytical Chemistry, 16, 401-405.

Bushin-Bohdanecky:

Lp ~ 8 nm

Semi-flexiblecoil

Bohdanecky (1983). Macromolecules, 16, 1483-1493.Bushin et al., (1981). Vysokomolekulyarnye Soedineniya, A23, 2494-2503.

Yamakawa-Fujii:

Lp ~ 33 nm

Rigid rod

Yamakawa & Fujii (1973). Macromolecules, 6, 407-405.

Lp ~ 13 nmML ~ 330 g mol-1 nm-1

Semi-flexiblecoil

HYDFIT:

Ortega & García de la Torre (2007). Biomacromolecules, 8, 2464-2475.

Property Value

Conformation Zone C

Lp (nm) from HYDFIT 13 ± 1

MHKS exponent “a” 0.74 ± 0.01

MHKS exponent “b” 0.32 ± 0.01

ks/[] 0.4 ± 0.1

f/fo 11 ± 2

Summary:

Conclusions

1. Discrepancy between Bushin-Bohdanecky and Yamakawa-Fujii approaches

- best to use non-biased HYDFIT method

2. Konjac glucomannan has a semi-flexible coil conformation

Future Work

1. Characterisation of KGM-gliadin complexes

2. Investigation of KGM-insulin mixtures

Prof. Stephen E. Harding & Ali Saber Abdelhameed, University of Nottingham, UK

Dr. M. Samil Kök, University of Bolu, Turkey

Dr. Jose Garcìa de la Torre & Dr. Alvaro Ortega, University of Murcia, Spain

Acknowledgements: