56
Gianmaria Sannino, A. Carillo, A. Bargagli, E. Caiaffa [email protected] F. Arena G. Ma9azzo D. Coiro L. Liber>

GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

Gianmaria  Sannino,  A.  Carillo,  A.  Bargagli,  E.  Caiaffa  

 [email protected]  

F.  Arena  

G.  Ma9azzo  

D.  Coiro  

L.  Liber>  

Page 2: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Sea energy assessment and devices developments

GEM  

REWEC3  

ENEA & Uni: running collaboration

Page 3: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

First workshop on sea energy in Italy

Page 4: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OWEMES  2012  –  Roma  5  -­‐7  September    

EERA-JP Ocean Energy: an European initiative

The  EERA  Ocean  Energy  JP  is  based  around  six  key  research  themes.  These  themes  have  been  developed  based  on  exisJng  research  roadmaps  which  idenJfy  the  criJcal  areas  of  research  required  for  the  successful  growth  of  the  industry.  The  Research  Themes  are  here:    •  Resource  •  Devices  and  Technology  •  Deployment  and  OperaJons  •  Environmental  Impact  •  Socio-­‐economic  Impact  •  Research  Infrastructure,  EducaJon  and  Training  

Within  each  Research  Theme  a  number  of  sub-­‐topics  have  been  idenJfied  as  key  long  term  research  objecJves.  IniJal  EERA  Ocean  Energy  JP  acJviJes  are  not  able  to  cover  all  of  the  objecJves  idenJfied  but  have  been  prioriJzed  in  the  first  year’s  programme  by  need  and  the  current  availability  of  funding.  The  gap  between  what  has  been  idenJfied  as  a  key  long  term  objecJve  and  what  the  EERA  Ocean  Energy  JP  is  actually  able  to  deliver  in  the  first  year  will  help  idenJfy  issues  that  need  future  funding  and  coordinated  research  efforts.    

Page 5: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004
Page 6: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Background – Global ocean energy distribution

Model  computaJonal  domain  and  bathymetry  

The RE resource in the ocean comes from six distinct sources, each with different origins and requiring different technologies for conversion.

■  Tidal Range (tidal rise and fall): derived from the gravitational forces of the Earth-Moon-Sun system.

■  Ocean Currents: derived from wind-driven and thermohaline ocean circulation.

■  Ocean Thermal Energy Conversion (OTEC):derived from temperature differences between solar energy stored as heat in upper ocean layers and colder seawater, generally below 1,000 m.

■  Salinity Gradients (osmotic power): derived from salinity differences between fresh and ocean water at river mouths.

■  Tidal currents: water flow resulting from the filling and emptying of coastal regions as a result of the tidal rise and fall.

■  Waves: derived from the transfer of the kinetic energy of the wind to the upper surface of the ocean.

Page 7: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Background – Mediterranean energy The RE resource in the ocean comes from six distinct sources, each with different origins and requiring different technologies for conversion.

■  Tidal Range (tidal rise and fall): derived from the gravitational forces of the Earth-Moon-Sun system.

■  Ocean Currents: derived from wind-driven and thermohaline ocean circulation.

■  Ocean Thermal Energy Conversion (OTEC):derived from temperature differences between solar energy stored as heat in upper ocean layers and colder seawater, generally below 1,000 m.

■  Tidal currents: water flow resulting from the filling and emptying of coastal regions as a result of the tidal rise and fall.

■  Waves: derived from the transfer of the kinetic energy of the wind to the upper surface of the ocean.

■  Salinity Gradients (osmotic power): derived from salinity differences between fresh and ocean water at river mouths.

Page 8: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Background – Mediterranean energy

Model  computaJonal  domain  and  bathymetry  

The RE resource in the ocean comes from six distinct sources, each with different origins and requiring different technologies for conversion.

■  Tidal Range (tidal rise and fall): derived from the gravitational forces of the Earth-Moon-Sun system.

■  Ocean Currents: derived from wind-driven and thermohaline ocean circulation.

■  Ocean Thermal Energy Conversion (OTEC):derived from temperature differences between solar energy stored as heat in upper ocean layers and colder seawater, generally below 1,000 m.

■  Salinity Gradients (osmotic power): derived from salinity differences between fresh and ocean water at river mouths.

■  Tidal currents: water flow resulting from the filling and emptying of coastal regions as a result of the tidal rise and fall.

■  Waves: derived from the transfer of the kinetic energy of the wind to the upper surface of the ocean.

Page 9: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Wave energy assessment along the Italian coasts Tradition approach: using the Italian Wave measuring Network (Rete Ondametrica Nazionale, RON) managed by Institute for Environmental Protection and Research (ISPRA)

Buoy First Record Last Record 3hr Records Expected E�ciencyafter 1/1/2001 3hr records (%)

Alghero 01/07/1989 05/04/2008 15283 21210 72.1Catania 01/07/1989 05/10/2006 12549 16827 80.2Crotone 01/07/1989 15/07/2007 14962 19093 78.4La Spezia 01/07/1989 31/03/2007 10952 18240 60.0Mazara del Vallo 01/07/1989 04/04/2008 15323 21207 72.3Monopoli 01/07/1989 05/04/2008 15641 21209 73.7Ortona 01/07/1989 24/03/2008 12786 21113 60.6Ponza 01/07/1989 31/03/2008 14479 21169 68.4Cetraro 28/02/1999 05/04/2008 16630 21209 78.4Ancona 10/03/1999 31/05/2006 10212 15812 64.6Capo Comino 01/01/2004 12/09/2005 3813 5664 67.3Capo Gallo 01/01/2004 31/03/2008 9001 12408 72.5Capo Linaro 02/01/2004 12/09/2006 5441 7872 69.1Punta della Maestra 02/01/2004 24/11/2004 2616 7872 62.8Cagliari 06/02/2007 02/03/2008 1986 3120 63.7

Mesi

0

100

100

100

100

100

100

100

100

100

100

Efficienza

(%)

Alghero

Ancona

Catania

Crotone

La Spezia

Mazara del Vallo

Ortona

Ponza

Monopoli

Cetraro

1 2 3 4 5 6 7 8 9 101112

2001

1 2 3 4 5 6 7 8 9 101112

2002

1 2 3 4 5 6 7 8 9 101112

2003

1 2 3 4 5 6 7 8 9 101112

2004

1 2 3 4 5 6 7 8 9 101112

2005

1 2 3 4 5 6 7 8 9 101112

2006

1 2 3 4 5 6 7 8 9 101112

2007

1 2 3 4 5 6 7 8 9 101112

2008

Page 10: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Wave energy assessment along the Italian coasts Our approach: using a relatively high resolution wave model

www.cresco.enea.it  

Page 11: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Numerical modeling approach Numerical Wave model description

Model  computaJonal  domain  and  bathymetry  

Model  implemented:  WAM  (Wave  predic>on  Model)    Resolu8on  1/16°  x  1/16°  (about  7Km)    ECMWF  (European  Centre  for  Medium  range  Weather  Forecast)  wind  field  data  

Page 12: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Numerical wave model validation (Hs)

0 2 4 6 8Hs - Buoy

(m)

0

2

4

6

8

Hs

- Mod

el

(m)

0

5

10

20

50

100

250

500

Ent

ries

CorrelaJon  between  buoy  and  model  Hs  at  Alghero.  Dashed  line  is  the  best  fit  line  between  model  and  buoy  data  points.  

Numerical Wave model vs buoy: ALGHERO

Period  considered  2001-­‐2010  

Page 13: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Numerical wave model validation (Hs)

StaJsJcs  of  buoy  and  model  significant  wave  height  (Hs)  comparison.  

Numerical Wave model vs buoy: statistics

Buoy Bias Rmse Slope Si(m) (m)

Alghero -0.005 0.311 0.985 0.278Ancona -0.214 0.361 0.725 0.477Catania -0.178 0.308 0.747 0.501Crotone 0.004 0.276 0.993 0.374La Spezia -0.143 0.283 0.851 0.354Mazara del Vallo 0.013 0.257 1.022 0.253Ortona -0.150 0.284 0.753 0.460Ponza -0.103 0.273 0.892 0.328Monopoli -0.124 0.307 0.836 0.427Cetraro -0.070 0.241 0.897 0.341Capo Gallo 0.019 0.255 1.040 0.339

bias =1

n

nX

i=1

(yi � xi) , (1)

rmse =

vuut 1

n� 1

nX

i=1

(yi � xi)2, (2)

si =rmse

1n

Pni=1 yi

, (3)

slope =

Pni=1 xiyiPni=1 xixi

. (4)

Period  considered  2001-­‐2010  

Page 14: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Numerical wave model validation (Direction)

Frequency  distribuJon  of  model  and  buoy  average  wave  direcJon  at  Alghero.  Only  records  with  Hs  >  1  m  are  considered.  Incoming  wave  direcJon  is  indicated  as  degrees  in  clockwise  direcJon  from  the  north.  

Numerical Wave model vs buoy: statistics

¯

S =

1

n

nX

i=1

sin (yi � xi), (1)

¯

C =

1

n

nX

i=1

cos (yi � xi), (2)

¯

R =

�¯

C

2+

¯

S

2� 1

2, (3)

bias

�= arctan

�¯

S/

¯

C

�, (4)

var

�=

�1� ¯

R

�. (5)

0 100 200 300Average Wave Direction

(Deg.)

0.0

0.2

0.4

0.6

Freq

uenc

y

Buoy

Model

Period  considered  2001-­‐2010  

Page 15: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Numerical wave model validation (Direction)

Circular  staJsJcs  of  buoy  and  model  wave  average  spectral  direcJon    comparison.  

Numerical Wave model vs buoy: statistics

¯

S =

1

n

nX

i=1

sin (yi � xi), (1)

¯

C =

1

n

nX

i=1

cos (yi � xi), (2)

¯

R =

�¯

C

2+

¯

S

2� 1

2, (3)

bias

�= arctan

�¯

S/

¯

C

�, (4)

var

�=

�1� ¯

R

�. (5)

Buoy Bias� V ar�

(Deg.)Alghero 4.51 0.036Ancona 9.41 0.230Catania 14.81 0.053Crotone 8.09 0.085La Spezia 2.94 0.056Mazara del Vallo 11.00 0.057Ortona 13.48 0.101Ponza 8.76 0.116Monopoli 5.00 0.121Cetraro 6.39 0.063Capo Gallo -5.21 0.026

Period  considered  2001-­‐2010  

Page 16: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

35°E30°E25°E20°E15°E10°E5°E0°5°W

45°N

40°N

35°NSatellite TracksEnvisat, ERS-2Topex-PoseidonJason-1, Jason-2

Ground  tracks  of  satellites  considered  in  model  validaJon.  Thick  grey  lines  idenJfy  Jason-­‐1  and  Jason-­‐2  tracks.  Black  lines  parJally  overlying  the  grey  ones  symbolize  Topex-­‐Poseidon  tracks  while  thin  dashed  lines  represent  Envisat  and  ERS-­‐2  tracks  

Satellite Repeat Cycle Used Period Track Separation(days) at Equator (km)

Topex-Poseidon 10 Jan. 2001 - Oct. 2005 315Jason-1 10 Jan. 2002 - Dec. 2010 315Jason-2 10 Jun. 2008 - Dec. 2010 315Envisat 35 Oct. 2002 - Oct. 2010 80ERS-2 35 Jan. 2001 - Dec. 2006 80

Jan. 2008 - Dec. 2010

CharacterisJcs  of  satellites  used  in  this  study.  

Numerical wave model validation Numerical Wave model vs satellite altimeter

Page 17: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Satellite Samples Bias Rmse Slope Si

(m) (m)

Topex-Poseidon 457,000 -0.128 0.331 0.912 0.279

Jason-1 910,133 -0.028 0.362 0.979 0.304

Jason-2 242,766 0.024 0.366 1.018 0.303

Envisat 695,768 -0.141 0.385 0.921 0.310

ERS-2 363,336 -0.011 0.426 0.962 0.400

Numerical wave model validation Numerical Wave model vs satellite altimeter

0 2 4 6 8 10 12Hs - Satellite

(m)

0

2

4

6

8

10

12

Hs

- Mod

el(m

)

0

5

10

50

100

250

500

Ent

ries

Sca]er  plot  of  model  vs.  Jason-­‐1  Hs  for  the  enJre  Mediterranean.  Value   pairs   are   grouped   in   0.25  m   wide   bins,   corresponding  areas   are   painted   according   to  the   number   of   entries   in   each  bin.   Dashed   line   is   the   best   fit  line  between  model  and  satellite  data  points.  

StaJsJcs   of   satellite   and  model   significant   wave  height   Hs   comparison   for  the  enJre  Mediterranean.  

Page 18: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Yearly mean climatological energy flux

DistribuJon  of  average  power  per  unit  crest  in  the  Mediterranean  between  2001  and  2010.  

Wave energy assessment for the Mediterranean

J =⇢g2

64⇡TeH

2s

(1)

Page 19: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Seasonal average energy flux

Wave energy assessment for the Mediterranean

Seasonal  distribuJon  of  average  power  per  unit  crest  in  the  Mediterranean.  Averages  are  calculated  for  the  enJre  ten  years  simulaJon.    

Page 20: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Distribution of average wave power flux along Italy

Wave energy assessment along the Italian coasts

DistribuJon  of  average  wave  power  flux  per  unit  crest  olong  the  Italian  coast.  Values  are  calculated  on  a  line  located  12  km  off  the  coast.    Averages  are  calculated  for  the  enJre  ten  years  simulaJon.  

Page 21: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Distribution of average wave power flux along Sicily and west Sardinia

Wave energy assessment along the Italian coasts

DistribuJon  of  average  wave  power  flux  per  unit  crest  on  western  Sardinia  and  Sicilian  coastline.  Values  are  calculated  on  a  line  located  12  km  off  the  coast.    

Page 22: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Wave energy assessment along the Italian coasts Distribution of yearly average wave energy along west Sardinia

DistribuJon  of  wave  energy  as  a  funcJon  of  significant  wave  period  and  significant  wave  height  at  specific  points.  Lower  lea  panel  shows  the  average  yearly  energy  associated  with  sea  states  idenJfied  by  Te  and  Hs  couples.  Do]ed  lines  mark  reference  power  levels.  Upper  panel  shows  the  energy  distribuJon  as  a  funcJon  of  Te  only;  right  panel  as  a  funcJon  of  Hs  only.  Red  lines  in  the  upper  and  right  panels  are  the  cumulaJve  energy  as  a  percentage  of  the  total.  Red  dots  on  the  cumulaJve  lines  marck  each  10th  percenJle.  Rose  plot  in  the  upper  right  panel  shows  energy  distribuJon  over  wave  incoming  direcJon.  Each  circle  represents  20%  fracJons  of  the  total  energy.  

Page 23: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Seasonal average energy flux

Wave energy assessment along the Italian coasts

DistribuJon  of  wave  energy  as  a  funcJon  of  significant  wave  period  and  significant  wave  height  at  specific  points.  Lower  lea  panel  shows  the  average  yearly  energy  associated  with  sea  states  idenJfied  by  Te  and  Hs  couples.  Do]ed  lines  mark  reference  power  levels.  Upper  panel  shows  the  energy  distribuJon  as  a  funcJon  of  Te  only;  right  panel  as  a  funcJon  of  Hs  only.  Red  lines  in  the  upper  and  right  panels  are  the  cumulaJve  energy  as  a  percentage  of  the  total.  Red  dots  on  the  cumulaJve  lines  marck  each  10th  percenJle.  Rose  plot  in  the  upper  right  panel  shows  energy  distribuJon  over  wave  incoming  direcJon.  Each  circle  represents  20%  fracJons  of  the  total  energy.  

2 4 6 8 10 12Te(s)

0

2

4

6

8

10

Hs

(m)

2 kW/m 5 kW/m 10 kW/m

20 kW/m

50 kW/m

100 kW/m

200 kW/m2.g 05

1015

Year

ly E

nerg

y(M

Wh/

m) Yr. Energy: 66.1 (MWh/yr)

Av. Power: 7.6 (kW/m)

0 5 10 15Yearly Energy

(MWh/m)

02550751001251501752002252502753003253503754004254504755007501000150020002500

Year

ly E

nerg

y(k

Wh/

m)

N

Page 24: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Seasonal average energy flux

Wave energy assessment along the Italian coasts

DistribuJon  of  the  Coefficient  of  VariaJon  (COV  )  of  the  yearly  average  power  fluxes  for  years  2001-­‐2010  around  Italy.  

COV =�

µ(1)

Page 25: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

High resolution numerical modeling approach Numerical Wave model description

!

WAM    (1/16°x1/16°)  

MIKE21  SW  

WAM/SWAN  (1/120°x/120°)  Prof.  Felice  Arena  

!

Page 26: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

!

Wave energy assessment along Pantelleria island

7  Km  res.   800  m  res.  

10  km  

!

Griglia  uJlizzata  per  il  modello  di  trasformazione  dell’onda  nell’area  campione  di  Pantelleria.  Rappresentazione  del  tra]o  di  maggiore  interesse  per  lo  studio.    

!

!

Distribution of yearly average (2001-2010) wave energy around PANTELLERIA

Prof.  Felice  Arena  

Page 27: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  OMC  2013  –  Ravenna  20-­‐22  March  

■  Tidal currents: water flow resulting from the filling and emptying of coastal regions as a result of the tidal rise and fall.

Tidal energy assessment for the Mediterranean Mediterranean and strait models

Page 28: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Mediterranean and strait models

Tidal energy assessment for the Mediterranean

Page 29: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Mediterranean tidal model

Tidal energy assessment for the Mediterranean

Model  implemented:  MITgcm  -­‐  Barotropic    Resolu8on  1/16°  x  1/16°  (about  7Km)    

Page 30: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Mediterranean tidal model validation

Tidal energy assessment for the Mediterranean

Model  and  observed  Amplitude  and  Phase  comparison.  Observed  data  come  from  63  Jdal  gauges  located  around  the  basin.  

Page 31: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Mediterranean tidal model

Tidal energy assessment for the Mediterranean

Model  implemented:    MITgcm  -­‐  Barotroclinic    Resolu8on  1/16°  x  1/16°  (about  7Km)    

Page 32: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Strait of Gibraltar model

Tidal energy assessment for the Strait of Gibraltar

Model  implemented:  MITgcm    Resolu8on  1/200°  x  1/200°  

Page 33: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Strait of Messina model

Tidal energy assessment for the Strait of Messina

Model  implemented:  MITgcm    Resolu8on  1/200°  x  1/200°  

Punta  Pezzo  

Messina  

Ganzirri  

Page 34: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Tidal energy assessment for the Strait of Messina Strait of Messina model

POM  simulaJon  Grid:138X161    

Variable  resoluJon  

dx  =  78:249  m  

dy  =  119:280  m  

Two  models  implemented:  

POM  2D  barotropic  

MITgcm  3D  baroclinic    

 

Components  applied:    

M2,  S2,  N2,  K2,  K1,  O1,  P1    

Page 35: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Table:  Amplitude  and  Phase  for  M2,  as  simulated  by  POM  and  observed  in  some  locaJon  in  the  strait.    

Tidal energy assessment for the Strait of Messina

Two  models  implemented:  

POM  2D  barotropic  

MITgcm  3D  baroclinic    

 

Components  applied:    

M2,  S2,  N2,  K2,  K1,  O1,  P1    

Strait of Messina model

Page 36: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

!Bathymetry  used  for  the  3D  simulaJon  perfomed  with  MITgcm    

Forcing  derived  from  the  

POM  simulaJon.  

Tidal  component  applied:  

M2,  S2,  N2,  K2,  K1,  O1,  P1    

Simulazione  MITgcm  Grid:300X840x55    

Ris.  Variabile    

dx  =  50:70  m  

dy  =  50:80  m  

Tidal energy assessment for the Strait of Messina Strait of Messina model

Page 37: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Principal Investigator Prof. D. Coiro

§  Devices

o  Kobold o  Fri-El o  GEM o  SeaGen MCT (Marine Current Turbine) o  Verdant Power

Tidal energy assessment for the Strait of Messina Conversion devices considered

Page 38: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Il  sistema  SeaGen  è  cosJtuito  da  una  coppia  di  turbine  idrauliche  montate  su  una  torre  di  supporto  rigidamente  ancorata  al  fondo  del  mare.  Le  turbine  sono  montate  su  un  braccio  che  può  essere  sollevato  fino  alla  superficie  per  scopi  di  manutenzione  e  immerso  alla  profondità  di  esercizio.  Il  sistema  è  stato  installato  in  diversi  siJ  di  prova  ed  in  diversi  modelli  e  dimensioni.  In  parJcolare  è  presente  sia  un  modello  in  cui  è  prevista  una  pia]aforma  affiorante,  mentre  per  fondali  più  profondi  è  previsto  un  sistema  completamente  sommerso.    

P = 12�V

3SCP

Cp =  Coeff.  Potenza    (misura  effic.  conv.  energica  cineJca/meccanica)  

CP = 0.46

�t ⇠= 0.8

⌘t =                      rendimento  totale  

Configurazione  con  due  turbine  con  diametro  pari  a  circa  11  m  e  con  potenza  massima  di  circa  280  kW  a    2  m/s.  

Tidal energy assessment for the Strait of Messina

- SeaGen

Page 39: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Il  sistema  Kobold,  proge]ato  in  collaborazione  con  il  diparJmento  di  Proge]azione  AeronauJca  dell’Università  di  Napoli  a  parJre  dagli  anni  ’90,  è  stato  realizzato  in  protoJpo  dalla  società  “Ponte  di  Archimede”.  Il  sistema  prevede  una  turbina  ad  asse  verJcale  montata  su  un  albero  connesso  ad  un  generatore  ele]rico  installato  a  bordo  di  una  boa  galleggiante  in  grado  di  fornire  le  necessarie  cara]erisJche  di  tenuta  al  mare.  

P = 12�V

3SCP

�t ⇠= 0.8

CP = 0.3

Cp =  Coeff.  Potenza    (misura  effic.  conv.  energica  cineJca/meccanica)  

⌘t =                      rendimento  totale  

Altezza  della  pala:  H=6.2  m  Raggio  della  turbina:  R=3.1  m  

- Kobold

Tidal energy assessment for the Strait of Messina

Page 40: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Il  sistema  GEM,  anche  denominato  “aquilone  del  mare”,  consiste  in  una  stru]ura  galleggiante  che  supporta  due  turbine  idrauliche,  eventualmente  intubate  in  alcune  configurazioni,  per  incrementare  l’efficienza  della  conversione  energeJca.  La  stru]ura  è  collegata  a]raverso  un  cavo  di  ormeggio  ad  un  ancoraggio  al  fondo  marino,  cosJtuito  anche  da  un  semplice  corpo  morto.  Il  sistema  può  orientarsi  autonomamente  nella  direzione  della  corrente,  consentendo  l’uJlizzo  del  sistema  anche  in  regimi  di  correnJ  alternanJ  s  

P = 12�V

3SCP

�t ⇠= 0.8Cp =  Coeff.  Potenza    (misura  effic.  conv.  energica  cineJca/meccanica)  

⌘t =                      rendimento  totale  

raggio  delle  turbine:  R=1.54  m  raggio  del  diffusore:  2.5  m  lunghezza  totale:  9  m  larghezza  totale:  9  m  altezza  totale:  6  m  

CP = 0.75

Tidal energy assessment for the Strait of Messina

- GEM

Page 41: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Il  sistema  Fri-­‐El,  sviluppato  dalla  FRi-­‐El  SpA,  con  la  collaborazione  dell’università  di  Napoli,  è  cosJtuito  da  una  serie  di  turbine  idrodinamiche  ad  asse  orizzontale  montate  su  un  albero  snodato,  denominato  filare,  composto  da  una  successione  di  tubi  di  opportuna  lunghezza  connessi  tra  loro  mediante  giunJ  cardanici.  Ciascun  filare  è  connesso  ad  una  generatore  installato  su  un  pontone  galleggiante:  ciò  fornisce  il  vantaggio  di  evitare  parJ  ele]riche  immerse.    

P = 12�V

3SCP

�t ⇠= 0.8Cp =  Coeff.  Potenza    (misura  effic.  conv.  energica  cineJca/meccanica)  

⌘t =                      rendimento  totale  

numero  di  filari:  4  numero  di  turbine  per  filare:  3  

CP = 0.316

Tidal energy assessment for the Strait of Messina

- Fri-El

Page 42: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Il  sistema  Verdant  Power  Free  Flow  è  cosJtuito  essenzialmente  da  una  singola  turbina  tripala  ad  asse  orizzontale  installata  su  una  torre  di  supporto  carenata  e  fissata  al  fondale.  Il  sistema  è  completamente  sommerso,  riducendo  l’impa]o  visivo  e  l’interferenza  con  altre  avvità.  La  turbina  è  regolata  a  stallo  ed  è  montata  su  una  navicella  in  configurazione  downstream.  L’unità  di  produzione  è  fornita  di  un  sistema  di  rotazione  di  imbardata  che  consente  l’allineamento  passivo  alla  corrente,  consentendone  il  funzionamento  in  diverse  direzioni  di  flusso.    

P = 12�V

3SCP

�t ⇠= 0.8Cp =  Coeff.  Potenza    (misura  effic.  conv.  energica  cineJca/meccanica)  

⌘t =                      rendimento  totale  

Diametro  5m  

CP = 0.336

Tidal energy assessment for the Strait of Messina

- Verdant Power Free Flow

Page 43: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Power  curve  considered  for  the  5  -­‐    1  MW  -­‐  devices  

Tidal energy assessment for the Strait of Messina Devices: technical assumption

Page 44: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

!Tabella:  Dimensioni  caraaeris8che  per  il  sistema  MCT  SeaGen  

Tidal energy assessment for the Strait of Messina

- SeaGen geometry details

Page 45: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Tabella:  Dimensioni  caraaeris8che  per  il  sistema  GEM  

Tidal energy assessment for the Strait of Messina

- GEM geometry details

Page 46: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Tabella:  Dimensioni  caraaeris8che  per  il  sistema  KOBOLD  

!

Tidal energy assessment for the Strait of Messina

- Kobold geometry details

Page 47: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Tabella:  Dimensioni  caraaeris8che  per  il  sistema  Fri-­‐EL  !

Tidal energy assessment for the Strait of Messina

- Fri-EL geometry details

Page 48: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Tabella:  Dimensioni  caraaeris8che  per  il  sistema  Verdant  Power  !

Tidal energy assessment for the Strait of Messina

- Verdant Power geometry details

Page 49: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Densità  di  installazione  per  i  sistemi  consideraJ  di  taglia  1  MW.  

Tidal energy assessment for the Strait of Messina

Devices: Installation density

Page 50: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Aree  di  installazione  prescelte  (blu)  con  indicazione  dei  siJ  di  misura  e  delle  curve  isobaJmetriche  a  -­‐20  m  e  a  -­‐150  m.  In  figura  sono  evidenziate  aree  di  potenziale  interesse  non  uJlizzabili  per  limiJ  di  navigabilità  (rosso)  o  per  difficoltà  connesse  alla  baJmetria  (giallo).  

Aree  di  installazione  di  ipoteJche  fa]orie  energeJche  marine  

Tidal energy assessment for the Strait of Messina

Devices: Potential installation sites

Page 51: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Tidal energy assessment for the Strait of Messina

- SeaGen potential energy production

Page 52: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Tidal energy assessment for the Strait of Messina

- GEM potential energy production

Page 53: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Tidal energy assessment for the Strait of Messina

- Fri-EL potential energy production

Page 54: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Tidal energy assessment for the Strait of Messina

- Verdant Power potential energy production

Page 55: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Tidal energy assessment for the Strait of Messina

- Kobold potential energy production

Page 56: GianmariaSannino,A.Carillo,A. Bargagli,E. Caiaffa’ and wave energy...Cetraro 28/02/1999 05/04/2008 16630 21209 78.4 Ancona 10/03/1999 31/05/2006 10212 15812 64.6 Capo Comino 01/01/2004

OMC  2013  –  Ravenna  20-­‐22  March  

Sea energy assessment - Conclusions

u Numerical models, both for wave and currents, when implemented at high resolution, can be used to asses the sea energy potential.

u Within the Mediterranean basin, the Italian coasts are the most energetic in terms of wave potential.

u The most energetic regions along the Italian coast are the north-west and

south-west coast of Sardinia and the Sicily Channel.

u Tides in the Strait of Messina are potentially good to be extracted by means of already developed tidal devices