48
Sustainable Palm Oil Production for Bio-Energy GHG-LCA of biofuels in Thailand – results from the field and building human and institutional capacity Sustainable Palm Oil Production for Bio-Energy capacity Mr.Daniel Mr.Daniel May May Project Director

GHG-LCA of biofuels in Thailand – results from the field

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Sustainable Palm Oil Production for Bio-Energy

GHG-LCA of biofuels in Thailand – results from

the field and building human and institutional

capacity

Sustainable Palm Oil Production for Bio-Energy

capacity

Mr.DanielMr.Daniel MayMayProject Director

Sustainable Palm Oil Production for Bio-Energy

ContentContent

ObjectiveObjective

Work flow

System boundary and methodology System boundary and methodology

Study result

Benefits

2

Sustainable Palm Oil Production for Bio-Energy

ObjectivesObjectives

1. Emission factors for all

stages of the palm oil life

cycle

2. GHG calculation

methodology to promote methodology to promote

consistency and good

practice

3. Recommendations on

GHG reduction options

4. Recommendations for

policy makers

3

Sustainable Palm Oil Production for Bio-Energy

ContentContent

Objective

Work flow Work flow

System boundary and methodology System boundary and methodology

Study result

Benefits

4

Sustainable Palm Oil Production for Bio-Energy

Work flowWork flow

(1)Preparation

(2)Implementation

(3)

Data verification

(4)

Result dissemination

5

Whole process takes overall two years!

Sustainable Palm Oil Production for Bio-Energy

11. Preparation. Preparation

Finding key partners

Set up GHG working group

(Advisor Board and Technical

Team)

Recruit PO industry

6

• Relevant institutes joined the workshop ⇨ seek for

potential partners

• All selected partners

joined the workshop to

define a mutual

agreement on roles and

responsibilities of each

institute

• Advisory Board signed

Implementation Agreement

• Technical Team signed

the working contract

• Office of Agricultural

Economics under MoAC

officially announced the

working group through

Letter of order

• Set up the meetings to

seek for participating

companies

• GIZ and participating

companies signed the data

confidentiality agreement

Sustainable Palm Oil Production for Bio-Energy

No. of participating companiesNo. of participating companies– Land use change (5 plantations in 5 provinces)

– Oil palm plantations (544 smallholders and 8 large-scale growers)

⇨ Location of planting areas selected from all over the

country and according to different growing conditions

country and according to different growing conditions

(rainfall, soil etc.)

– Mill: 14 plants (wet process) and 1 dry process

⇨ ~32% of total capacity

– Refinery: 6 plants

⇨ ~63% of total capacity

– Biodiesel: 7 plants

⇨ ~83% of total capacity7

Sustainable Palm Oil Production for Bio-Energy

22. Implementation. ImplementationTechnical Technical Team Team

(11 meetings)

• Identify system boundary and

calculation method

• Data collection – Data analysis –

GHG calculation

•Finalize the result

Advisory Advisory Board Board (7 meetings)

Monitor and steer the overall work

and ensure the result is correct

and suit for Thai PO industry

Regularly report

the work progress

Provide the

feedbacks

8

•Finalize the result

Coordinated by

External External ConsultantConsultant

Provide technical advise to keep Thai method be in line

with EU-RED requirement

feedbacks

Mid process : Working Group Workshop

Sustainable Palm Oil Production for Bio-Energy

• Data, calculation method and result are verified by the carbon footprint verifiers registered with Thailand Greenhouse Gas Management Organization (TGO).

• Advisory Board agreed with the calculation method and final result developed by Technical Team.

3. Data verification3. Data verification

final result developed by Technical Team.

• Set up the stakeholder consultation meeting to get agreement on result dissemination.

9

Sustainable Palm Oil Production for Bio-Energy

1. Capacity buildings for Thai Palm Oil Industry and Government concerned through several trainings.

2. Publish the result in any academic journals at national and international levels

3. Final reports will be published on TGO and OAE website

4. Result dissemination4. Result dissemination

3. Final reports will be published on TGO and OAE website

4. Emission factors (EFs) developed under the study were endorsed by TGO as specific EF for palm oil industry sector ⇨ product carbon footprint assessment

5. Data derived from the study will be further developed as Thai national life cycle inventory database Thai national life cycle inventory database for oil palm sector by MTEC and OAE

10

Sustainable Palm Oil Production for Bio-Energy

Thai national LCI databaseThai national LCI database

Aug 19, 2011 11

Sustainable Palm Oil Production for Bio-Energy

ContentContent

Objective

Work flow

System boundary and methodology System boundary and methodology System boundary and methodology System boundary and methodology

Study result

Benefits

12

Sustainable Palm Oil Production for Bio-Energy

System boundarySystem boundary

Oil palm

cultivation

Palm oil

milling

Land use

changeFresh fruit

bunches

Palm kernels

Wastewater

Empty fruit

bunches

Crude

palm oilCosmetic

JGSEE TEI

PSU

13

Refining

Biodiesel

productionBiodiesel

palm oil

Stearin Olein

Glycerol

Refined PO

Fractionation

To PKO refinery

Other uses

Cosmeticindustry

Vehicles

KU

TEI

PFAD

Sustainable Palm Oil Production for Bio-Energy

MethodologyMethodology

Life Cycle Assessment : LCA

14

Sustainable Palm Oil Production for Bio-Energy

Functional unit • 1,000 kg of each product

Data Allocation• By energy

MethodologyMethodology

Data Cut-off

• Emission factor of palm seed production

Data substitution

• Emission factor (EF) of Additives used in biodiesel

production => substituted by the highest EF of phenolic

group

15

Sustainable Palm Oil Production for Bio-Energy

ContentContent

Objective

Work flow

System boundary and methodology System boundary and methodology

Study result Study result

Benefits

16

Sustainable Palm Oil Production for Bio-Energy

% GHG saving

EUEU--RED requirementRED requirement50% (2017)60% (2018) 35% (2012)

17

Kg CO2 eq/ MJ fuel

6767%%

5454%%

6363%%

81%81%

Cultivation

Sustainable Palm Oil Production for Bio-Energy

ContentContent

Objective

Work flow

System boundary and methodology System boundary and methodology

Study result

BenefitsBenefits

18

Sustainable Palm Oil Production for Bio-Energy

BenefitsBenefits –– Private sectorPrivate sector

1. Data from the project study can be used

for product carbon footprinting and

labeling

2. GHG optimization options 2. GHG optimization options

recommended by the project can be

used for short and long term planning

towards the carbon neutral company

and Corporate social responsibility

policies

3. Increase the competitiveness

Sustainable Palm Oil Production for Bio-Energy

Benefits Benefits -- GovernmentGovernment

1. Supportive info for policy makers in formulating policies and strategies towards GHG reduction for whole supply chain of palm oil industry

⇨ low carbon economy⇨ low carbon economy

2. Development of Thai National Life Cycle Inventory Database of agricultural sector for further research concerning agricultural product

3. Supportive information for International Negotiations i.e. Climate negotiations

Sustainable Palm Oil Production for Bio-EnergySustainable Palm Oil Production for Bio-Energy

Contact Info:

Mr. Daniel May E: [email protected]

Ms. Kanokwan Saswattecha E: [email protected]

21

Sustainable Palm Oil Production for Bio-EnergySustainable Palm Oil Production for Bio-Energy

AnnexAnnex

22

AnnexAnnex

Sustainable Palm Oil Production for Bio-Energy

Land use changeLand use change•• Land use change scenarios Land use change scenarios were

chosen from data collected from 52

farmers in various parts of Thailand

• GHG calculations were done with

literature default values and literature default values and

equations based on the farming

practices.

• IPCC’s 2006 Guidelines for

National Greenhouse gases

Inventory

– Stock-Difference method is

chosen for the study

23

Sustainable Palm Oil Production for Bio-Energy

Land use change scenariosLand use change scenarios

• Cropland converted to cropland

– Rubber to Palm

– Crop farm to Palm

– Fruit orchard to Palm

Change in

biomass C

stock

Change in

biomass C

stock

– Paddy rice to Palm

• Land converted to cropland

– Forest to Palm

– Unused land to Palm

Land

use

change

Land

use

change

Change in

soil C stock

Change in

soil C stock

Non-CO2

GHG

emissions

from LUC

Non-CO2

GHG

emissions

from LUC

Change in

DOM C

stock

Change in

DOM C

stock

24

Sustainable Palm Oil Production for Bio-Energy

GHG balance comparisonGHG balance comparisonCase example GHG balance (Ton CO2eq /ha/yr)

First approach1 Second approach2

Rubber 8.72 -2.16

Field crop -17.55 -2.67

Fruit orchard -12.82 0

Paddy field -17.69 -1.79Paddy field -17.69 -1.79

Forest 8.51 24.41

Unused land -18.89 -2.98

Note: 1. Consider crop biomass and dead organic matter as ‘carbon stock’

2. Not consider crop biomass and dead organic matter as ‘carbon stock’

25

Sustainable Palm Oil Production for Bio-Energy

Active Ingredient

Production

Process

N-Fertilizer

Production

Process

P-Fertilizer

Production

Transportation

To Thailand

Ports

Transportation

To Thailand

Ports

Transportation

To Thailand

Mixed Fertilizer Production

Process

Transportation From

Suppliers To

Cultivation Fields

Transportation From

Agro-Chemical

Production Process

Transportation From

Suppliers To

Cultivation Fields

Local

Transportation

To Plant

Local

Transportation

To Plant

Local

Transportation

Import

CultivationCultivation

System boundary

Production

Process

K-Fertilizer

Production

Process

Boron-Fertilizer

Production

Process

Kieserite

Production

Process

To Thailand

Ports

Transportation

To Thailand

Ports

Transportation

To Thailand

Ports

Transportation

To Thailand

Ports

Oil Palm Seed

Production Process

Organic Fertilizer

Production Process

Transportation From

Suppliers To

Cultivation Fields

Transportation From

Suppliers To

Cultivation Fields

Oil Palm

Cultivation

Process

To Plant

Local

Transportation

To Plant

Local

Transportation

To Plant

Local

Transportation

To Plant

ElectricityProduction

FuelProduction

FFB

26

Sustainable Palm Oil Production for Bio-Energy

SubSub--SystemSystemSeeding

Pre-Nursery 0-2 years 3-5 years

CultivationNursery

27

Main-Nursery6-9 years

15-25 years

10-14 years

Sustainable Palm Oil Production for Bio-Energy

Upper Southern

Prachuapkhirikhan

Eastern

Chonburi, Trat

Eastern-Lower Southern

Chumphon, Suratthani,

Western-Lower

Data CollectionData Collection

Western-Lower Southern

Krabi, Trang,

Classified by amount of rainfall annually

28

Sustainable Palm Oil Production for Bio-Energy

– Eastern Thailand• Large Scale Cultivation• Small Farm Cultivation

– Upper Southern Thailand

• Large Scale Cultivation• Large Scale Cultivation• Small Farm Cultivation

– Eastern-Lower Southern Thailand

• Large Scale Cultivation• Small Farm Cultivation

– Western-Lower Southern Thailand

• Large Scale Cultivation• Small Farm Cultivation

Sustainable Palm Oil Production for Bio-Energy

% Study area coverage

Study area

No. of small

scaled plantatio

n

No. of large

scaled plantati

on

Sampled area

Rai

Planted area in 2009

% Sampled area covera

ge

30

n on ge 1. East 75 1 9,139 3,888,4

03

0.24

2. Upper south

50 2 1,646 3,888,4

03

0.04

3. Lower south –east coast

274 4 35,945 3,888,4

03

0.92

4. Lower 145 1 18,550 3,888,4 0.48Source: Office of agricultural

Economics

Sustainable Palm Oil Production for Bio-Energy

Oil PalmManagement:

Productive Period(0-2 Years)

Oil PalmManagement:e

eN

eP1

e

ePeTotal eS eN eP+ += eP eP1 eP2 eP3+ +=

eN eN1 eN2+=

GHG calculationGHG calculation

eP4+ eP5+

Seeding

Pre-Nursery

Main-Nursery

Management:Productive Period

(3-5 Years)

Oil PalmManagement:

Productive Period(6-9 Years)

eS eP2

eP3

eN1

eN2 Oil PalmManagement:

Productive Period(10-14 Years)

Oil PalmManagement:

Productive Period(16-25 Years)

eP4

eP5

31

Sustainable Palm Oil Production for Bio-Energy

MethodologyMethodology

Functional unit • 1,000 kg of FFB

Data Allocation• none• none

Data Cut-off

• Emission factor of seed production

Data substitution

• none

32

Sustainable Palm Oil Production for Bio-Energy

GHG calculation worksheetลำดับที่ ชื่อเกษตรกร พันธุ์ปาล์ม อายุ พื้นที่ปลูก ต้นปาล์ม ผลผลิตเฉลี่ย ผลผลิต รอบเก็บทะลาย จังหวัด

(ปี) (ไร่) (ต้น) (กิโลกรัม/ไร่/ปี) (กิโลกรัม/รอบ) (วัน/รอบ)

1.00 1

1.00 2

1.00 3

1.00 4

1.00 5

0.00 0.00

5.00 1

5.00 2

5.00 3

5.00 4

5.00 5

0.00 0.00

อายุ 0

-2 ปี

อายุ 3

-5 ปี

33

6.00 1

6.00 2

6.00 3

6.00 4

6.00 5

0.00 0.00

10.00 1

10.00 2

10.00 3

10.00 4

10.00 5

0.00 0.00

18.00 1

19.00 2

20.00 3

20.00 4

20.00 5

0.00 0.00

กรอกข้อมูล

อายุ 1

0-1

4 ปี

อายุ 1

5-2

5 ปี

อายุ 6

-9 ปี

Sustainable Palm Oil Production for Bio-Energy

Study resultStudy resultG

HG

em

iss

ion

(Kg

CO

2e

/ T

on

FF

B) Thailand average 74

Best observation 52

Study Area Small Large

34

GH

G e

mis

sio

n

(Kg

CO

2e

/ T

on

FF

B)

Study Area Small Large

East 71 76

Upper South 58 52

Lower South - east

coast 82 73

Lower South - west

coast 71 64

Sustainable Palm Oil Production for Bio-Energy

Palm oil millPalm oil millData collected from14 participating mills (10 mills with BG

capture and 4 mills w/o BG capture) ⇨ ~32% of total production capacity in Thailand

FFB Transport

CPO

PK

Product

35

FFB

Chemical

Fuel

Electricity

Transport

Transport

Transport

Fuel

CPO Process:

Fuel

combustion

PK

EFB

Shell

Fiber

Wastewater Treatment Plant

Decanter cake

By-Product

Waste

System Boundary

Empty package

Sustainable Palm Oil Production for Bio-Energy

MethodologyMethodology

Case I, Wastewater treatment system with biogas recovery system

EWastewater = EWastewater, treatment + ESludge, treatment + EWastewater,

ETotal = EFFB + EChemical + EEnergy + Ewastewater + ESolidWaste

36

EWastewater = EWastewater, treatment + ESludge, treatment + EWastewater,

discharge

+ ESludge, final + EFugitive + EBiomass + Eflaring

Case II, Wastewater treatment system without biogas recovery system

EWastewater = EWastewater, treatment + ESludge, treatment + EWastewater, discharge

+ ESludge, final

Remark : equation was referenced from UNFCCC guideline

Sustainable Palm Oil Production for Bio-Energy

MethodologyMethodology

Functional unit • 1,000 kg of CPO

Data Allocation• Energy• Energy

Data Cut-off

• None

Data substitution

• None

37

Sustainable Palm Oil Production for Bio-Energy

GHG calculation worksheetInputs Data Inputs Data Outputs Data

Item Unit Amount Name Unit Amount Referance Source

FFB usage FFB usage FFB usage

Total of FFB ton 0 - FFB 1.1 FFB produc

FFB ���������� % 0 FFB ���������� kg CO2e/ton FFB 71.135GIZ, 2011 FFB ����������

FFB ���������� % 0 FFB ���������� kg CO2e/ton FFB 64.099GIZ, 2011 FFB ���������

Total

FFB transportation FFB transportation 1.2 FFB transpo

1. �������-����� 1. �������-����� 1. �������-���

������ FFB % 0 10 km -80% kg CO2e/ton FFB 3.93GIZ, 2011 10 km -80%

20 km - 15% kg CO2e/ton FFB 7.86GIZ, 2011 20 km - 15%

38

30 km - 5% kg CO2e/ton FFB 11.79GIZ, 2011 30 km - 5%

Total

2. �������-������ ��� ����� - ������ 2. �������-������ ��� ����� - ������ 2. �������-����

����������� 1 ����������� 1 ����������� 1

������ 4 wheels truck Full load 4 wheels truck kg CO2e/ton-km 0.2247TGO,2010

������������ 1 ������ tons 1.5 No load 4 wheels truck kg CO2e/km 0.2523TGO,2010

������������ 1 ������ km 0

������ FFB �������� % 0

����������� 2 ����������� 2 ����������� 2

������ 10 wheels truck Full load 10 wheels truck kg CO2e/ton-km 0.0425TGO,2010

������������ 1 ������ tons 16 No load 10 wheels truck kg CO2e/km 0.5429TGO,2010

������������ 1 ������ km 0

������ FFB �������� % 0

Sustainable Palm Oil Production for Bio-Energy

Study resultStudy result

GH

G e

mis

sio

n

(Kg

CO

2e

/ T

on

Pro

du

ct)

Study case CPO Shell PK

Mill with CH4

capture750 322 536

39

GH

G e

mis

sio

n

(Kg

CO

2e

/ T

on

Pro

du

ct)

capture

Mill w/o CH4

capture1087 467 726

Thailand

average871 373 646

Best

observation440 192 -

Sustainable Palm Oil Production for Bio-Energy

Palm oil refineryPalm oil refinery

Data collected from 6

participating factories

Palm oil refining

CPO

1

Fuel Elec. Chemicals

participating factories

⇨ ~63% of total production

capacity in Thailand

System boundary

40

RBDPO PFAD

RBO Stearin RBO Olein

Fractionation

2

Sustainable Palm Oil Production for Bio-Energy

Functional unit • 1,000 kg of each product

Data Allocation• By energy

MethodologyMethodology

• By energy

Data Cut-off

• None

Data substitution

• None

41

Sustainable Palm Oil Production for Bio-Energy

GHG calculation worksheet

������������ : Waste water treatment

����������� : U4

������������ : Treated water 1 m3""""""" /

���������������������� :

���/�����/��:

�������� : ������������� ������������ MSDS ��������������������, cas number , %����������

������������

""""""""""""":

"""""""""""""""""""" (""." """ "".):

"""""""""""""""""""""""""""""""""

�������������������������������������

42

"""""""""""""""""""""""""""""""""

������������������������������������ (Effluent) ������

BOD mg/L

COD 80mg/l 0.00008ton/m3

Oil & Grease mg/L

Total Suspened solid mg/L

���������-�������� ������ ������-��������� ����� �������� 2009 ��������� PUEF (kgCO2eq/unit)GHG (kgCO2eq/unit)���������������������

Input """"""""""""""""" """"""""""""" m3

#DIV/0! #DIV/0!

Input """"" """"""" kWh #DIV/0! 0.5610 #DIV/0!

Output """""""""""""""" """"""""""""" m3

#DIV/0! #DIV/0!

Output CH4 """"""""""" kg #DIV/0! 25 #DIV/0!

Output """""""" """"""""""" kg #DIV/0! 2.5300 #DIV/0!

Output BOD """"""""""" kg #DIV/0! #DIV/0!

Output COD """"""""""" kg #DIV/0! #DIV/0!

Output Oil & Grease """"""""""" kg #DIV/0! #DIV/0!

Output Total Suspened solid""""""""""" kg #DIV/0! #DIV/0!

GHG/PU #DIV/0!

Sustainable Palm Oil Production for Bio-Energy

Study resultStudy result

GH

G e

mis

sio

n

(Kg

CO

2e

/ T

on

pro

du

ct)

Study case RBDPO PFAD Olein Stearin

Mill with CH4

capture 865 898 891 967

43

GH

G e

mis

sio

n

(Kg

CO

2e

/ T

on

pro

du

ct)

Mill w/o CH4

capture 1206 1252 1225 1329

Thailand

average 987 1205 1010 1096

Best

observation 466 494 461 500

Sustainable Palm Oil Production for Bio-Energy

CPO

Palm Stearine

RBDPO

Methanol

KOH

Foreign

Data collected from 7

participating factories

Biodiesel productionBiodiesel production

Biodiesel production

KOH

H2SO4

NaOH

HCl

H3PO4

Fuel oil

Oil palm shell

LPG

Harbour

⇨ ~87% of total

capacity in Thailand

Product

B100

By-product

Glycerin

System boundary

44

Sustainable Palm Oil Production for Bio-Energy

Which data are needed?Which data are needed?Palm oil _xx__ kg

Palm stearine xx kg

Energy used

-Electricity _xx_ kWh

- Steam __xx_ kg

Biodiesel _xx__ kg

Glycerine _xx__ kg

Wastewater __xx_ kg

GHGb= + +11 22 33

11

33

45

- Water _xx__ kg

Wastewater __xx_ kg

- BOD _xx__ kg

Air emission

- CO2 _xx__ kg

- SO2 _xx__ kg

Chemical substance

-NaOH _xx__ kg

- KOH _xx_ kg

- Methanol _xx_ kg

- CH3NaO _xx__ kg

GHG emissions from energy used 11

22 GHG emissions from chemical substance

33 GHG emissions from process or wastewater

22

Sustainable Palm Oil Production for Bio-Energy

MethodologyMethodology

Functinal unit• 1,000 kg of B100

Data Allocation• Energy

Data Cut-off

• None

Data substitution

• Emission factor of Additives => substituted by the highest EF of phenolic group

46

Sustainable Palm Oil Production for Bio-Energy

GHG calculation worksheetUnit Amount

Main product Biodiesel kg 1000.00

Crude Glycerine kg 124.42

K2SO4 kg 8.18

Unit Amount GHG emissions GHG emissions*

CPO kg 0.00 0.00

RBDPO kg 0.00 0.00

PFAD kg 0.00 0.00

Palm Stearin kg 0.00 0.00

CPO kg 0.00 0.00

RBDPO kg 0.00 0.00

PFAD kg 0.00 0.00

Palm Stearin kg 0.00 0.00

CPO kg 327.80 285.51 263.34

1. Production

Case 2

Case 1

Main Materials

Input

Allocation factor

0.92ProductCoproduct

Product

47

CPO kg 327.80 285.51 263.34

RBDPO kg 354.79 350.17 322.98

PFAD kg 10.08 12.15 11.20

Palm Stearin kg 323.65 354.72 327.17

CPO kg 0.00 0.00

RBDPO kg 0.00 0.00

PFAD kg 0.00 0.00

Palm Stearin kg 0.00 0.00

1002.55 924.69

Tap water kg 369.60 9.76E-03 9.00E-03

Softening water kg 605.27 1.56E-02 1.44E-02

Demin & clarified water kg 13.63 1.08E-02 9.98E-03

Alcohol Methanol kg 127.07 9.35E+01 8.63E+01

KOH kg 9.04 1.72E+01 1.58E+01

NaOH kg 0.40 4.85E-01 4.47E-01

NaOCH3 kg 2.86 1.39E+01 1.28E+01

H2SO4 kg 7.09 6.47E-01 5.97E-01

HCl kg 1.97 1.76E+00 1.63E+00

Citric acid kg 0.15 1.75E-01 1.61E-01

Base NaOH kg 0.18 1.91E-01 1.76E-01

H3PO4 kg 1.63 2.32E+00 2.14E+00

Beaching eart kg 5.24 1.53E-02 1.41E-02

Support materials

Water

Catalyst

Acid

Deguming & Beaching

Case 3

SUM

Case 4

Main Materials

Sustainable Palm Oil Production for Bio-Energy

Study resultStudy resultG

HG

em

iss

ion

(Kg

CO

2e

/ T

on

pro

du

ct)

Study case Biodiesel Glycerin

Mill with CH4

capture 971 577

48

GH

G e

mis

sio

n

(Kg

CO

2e

/ T

on

pro

du

ct)

capture 971 577

Mill w/o CH4

capture 1359 810

Thailand average 1087 646

Best observation 558 319