32
Célia Ghedini Ralha [email protected] www.cic.unb.br/~ghedini/

[email protected] ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Célia  Ghedini  Ralha  [email protected]  

www.cic.unb.br/~ghedini/  

Page 2: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Topics

  Background (1)   Justification/Motivation/Problem (1)   Project Goals (1)   Methodology

  Empirical Characterization (7)   Conceptual Structure (13)

  MASE Prototype (3)   Architectural & Implementational Aspects

  Case Study – the Brazilian Cerrado (2)   Simulations & Results

  Conclusions & Future Directions (2)

Page 3: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Background

•  InfoKnow  -­‐  Computer  Systems  for  Informa>on  and  Knowledge  Treatment  Group  –  Registered  CNPq  –  Brazil’s  Na>onal  Council  for  Scien>fic  &  Technological  Development                                                

(hOp://dgp.cnpq.br/buscaoperacional/detalhegrupo.jsp?grupo=024010360AHR2C)  

•  Gerd  Wagner’s  visit  UnB:  AOR  short  course  &  talk  Brazilian  Symposium  of  Informa>on  Systems  (SBSI  2009)  

•  Agent-­‐based  simula>on  project  –  Research  Topic  -­‐  Environmental  Management  

•  Researchers  LISA  -­‐  Laboratory  of  Image,  Signal  and  Audio  –  Alexandre  ZagheOo  &  Bruno  Luiggi  M.  Espinoza  

•  Students  –  Master  –  Carolina  Gonçalves  Abreu  (graduated  March  2012)  –  Bachelor  –  Cássio  Giorgio  Couto  Coelho  (graduated  July  2012)  

Page 4: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Justification/Motivation/Problem

•  The  paOerns  of  change  in  >me  and  space  are  produced  by  the  interac>on  of  biophysical  processes  and  socioeconomic  processes    

How  to  represent  such  interac8on?  

•  Agent-­‐based  modeling  (ABM)  &  Mul>agent  systems  (MAS):    natural  metaphor  for  analyzing  models  and  theories  of  interac>vity  in  human  socie>es  

  The  environment  is  a  global  challenge    earth's  natural  processes  transform  local  problems  into  interna>onal  issues  -­‐  global  

warming,  hazardous  waste,  ozone  deple>on,  acid  rain,  air  &  water  pollu>on,  overpopula>on,  rain  forest  destruc>on,  Brazilian  Cerrado/Woodland  Savanna  destruc>on  

  Land  Use/Cover  Change  (LUCC):  major  sources  of  change  in  terrestrial  surface  

  Few  empirical  models  and  tools  to    

simulate,  analyse  &  forecast  environment  impacts  

Page 5: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Project Goals

Considering the motivation/problem:   Study & define empirical characterization model

  understand how is the behaviour of human agents,   the physical environment and policy decisions   how these affect the dynamics of Land Use/Cover Change (LUCC)

  Develop a multiagent simulation tool   to explore different scenarios,   useful for planning, development sustainable LUCC strategies

  Develop a case study

Page 6: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Methodology

1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most commonly used

empirical methods for the challenge of parametreize behavioural responses of humans: 1.  expert knowledge, 2.  participant observation, 3.  social surveys, 4.  interviews, 5.  census data, 6.  field or lab experiments, 7.  role-playing games, 8.  cluster analysis, 9.  dasymetric mapping, 10.  Monte Carlo method.

(Smajgl, A.; Brown, D. G.; Valbuena, D.; Huigen, M. G. A., 2011. Empirical characterisation of agent behaviours in socio-ecological systems. Environ. Model. Softw. 26, 837-844)

Page 7: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Empirical Characterization

Smajgl et al. (2011) cites ABM requires systematic representation of 3 main phenomena:

•  agents, •  their social networks & •  agent environment. Agent parameterization uses 6 methodological steps (each with multiple empirical

methods)

Page 8: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Empirical Characterization

MASE parameterization & the empirical methods (Smajgl et al., 2011):

•  M1 – identify different classes of agents –  Agents share same sequence of actions, or represent same modeled behaviour, defined in an agent class –  Each agent class grouped into agent types (i.e., sub-classes), classification Russell & Norvig (2009):

simple reflex, goal-based, utility-based agents –  2 sub-classes reflex agents: service (e.g., configure simulation grid) & transformer (farmers, ranchers,

urbanization, conservative agents) –  1 sub-class goal based agent: managers (e.g.,grid, spatial-cell agent & transformation)

•  M2 – specify values for agents attributes based on real data –  Agent types behaviour – qualitative contextual variables (expert knowledge) & quantitative census data

(e.g., sub-class transformer agents different behavioural responses tax of land use for farmer & urban)

Page 9: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Empirical Characterization

MASE parameterization & the empirical methods (Smajgl et al., 2011): •  M3 – specify parameters for the agents behavioural rules based Smith et al. (1998),

FSM – agent’s exploration behaviour

•  M4a – agent types defined from agent attributes combining mix of correlation and expert knowledge (Federal District Spatial Plan-PDOT sets areas to agriculture...)

•  M4b – alternative method to define agent types is participant observation

(Smith, J.; Winograd, M.; Gallopin, G.; Pachico, D., 1998. Dynamics of the agricultural frontier in the amazon and savannas of brazil: analyzing the impact of policy and technology. Environmental Modeling & Assessment 3, 31-46)

Page 10: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Empirical Characterization

MASE parameterization & the empirical methods (Smajgl et al., 2011): •  M5 – assign agents in the whole population to the appropriate agent type

–  Agriculture census of 2006 by Brazilian Institute of Geography & Statistics (IBGE)

Page 11: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Empirical Characterization

Our expericence with the Smajgl et al. (2011) parameterization for ABM:

•  Initial structure can be used within rigorous discussions of parameterization methods for human behaviour

•  Use of M1-M5 method allow a robust empirical model development –  The sequence facilitates the description & documentation of ABM

applications •  We expect the model description would allow peers judgments about the value

of models/results (e.g., the Mase)

Page 12: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Methodology

2) Conceptual Structure –  Normal critics on documentation of I/ABM, lacks in consistency in text description of

such models, i.e., they don’t provide enough information to replicate results, difficult to read, not presented logical order (Lorek & Sonnenschein, 1999)

–  To address this problem: Overview, Design Concepts & Details (ODD) protocol for documenting I/ABM (Grimm et al., 2006)

(Lorek, H.; Sonnenschein, M.,1999. Modelling and simulation software to support individual-based ecological modelling. Ecological Modelling 115 (2-3), 199-216)

(Grimm, V.; Berger, U.; Bastiansen, F.; Eliassen, S.; Ginot, V.; Giske, J.; Goss-Custard, J.; Grand, T.; Heinz, S. K.; Huse, G., 2006. A standard protocol for describing individual-based and agent-based models. Ecological Modelling 198 (1-2), 115-126)

Page 13: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Conceptual Structure Overview - State variables & scales The interactions between landscape & humans come from cycles of agents’perception & action based

on Haggith et al. 2003 & Le et al. 2008

(Haggith, M.; Muetzelfeldt, R. I.; Taylos, J., 2003. Modelling decision-making in rural communities ant the forest margin. Small-scale Forest Economics, Management and Policy 2 (2), 241-258)

(Le, Q. B.; Park, S. J.; Vlek, P. L. G., Cremers, A. B., 2008. Land-Use Dynamic Simulator (LUDAS): A multi-agent system model for simulationg spatio-temporal dynamics of coupled human-landscape system. I. Structure and theoretical specification. Ecological Informatics 3 (2), 135-153)

Page 14: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Conceptual Structure

Overview - State variables & scales •  The temporal and spatial scale of MASE model is configurable. •  In the case study, the model operates on local scale of regions with areas of the

Federal District of Brazil (adapted the land use model defined by Smith et al. 1998)

(Smith, J.; Winograd, M.; Gallopin, G.; Pachico, D., 1998. Dynamics of the agricultural frontier in the amazon and savannas of brazil: analyzing the impact of policy and technology. Environmental Modeling & Assessment 3, 31-46

Page 15: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

2002 2008

Conceptual Structure Overview - State variables & scales

•  A cell in the grid represents 1 hectare •  Each time-step is one week of chronological time •  Simulations were carried out involving period 2002-2008 (365 time-steps or 7 years) •  Used satellite images of LANDSAT ETM (NASA/INPE) classified by PROBIO software (IBAMA - The Brazilian Institute of Environment and Renewable Natural Resources)

• Anthropic (yellow), remaining (green), water (blue)

Page 16: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Conceptual Structure

Overview - Process overview & scheduling

Process overview – a verbal & conceptual description of each process & its effects •  In the implementation of MASE model:

–  the agent interactions succeed every time-step –  Initial grid of simulation (landscape) used images GIS raster files –  the initial population of each type of agent is configurable (by users) –  In each step it is updated the state of the environment followed by the decision-

making of transformation agent

Scheduling – the order of the processes, the order in which the state variables are updated •  State variables and scales in MASE

–  time is modeled by discrete intervals (time-steps) –  all activities take place in an atomic fashion, i.e., only after all actions have been

deliberated & execute by agents occurs the transition to a time-step –  Variables are updated synchronously in a time-step

Page 17: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Conceptual Structure

Design Concepts •  Provide a common framework for designing and communicating I/ABM •  The purpuse link model design to general concepts of Complex Adaptive

Systems (Grimm & Railsbach 2005, Railsback, 2001) •  Provide a short checklist of 5 items that apply to MASE model:

–  emergence – human agents population dynamics emerge from the behaviour of each agent at the land use decisions (agent class)

–  sensing – each transformation agent has corresponding capacity conversion/exploitation of the environment

–  fitness – the achievement of objectives is explicity modeled in the transformation agents decision process of land use

–  Interaction – •  Indirect – changes in land use caused by an agent may lead to changes in the decisions of

other agents in the next time-step •  Direct – the race for space exploration by agents (e.g., same exploration probability of

one cell space, rules of succession between different agent classes – farmers, ranchers or chosen randomly among agents of the same class)

–  Observation – maps of successive coverage & land use for each time-step

Page 18: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Conceptual Structure

Technical Details •  The ODD sequence include 3 elements:

–  Initialization •  Inital landscape model – images raster-GIS obtained by satellite monitoring

(LANDSAT ETM), state variables & scales (overview) •  Physical environment is imported into a set of images (proximal variables) •  Time-steps: t=0 (2002 map) & t=6 (2008 map) •  Transformation agents set by user (# of farmers, ranchers, IBGE rural census) •  Agents alocation - greater likelihood of exploitation

–  Input •  Images are classified for time-step t=0, set of images for each variable

proximal set, set of policy information to be exploited (PDOT) –  Red – urban macrozone –  Blue – controlled use –  Green – diversified use

Page 19: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Conceptual Structure

Technical Details Input •  Proximal variables: (a) railways, (b) highways, (c) rivers, (d) lakes, (e) streets, (f) buildings & protected

areas.

Page 20: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Conceptual Structure

Technical Details •  Input

  Physical environment – use 6 image layers (proximal variables)   Images were filtered using Gaussian bi dimensional filter (Equation 1)

Proximal  variables-­‐  streets  

+p positive influence -p negative influence 1 Neutral

magnified  por>on    of  a  proximal  variable  

Page 21: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Conceptual Structure Technical Details

 After filtered images are generated, compute weighted average: Where: T = resulting map, Mi = filtered image related to proximal variable i and pi (i.e.,indicates how variable i contribute in the generation of the map T), all pi weights equal to 1/6 Use Taux map showing the disabled regions for any use (e.g., protected area, urbanized)  

Page 22: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Conceptual Structure

Technical Details How T & Taux maps are used to determine movement of transformation agent? •  (a) T map: green potentially be explored & yellow explored areas •  (b) Taux map: logical value 1 candidates to move & 0 no exploration

Page 23: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Conceptual Structure

Technical Details The new destination for the transformer agent is determined - probabilistic manner •  (c) superimposition of T and Taux map •  (d) normalize the vector values V[i]=[96, 21, 98,...] Then calculate C[i] function:

Finally, pseudorandom number N is drawn from the standard uniform distribution open interval (0,1) and searches for the first value of i where C[i] > N

Page 24: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Conceptual Structure

Technical Details Submodels •  FSM used in the management of transition states or grid cells (Smith et al. 1998)

Smith, J.; Winograd, M.; Gallopin, G.; Pachico, D., 1998. Dynamics of the agricultural frontier in the amazon and savannas of brazil: analyzing the impact of policy and technology. Environmental Modeling & Assessment 3, 31-46)

Page 25: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

MASE Prototype Multiagent Project •  Tropos methodology, focus requiriments (Giorgini et al., 2004) •  Environment characterization (Wooldridge, 2009)

–  Real model: partially observable, stochastic, sequential, dynamic, continuous –  Implemented prototype: partially observable, deterministic, episodic (steps), static, discreet

(FSM), multiagent and competitive •  Agent characterization

(Giorgini,  P.;  Kolp,  M.;  Mylopoulos,  J.;  Pistore,  M.,  2004.  The  Tropos  Methodology:  an  overview.  Kluwer  Academic  Publishers)  (Wooldridge,  M,  2009.  An  Introduc>on  to  Mul>Agent  Systems.  John  Wiley  &  Sons,  LTD,  Chichester,  England,  2nd  edi>on)

Page 26: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Architecture

Page 27: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Implementation Aspects

Used Java Agent Development Framework – JADE, version 4.0, release date 04/20/10 (Bellifemine et al., 2007)

  Foundation for Intelligent Physical Agents – FIPA compliant   Agent Communication Language (ACL) defined by FIPA   Agent Management System (AMS) – white pages   Directory Facilitator (DF) – yellow pages   Agent Behaviour

  simple approach - OneShotBehaviour, CyclicBehaviour   Composed approach – SequentialBehaviour and FSM-Behaviour

Library ImageJ to process image files (MatLab) Machine – Intel Core i5 2.27 GHz 4 GB RAM, 64-bit operating system

(Bellifemine,  F.  L.,  Caire,  G.,  Greenwood,  D.,  2007.  Developing  Mul>-­‐Agent  Systems  with  JADE.  John  Wiley  &  Sons)

Page 28: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Case Study – Brazilian Cerrado

Cerrado is major Brazilian savanna-like ecosystem •  2nd largest Brazilian biome, 204.7 million hectares   hotspot  for  conserva>on    68.11%  of  na>ve  vegeta>on  cleared  Federal  District  was  used:    the  single                unit  in  Brazil  fully  covered  by                the  Cerrado  Figure  presents  overview  of  the                Cerrado  are  and  its  land  uses              (Sano  et  al.,  2008)  

(Sano,  E.  E.,  Rosa,  R.,  Brito,  J.  L.  S.,  Ferreira,  L.    G.,  2008.  Mapeamento  semidetalhado  do  uso    da  terra  do  bioma  cerrado.  Pesquisa  Agropecu-­‐  ária  Brasileira  43  (1),  153–156)  

Page 29: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Simulations & Results

Developed many simulations, two most important: •  Fixed exploration rate, number of transformation agents varying from 10 to

150 farmers and ranchers (40 min for 365 steps, 2002 to 2008) –  Best result - 99,87% with 90 farmers and 90 ranchers

•  Variable exploration rates and percentage of group agents varying from 5% to 50% (60 min for 365 steps) –  Best result – 99,13% with 10% transformation agents exploring 1500 units and 90% exploring

500 units

Page 30: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Conclusions

•  Ongoing project •  Defined MASE model in a systematic and structured way:

–  Empirical characterization - Smajgl et al. (2011) framework model for ABM –  Conceptual structure - Grimm et al. (2006) ODD protocol

•  Implemented MASE prototype - multiagent simulation tool –  to explore different scenarios –  useful for planning, development sustainable LUCC strategies

•  Developed a case study to validate MASE •  MASE presented good simulation results

–  image correctness > 99% (2002-2008 Federal District LUCC) –  Veldkamp & Lambin (2001) simulation LUCC models satisfactory success rate with 85% correction

(Veldkamp,  A.,  Lambin,  E.  F.,  2001.  Predic>ng  land-­‐use  change.  Agriculture,  Ecosystems  and  Environment  85  (1–3),  1–6.)

Page 31: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Future Directions

The defined empirical characterization for MASE •  Initial structure to be used within different parameterization methods for

human behaviour •  Need to check other methods Search how to improve the rationality of agents •  Develop a BDI model? •  Use foundational ontology? •  Use qualitative spatial/spatio-temporal reasoning, spatial ontologies?

(Leeds University-Tony Cohn’s Region Connection Calculus-RCC) Do prospective research about AOR modeling and simulation •  Model MASE Case Study in AOR to understand AORSL •  Study how to extend AORSL, possibly to integrate to MASE

Page 32: ghedini@cic.unb.br- ghedini/ghedini/resources/MasePresentation-20sept12.pdf · Methodology 1) Empirical Characterization Comprehensive framework of Smajgl et al. (2011) - set most

Célia  Ghedini  Ralha  [email protected]