Geothermal power generation in the world 2010–2014 update report

Embed Size (px)

Citation preview

  • 7/26/2019 Geothermal power generation in the world 20102014 update report

    1/13

    Geothermics 60 (2016) 3143

    Contents lists available at ScienceDirect

    Geothermics

    journal homepage: www.elsevier .com/ locate /geothermics

    Geothermal power generation in the world 20102014 update report

    Ruggero BertaniEnel Green Power, via Andrea Pisano, 120, 56122 Pisa, Italy

    a r t i c l e i n f o

    Article history:

    Received 18 September 2015Received in revised form27 November 2015

    Accepted 29 November 2015Available online 21 December 2015

    Keywords:

    WorldGeothermalElectricity generationCountry updateDevelopment

    a b s t r a c t

    I have analyzed the major activities carried out for geothermal electricity generation since WGC2010.New data has been taken from WGC2015Country Update reports, private communications from IGA

    members and Affiliated Organizations, and I would like to acknowledge all IGA friends for their valuable

    help. Other updates have been collected from websites ofprivate and public organizations involved ingeothermal development. Plants under construction, which are expected to be commissioned in 2015,are included in the installed capacity. An increase ofabout 1,8GW in the five year term 20102015 hasbeen achieved (about 17%), following the rough standard linear trend ofapproximately 350MW/year,with an evident increment ofthe average value ofabout 200 MW/year in the precedent 20002005 period(Bertani, 2005a,b, 2006, 2007, 2010, 2012; Bertani et al., 2013).

    2015 Elsevier Ltd. All rights reserved.

    1. Introduction

    The total installed capacity from worldwide geothermal power

    plant is given in Table 1 and in Fig. 1.For reaching the forecasting of 2020, based on an accurateaccounting of all the existing projects at an executive stage, a clearchange in the present linear growing trend should be necessary.

    In Table 2 data from all the countries currently generat-ing geothermal electricity are presented, with the 2010 and theupdated at 2015 values of installed capacity and the producedenergy per year, the increment since 2010 both in absolute termsand in percentage, and the aforesaid mentioned short term fore-castingto year 2020 for the installed capacity. In Fig. 2 a world mapof the year 2015 installed capacity is presented.

    In the following chapters 26 each continent has been analyzedthrough its countries. I have decided not to repeat again in thispaper the detailed datafor each geothermalfield, already discussedin Bertani et al. (2013), and Bertani (2010, 2006).

    I highlighted only the major achievement in the five years termsince WGC2010. I am presenting here below all the countries withactive geothermal plants for electricity generation, and also thosewith a not-negligible probability for some development for year2020.

    E-mail address: [email protected]

    2. Geothermal power generation: America

    2.1. Argentina

    During the last years, few advancances have been producedin most of the geothermal fields oriented to power generation. Apotentialevaluation of the Copahue geothermal field indicated thatit could generate electricity, using the existing steam of approx-imately 1200m deep with a capacity of 30M We. Also in theNeuqun province was calling a public bid for private investorsinterested in building and operating a future plant for the gen-eration of electrical power of 30MWe, with an investment of100 million US dollars. Other areas are currently under evalua-tion (Domuyo, Los Despoblados, Tuzgle-Tocomar, Peteroa and LosMolles and Termas de Ro Hondo) (Pesce, 2015).

    2.2. Bolivia

    The Laguna Colorada field is under exploration phase. The pos-sibility of a 40MWe plant with expansion up to 100 MWe in thenear future is realistic (Terceros, 2000).

    2.3. Canada

    Geothermal power generation has been explored for severalyears but policy limitations and the lack of adequate support isslowing any substantial progress towards a viable industry. It isestimated that over 5000MWe are available from shallow geother-mal resources, including hot sedimentary aquifers, using current

    http://dx.doi.org/10.1016/j.geothermics.2015.11.0030375-6505/ 2015Elsevier Ltd. All rights reserved.

    http://localhost/var/www/apps/conversion/tmp/scratch_3/dx.doi.org/10.1016/j.geothermics.2015.11.003http://www.sciencedirect.com/science/journal/03756505http://www.elsevier.com/locate/geothermicsmailto:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_3/dx.doi.org/10.1016/j.geothermics.2015.11.003http://localhost/var/www/apps/conversion/tmp/scratch_3/dx.doi.org/10.1016/j.geothermics.2015.11.003mailto:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.geothermics.2015.11.003&domain=pdfhttp://www.elsevier.com/locate/geothermicshttp://www.sciencedirect.com/science/journal/03756505http://localhost/var/www/apps/conversion/tmp/scratch_3/dx.doi.org/10.1016/j.geothermics.2015.11.003
  • 7/26/2019 Geothermal power generation in the world 20102014 update report

    2/13

    32 R. Bertani / Geothermics 60 (2016) 3143

    Table 1

    Total worldwide installedcapacity from 1995 up to endof 2015 and short term forecasting forcontinent.

    Continent Installedin 1995

    Energy in1995

    Installedin 2000

    Energy in2000

    Installedin 2005

    Energy in2005

    Installedin 2010

    Energy in2010

    Installedin 2015

    Energy in2015

    Forecastingfor 2020

    (MW) (GWh) (MW) (GWh) (MW) (GWh) (MW) (GWh) (MW) (GWh) (MW)

    Europe 722 3.881 1.019 5.864 1.124 7.209 1.642 11.327 2.143 14.941 3.385Africa 45 366 52 397 136 1.088 209 1.440 643 2.878 1.601America 3.800 21.303 3.390 23.342 3.911 25.717 4.565 26.803 5.130 26.353 8.305Asia 1.980 10.129 3.075 17.390 3.290 18.903 3.661 23.127 3.757 22.084 6.712

    Oceania 286 2.353 437 2.269 441 2.792 818 4.506 1.056 7.433 1.440Total 6.832 38.032 7.973 49.261 8.903 55.709 10.895 67.202 12.729 73.689 21.443

    200 270 386 520 720

    1180

    2110

    4764

    5834

    6.832

    7.973

    8.903

    10.895

    12.729

    21.443

    38.032

    49.261

    55.709

    67.202

    73.689

    0

    10.000

    20.000

    30.000

    40.000

    50.000

    60.000

    70.000

    80.000

    0

    5.000

    10.000

    15.000

    20.000

    25.000

    1950

    1960

    1970

    1980

    1990

    2000

    2010

    2020

    G

    Wh

    MW

    Years

    World Geothermal Electricity

    Installed Capacity

    Produced Energy

    Fig. 1. Installed capacity from 1950 up to 2015 (Left, MWe) and produced electricity (Right, GWh).

    USA 3,450 MW

    ICELAND 665 MW

    ITALY 916 MW

    KENYA 636 MW

    INDONESIA 1,340 MW

    PHILIPPINES 1,870 MW

    JAPAN 519 MW

    NEW ZEALAND 1,005 MW

    GUATEMALA 52 MW

    > 500 MW

    100-500 MW

    < 100 MW

    EL SALVADOR 204 MWNICARAGUA 159 MW

    COSTA RICA 207 MW

    MEXICO 1,058 MW

    NORTH AMERICA 3.45 GW

    LATIN AMERICA 1.68 GW

    AFRICA 0.6 GW

    ETHIOPIA 7 MW

    PORTUGAL 29 MW

    FRANCE 16 MW

    GERMANY 27 MW

    AUSTRIA 1 MW

    TURKEY 407 MW

    EUROPE 2.14 GW

    RUSSIA 82 MW

    CHINA 27 MW

    AUSTRALIA 1 MW

    ASIA PACIFIC 4.81 GW

    Fig. 2. Installed capacity in 2015 worldwide [12.6 GWe].

  • 7/26/2019 Geothermal power generation in the world 20102014 update report

    3/13

    R. Bertani / Geothermics 60 (2016) 3143 33

    Table 2

    Installed capacity and produced energyfor 2010, 2015, and forecasting for2020.

    Country Installed i n 2010 Energy i n 2010 Installed i n 2015 Energy i n 2015 Forecast for 2020 Increase since 2010

    (MWe) (GWh) (MWe) (GWh) (MWe) (MWe) (GWh) Capacity ( %) Energy ( %)

    Algeria 1Argentina 30Armenia 25Australia 0.1 0.5 1,1 0,5 20 1Austria 1.4 3.8 1.2 2.2 6Bolivia 40Canada 20Chile 150China 24 150 27 150 100 3 12%Costa rica 166 1,131 207 1,511 260 42 380 25% 34%Czech republic 5Djibuti 50Dominica 10Ecuador 40El Salvador 204 1,422 204 1,442 300 20 1Ethiopia 7.3 10 7.3 10 50France 16 95 16 115 40 20 21%Germany 7.1 50 27 35 60 20 -15 280% -30%Greece 40Guatemala 52 289 52 237 140Honduras 35Hungary 5

    Iceland 573 4,553 665 5,245 1,300 92 692 16% 15%India 10Indonesia 1,197 9,600 1,340 9,600 3,500 143 12%Iran 5Italy 843 5,520 916 5,660 1,000 74 140 9% 3%Japan 536 3,064 520 2,687 570 -15 -377 -3% -12%Kenya 202 1,430 636 2,868 1,500 434 1,438 215% 101%Latvia 5Mexico 958 7,047 1,058 6,071 1,400 100 -976 10% -14%Montserrat 5Netherland 5Nevis 35New Zealand 762 4,055 1,005 7,000 1,350 243 2,945 32% 73%Nicaragua 88 310 159 492 200 72 182 82% 59%Papua-New Guinea 56 450 50 432 70 -6 -18 -11% -4%Peru 40Philippines 1,904 10,311 1,870 9,646 2,500 -34 -665 -2% -6%

    Poland 1Portugal 29 175 29 196 60 21 12%Romania 0,1 0,4 5 0,1 0,4Russia 82 441 82 441 190Slovakia 5Spain 40Switzerland 3Taiwan 0,1 1 0,1Thailand 0.3 2.0 0,3 1,2 1Turkey 91 490 407 3,247 600 316 2,757 347% 563%UK 15USA 3,098 16,603 3,450 16,600 5,600 352 11%Total 10,888 67,192 12,729 73,689 21,000 1,834 6,486 17% 10%

    technology with an additional 10,000 MWe or more available indeep geothermal resources for future exploitation using enhanced

    geothermalsystems. There arecurrently6 active power generationprojects developing in Canada (CanoeReach, Lillocet, SouthMeagerCreek, Rafferty, Pebble Creek, Lakelse) (Thompson et al., 2015).

    2.4. Caribbean

    The eleven volcanic Eastern Caribbean islands comprise activethermal features, due to the westward subduction of the NorthAtlantic crustal plate beneath the Caribbean plate. Subsurface tem-peratures recorded in the region reach, in some case, more than290 C. In Nevis, Nevis Renewable Energy International is perform-ing geothermal exploration. The government of Dominica initiatedthe drilling of three exploratory slim holes with Icelandic DrillingInc, confirming the existence of a commercially viable resource

    with temperatures up to about 240

    C anda 10MWe power plant,

    with an upscale up to 100MWe, to be exported in Guadeloupe andMartinique through a submarine cable. In St. Lucia, the govern-

    mentsigneda Memorandum of Agreement with UNEC Corporationfor exploration and development in the Sulphur Springs region. In2013, two wells were successfully drilled in Montserrat, with tem-peratures up to 298C ata depth of2347 m and the constructionofa 5 MWe power plant is planned for completion by 2016 (workfunded by the UK Department for International Development).Finally, Reykjavik Geothermal in St. Vincent and in Grenada, hasinitiated surface studies near the Soufriere Volcano on St. Vincentand GRENLEC, the Grenada utility is planning geothermal studiesin the vicinity of Mt. St. Catherine (Huttrer and LaFleur, 2015).

    2.5. Chile

    Geothermal exploration in Chile has been very active in the last

    years, with about 14 private companies in 76 geothermal conces-

  • 7/26/2019 Geothermal power generation in the world 20102014 update report

    4/13

    34 R. Bertani / Geothermics 60 (2016) 3143

    sion areas. Based on the results of these studies, eight exploitationconcessions have beenawarded, andin Apacheta and Tolhuaca,theresults of environmental impact studies have been submitted forthe development of power plant projects. The University of Chilecreated the Andean GeothermalCentre of Excellence (CEGA), whilethe National Service of Geology and Mines is developing a basicgeothermal research program (Lahsen et al., 2015).

    2.6. Colombia

    In Colombia there is not any geothermal development yet.Geothermal exploration studies being carried out by the Colom-bian Geological Survey, in Nevado del Ruiz, TufinoChilesCerroNegro, Azufral, Paipa and San Diego area (Alfaro, 2015).

    2.7. Costa Rica

    Since the last WGC2010, geothermal development and explo-ration in the country have seen great development. The MiravallesGeothermal Field is continuing its productivity life (165MWe) andthe first unit of Las Pailas Geothermal Field has been commissionedin 2011 (42MWe), and a second is planned, as well as in Borin-

    quen and Pocosol. Geothermal energy continues to be a baseloadfor the electrical system in Costa producing 15% of the total elec-trical generation of the country (Snchez-Rivera and Vallejos-Ruz,2015).

    Development since WGC2010: Las Pailas, 42 MWe.Costa Rica Installed capacity 207MWe Geothermal electricity 1511 GWh/y

    2.8. Ecuador

    In the country a geothermal plan has been launched byMEER in 2010 for electricity generation, ranking 11 prospectsfor prefeasibility stage studies: Chachimbiro, Chalpatn, Chacana-

    Jamanco, Chalupas, Guapn, Chacana-Cachiyacu, Tufino, Chim-borazo, Chacana-Oyacachi, Banos de Cuenca and Alcedo. CELEC

    EP completed in 2012 geological, geochemical, and geophysicalsurveys at pre-drilling stage, including comprehensive MT andTDEM measurements for the Chachimbiro, Chacana-Cachiyacuand Chacana-Jamanco prospects. An expected capacity of about100MWe has been evaluated (Beate and Urquizo, 2015).

    2.9. El Salvador

    In the country geothermal has been one of the main sourcesof electricity since the mid-1970s, and today the total installedcapacity from geothermal resources in the country is 204 MWe,(Ahuachapn 95 MWe, Berlin 109MWe) covering about 24% of theelectricity needs with 13% of total installed capacity. The devel-opment plans of LaGeo (20152020), include a 28MWe Unit 5

    plus 5.7 MWe for the second bottoming binary cycle at Berlin and5MWe for the re-powering of Unit 2 at Ahuachapn geother-mal field. LaGeo continues to develop geothermal projects in theareas of Chinamecaand San Vicente, where the drilling exploratorystage confirmed a high enthalpy resource; and a power plant of50MWe and another of 30MWe are planned to develop at the Chi-nameca and San Vicente geothermal fields respectively (Herreraet al., 2010).

    Development since WGC2010: no new plants commissioned.

    El Salvador Installed capacity 204MWe Geothermal electricity1442GWh/y

    2.10. Guatemala

    The geothermal accessible resource potential of Guatemala is

    about 1000MWe, as evaluated in several country assessment stud-

    ies made by Unidadde DesarrolloGeotmicoInstituto Nacional delElectrificatin (UDGINDE), with the identificationof 14 promisingareas, located in the Volcanic chain. Two geothermal fields, Zuniland Amatitn (28 and 24MWe respectively) are currently underproduction, operated by INDE and Ormat through the controlledcompany Orzunil (Asturias and Grajeda, 2010).

    Development since WGC2010: no new plants commissioned.

    Guatemala Installed capacity52MWe Geothermal electricity 237GWh/y

    2.11. Honduras

    The geothermal potential of the country is significant, but it isnot being exploited as a source of energy generation yet. Somedevelopment projects for electricity generation with geothermalresources are present, with identification of the presence of amoderate potential in six sites (Platanares, San Ignacio, Azacualpa,Sambo Creek, Puerto Cortes and Pavana) around the country forelectricity generation (Henriquez, 2015).

    2.12. Mexico

    The geothermal installed capacity in the country is 1018MWe(840MWe running) distributed intofour geothermalfields in oper-ation (Cerro Prieto 720 MWe, Los Humeros 94MWe, Los Azufres194MWe and Las Tres Virgenes 10MWe), owned and operated bythe state utility CFE (Comisin Federal de Electricidad). Two addi-tional geothermal projects are currently under construction: LosAzufres III with 50 MWe and Los Humeros III-A with 27MWe. Theproduction was about 6000GWh, representing 2.3% of the totalelectric output in the country. About 224 production wells werein operation producing 57 million of metric tons of steam and66 million metric tons of brine, which is disposed of by a solarevaporation pond in Cerro Prieto and by 25 injection wells. Inthe first months of 2015, three new power plants began operat-

    ing and four others were taken offline and dismantled. With thatLos Azufres reached 227 MWe and a new geothermal field, calledDomo San Pedro in Nayarit, started to operate 10MW in two well-head plants. The country installed capacity increased to 1061MW.There are high expectations for geothermal energy, due to a newregulatory framework and the foundation of a national geother-mal innovation center (CEMIE-Geo) (Gutirrez-Negrn et al., 2015;Gutirrez-Negrn, 2015). Two additional geothermal projects arecurrently under construction: Los Los Humeros III-A with 27MWeand Domo San Pedro with 25MWe. One additional 25MWe plantis planned in Los Azufres.

    Development since WGC2010: two new units at Los Humeros227MWe.

    Mexico Installed capacity1058MWe Geothermal electricity6000GWh/y

    2.13. Nicaragua

    In Nicaragua geothermal studies started in the 60s, and animpressive geothermal potential of the countryhas been estimated(about 1100MWe), but only a minimal part have been exploitedtill now, covering approximately 10% of the national electricityconsumption. There are five geothermal areas, with power plantsonly in two of them (Momotombo, 77MWe and San Jacinto-Tizate82MWe) (Ruiz Cordero, 2010).

    Development since WGC2010: 236MWe units at San Jacinto-Tizate.

    Nicaragua Installed capacity 159MWe Geothermal electricity 492GWh/y

  • 7/26/2019 Geothermal power generation in the world 20102014 update report

    5/13

    R. Bertani / Geothermics 60 (2016) 3143 35

    2.14. Peru

    Peru has a great geothermal potential. Six geothermal regionshave been identified in Peru. The most promising is the Eje Vol-cnicoSur, where allthe activevolcanoes arelocated.The Japanesegovernment supported the pre-feasibility studies in two fields,Calientes and Borateras, where 150 MWe were estimated. As aresult on the new Geothermal Law, many private companies havelooked into investing in Peru as a good opportunity to develop thegeothermal resources, in more than 30 authorizations areas, mostof them located in southern Peru (Cruz and Vargas, 2015).

    2.15. USA

    The present gross installed capacity for electric is 3450MWewith 2542 MWe net (running), producing approximately16,600GWh per year. Geothermal electric power plants arelocated in California, Nevada, Utah and Hawaii with recent instal-lations in Alaska, Idaho, New Mexico, Oregon, and Wyoming. Inthe last five years, about 350MWe have been added. Californiais the most important state, with the two major productivepoles of The Geysers and Imperial Valley. As a world record, thelowest temperature binary cycle using 74 C geothermal fluids isoperating in Chena Hot Springs in Alaska, with three units for atotal of 730kWe. The first solar PV and thermal hybrid projectshas been realized in Nevada, at Stillwater, where the 48MWegeothermal plant is fully integrated with 26MWe of PV panelsand with 17MWth of solar thermodynamic, with an additionaloutput of 2 MWe. The production tax credit (of 2.0 cents/kWh) andthe renewable portfolio standards are sustaining a growth rateof 3.6% per year. Geothermal energy remains, however, a smallcontributor to the electric power capacity and generation in theUnited States, with an estimated contribution of 0.48 % of the totalgeneration (Boyd et al., 2015).

    USA Installed capacity3450MWe Geothermal electricity 16,600 GWh/y

    2.15.1. AlaskaDevelopment since WGC2010: no new plants commissioned.

    USA-Alaska Installed capacity 0.7MWe Geothermal electricity 3.9GWh/y

    2.15.2. California

    In California about 4.4% of the electricity generation camefrom geothermal power plants. In the state there are approxi-mately 6001400MWe of planned geothermal resource in variousstages of development. The following geothermal fields areactive in the state: Coso (292 MWe), East Mesa (126 MWe),Heber (236MWe), Honey Lake (4MWe), Hudson Ranch (50MWe),Mammoth (40MWe), Salton Sea (388MWe), and The Geysers(1584MWe).

    Development since WGC2010: a triple flash unit at Hudson

    Ranch, 50 MWe.USA-CaliforniaInstalled capacity2719MWeGeothermal electricity 13,023GWh/y

    2.15.3. Hawaii

    All the resources are at Puna, and the plants is delivering about25% of the electricity on the big island.

    Development since WGC2010: a new 8 MWe unit at Puna.

    USA-Hawaii Installed capacity 38MWe Geothermal electricity 236GWh/y

    2.15.4. Idaho

    Only the unit at Raft River is operative. The total geothermalpotential for Idaho is 60300 MWe.

    Development since WGC2010: no new plant.

    USA-Idaho Installed capacity16MW Geothermalelectricity90.7GWh/y

    2.15.5. Nevada

    Nevada is the most important state for the binary elec-tricity production from geothermal fields, with 24 geothermalpower plants with a total nameplate capacity of 576 MWe andwith a total gross output of 3500GWh. The following geother-mal fields are active in the state: Beowawe (20 MWe), BlueMountain (50 MWe), Brady Hot Spring (26 MWe), Desert Peak(25MWe), Dixie Valley(73 MWe), DonCampbell (16MWe),FloridaCanyon Mine (0.1 MWe), Jersey Valley (19 MWe), McGinnes Hills(52 MWe), Salt Wells (24 MWe), San Emidio (18 MWe), Soda Lake(23MWe), Steamboat (133MWe), Steamboat Hills (14MWe), Still-water (48MWe), Tuscarora (32 MWe), and Wabuska (2MWe).Nevada currently has 180700 MWe of geothermal capacity indevelopment.

    Development since WGC2010: Tuscarora, McGinness Hills, SanEmidio and Don A. Campbell for 134MWe.

    USA-Nevada Installed capacity 576MWe Geothermal electricity3456GWh/y

    2.15.6. New Mexico

    In the country the first binary unit at Lightening Dock has beencommissioned in 2014, with a planned addition up to 20MWe.

    Development since WGC2010: Lightening Dock for 4 MWe.

    USA-New Mexico Installed capacity 4MWe Geothermal electricity n/a GWh/y

    2.15.7. Oregon

    In the state the electricity productionhas beenincreased at NealHot Spring, after the small plant of Klamath Falls. Overall thereare 60300 MWe of potential geothermal power capacity underdevelopment.

    Development since WGC2010: Neal Hot Spring for 23MWe.

    USA-Oregon Installed capacity 24MWe Geothermal electricity n/a GWh/y

    2.15.8. Utah

    Thereare threeproductive fields:CoveFort (26MWe),Roosevelt(37MWe) and Thermo Hot Spring (10 MWe).

    Development since WGC2010: Cove Fort for 26MWe.

    USA-Utah Installed capacity73MWe Geothermal electricity 387GWh/y

    2.15.9. Wyoming

    Only a small pilot plant is in operation at Rocky Mountain Oil-field Testing Center.

    Development since WGC2010: no new plant.

    USA-Utah Installed capacity0.2MWe Geothermal electricity 0.5GWh/y

    3. Geothermal power generation: Africa

    3.1. Algeria

    The geothermal resources in Algeria are of low-enthalpy type,with the majority of the thermal springs (more than 240) located

    in the north of the country, with a heat discharge of 240MWt. Asmall binary plant is planned at Guelma (Saibi, 2015).

    3.2. Djibouti

    Geothermal resources have been assessed in the country for40 years, and several companies tried to exploit suitable sites,but without commercial success yet. The most promising area isthe Asal field, where a project for a 50MWe flash plant has beenlaunched (Moussa and Souleiman, 2015).

    3.3. Ethiopia

    No activities have been performed in the country, and the

    geothermal development is still at the initial level of 1999, with

  • 7/26/2019 Geothermal power generation in the world 20102014 update report

    6/13

    36 R. Bertani / Geothermics 60 (2016) 3143

    a pilot plant at Aluto-Langano. The possibility of an expan-sion is under consideration, as well as a new plant at Tendao(Teklemariam, 2010).

    Development since WGC2010: no new plant.

    Ethiopia Installed capacity 7.3MWe Geothermal electricity 10 GWh/y

    3.4. Kenya

    The huge total geothermal potential of about 10GWe of thecountry is currently under a very aggressive phase of develop-ment, with an impressive construction pipeline of new projectsin several areas. All the high temperature prospects are locatedwithin the Kenya Rift Valley. The most important production poleis the Olkaria geothermal field (636MWe),in exploitation since thefirst units in 1985, which has been recently expanded with about368MWe installed in the last two years. It is operated by KenyaElectricityGenerating Company (KenGen) and Orpower. Moreover,the Oserian flower farm has a direct utilization of 10MWth forheating greenhouses and an additional self-production of 4 MWe.A small unit is operating at Eburru (2.4MWe). The GeothermalDevelopment Company (GDC) is currently drilling at the Menen-gai geothermal field for the development of a 100 MWe project,

    (expected COD in 2016). Exploration is ongoing in Eburru, Suswa,Longonot, Baringo, Korosi, Paka, Silali and in BaringoSilali, witha forecasting of about 1600 MWe in the near future (Omenda andSimiyu, 2015).

    Development since WGC2010: 11 new units, for a total capacityof 367 MWe at Olkaria (IIV) and Eburru.

    Kenya Installed capacity 636MWe Geothermal electricity2868GWh/y

    4. Geothermal power generation: Asia

    4.1. Armenia

    Thegeothermal potentialof thecountry is under evaluation, anda project of a flash unit at Jermaghbyur is ongoing.

    4.2. China

    In China the medium-low temperature geothermal direct usesare highly developed, whereas the electricity generation is still at avery early stage. Recently several institutions issued a documentGuidelines of Promoting Geothermal Energy Development andUtilization, increasing geothermal survey and exploration withboth state-owned and private enterprises. With the conclusion ofthe construction of Yangyi power plant, the total capacity of thecountry will be doubled, with allthe operativeunitslocated in Tibet(Yangbajain and Yangyi) (Zheng et al., 2015).

    Development since WGC2010: 3 new units, for a total capacityof 3MWe in Tibet.

    China Installed capacity 28 MWe Geothermal electricity 155GWh/y

    4.3. India

    Geothermal electricity is not present in India; a first projectin Gujarat using abandoned oil wells is under evaluation(Chandrasekharam and Chandrasekhar, 2015).

    4.4. Indonesia

    Geothermal resources in the country are associated withvolcanoes along Sumatra, Java, Bali and the islands in east-ern part of Indonesia, with an expected potential of about28GWe composed of 312 geothermal potential locations. The

    current geothermal fields are operated from 10locations: Dara-

    jat (260 MWe), Dieng (60 MWe), Kamojang (200 MWe), GunungSalak (377M We), Sibayak (11M We), Lahendong (87M We),Wayang Windu (227 MWe), Ulu BeluSouth Sumatra (110MWe),UlumbuFlores (5 MWe) and Mataloko (2.5MWe). The installedelectrical capacitiesconsist of 1340 MWe, with short-mediumtermdevelopment for the year 2025 of about 6000MWe (correspond-ingly to 5% of the energy needs of the country). About 440MWeare in advanced construction stage in five plants at Sarulla andLumut-Balai (Darma and Gunawan, 2015).

    Development since WGC2010: 3 new areas (Ulumbu, Matalokeand Ulubelu), for a total additional capacity of 143MWe.

    Indonesia Installed capacity1340MWe Geothermal electricity9600GWh/y

    4.5. Iran

    The potential of geothermal energy in Iran is large in termsof moderate, low and someway also for high temperature. At themoment, projects assuming 5 MWe of geothermal power plantsare underway, in the most promising (Sabalan) of the 14 suitableregions for geothermal activities (Porkhial and Yousefi, 2015).

    4.6. Japan

    Despite the large geothermal potential of the country, esti-mated about 20GWe, the present total capacity of geothermalpower plant is still around 500M We, almost unchanged formore than a decade. After the nuclear accident in March 2011,the government re-started an incentive scheme for geothermaldevelopment and mitigation of constraints in national parks,encouraging new geothermal exploration activities by private sec-tors as well as quick installation of small binary systems. About40 projects are under exploration or development. The followingfields are active: Akita (88 MWe), Fukushima (65MWe), Hachijo-

    jima (3 MWe), Hokkaido (25 MWe), Iwate (103 MWe), Kagoshima(60MWe),Kumamoto(2 MWe), Miyagi(15 MWe), Oita (155MWe),and Tokamachi (2 MWe) (Yasukawa and Sasada, 2015).

    Development since WGC2010: no major projects; derating theunit of Mori from 50 to 25MWe.

    Japan Installed capacity 520MWe Geothermal electricity2687GWh/y

    4.7. Philippines

    A new law provides fiscal and non-fiscal incentives to promoteand accelerate the exploration, development and utilization ofrenewable energy resources whichinclude geothermal energy. As aconsequence,43 Geothermal Service/Operating Contracts has beenawarded, expecting an additional capacity of 20 MWe at Maibararaand 30MWe at Nasulo projects to be commissioned by 2014. Like-wise, expansion and optimization projects arein the pipeline. Withthe current installed capacity of 1870MWe geothermal contributes

    to 14% of the total electricity requirements, from 7 productivepoles Bacon-Manito/Sorsogon/Albay 131 MWe, Mak-Ban/Laguna458 MWe, Mindanao/Mount Apo108 MWe,Palinpinon/Negros Ori-ental 192 MWe, Tiwi/Albay 234 MWe, Maibarara 20 MWe andTongonan/Leyte 726 MWe (Fronda et al., 2015).

    Development since WGC2010: no major projects, decommis-sioning of Northern Negros (50 MW), commissioning 20 MWe atMaibarara in 2014.

    Philippines Installedcapacity1870 MWe Geothermal electricity9646GWh/y

    4.8. Taiwan

    Taiwan possesses rich geothermal resources due to volcanicactivities and plate collision, with an estimated potential of

    150GWe of potential geothermal energy, still untapped (only a

  • 7/26/2019 Geothermal power generation in the world 20102014 update report

    7/13

    R. Bertani / Geothermics 60 (2016) 3143 37

    small binary unit is in operation). Four hot potential sites have beenrecognized. More detailed geothermal surveys are ongoing, and apilot geothermal plant of 1 MWe is planned (Tsanyao, 2015).

    Development since WGC2010: a newsmallbinary unit at Ching-shui in 2012.Taiwan Installed capacity 005MWe Geothermal electricity 004GWh/y

    4.9. Thailand

    Geothermal resources in Thailand are classified into low-medium enthalpy, with suitable possibilities for small scale powerplant, in the range 110MWe with binary technology. Currently,geothermal utilization as binary cycle power plant is 0.3 MWe(Raksaskulwong, 2015).

    Development since WGC2010: no new plants.Thailand Installed capacity 0.3MWe Geothermal electricity 1.2GWh/y

    5. Geothermal power generation: Europe

    5.1. Austria

    No new activityfor electricity generation has been conducted in

    the country. An old plant(Simbach-Braunau) was decommissioned(Goldbrunner, 2015).Development since WGC2010: non new plants since WGC2010

    a small unit decommissioned.Austria Installed capacity 1.2MWe Geothermal electricity 2.2GWh/y

    5.2. Czech Republic

    The geothermal energy use in the Czech Republic has beenconstantlyincreasing, focusing on district heating. Only one cogen-eration geothermalproject inLitomerice hasbeen already underdevelopment (Jirakova et al., 2015).

    5.3. France

    France has defined ambitious objectives for electrical geother-mal development, but limited to the overseas territory(Guadalupe,in Caribbean Sea); many projects are emerging on the mainland(combined heat and power). The first 1.5 MWe EGS pilot plant atSoultz-sous-Forts is fully operative (Vernier et al., 2015).

    Development since WGC2010: non new plants since WGC2010.France Installed capacity 16 MWe Geothermal electricity 115GWh/y

    5.4. Germany

    In the country only Organic Rankine and Kalina cycle tech-niques are applied, mainly in conjunction with district heatingsystem, for geothermal power production, due to the lack of high

    enthalpy resources at shallow depth. Several new 5 MWe powerplantshave been commissioned, resultingin a total installedcapac-ity of27.1MWe in Germany. the FederalGovernment is supportingthe geothermal development through funding R&D projects andwith thevery generous newfeed-in tariff, increasedto 0.25D/kWh.The majority of the projects is in Bayern (20MWe) and Rheinland-Pfalz (7 MWe) (Weber et al., 2015).

    Development since WGC2010: 20 MWe in four new units: Dr-rnhaar, Kirchstockach, Insheim and Sauerlach.

    Germany Installed capacity 27MWe Geothermal Electricity 35GWh/y

    5.5. Greece

    Greece is rich in geothermal resources, but unfortunately no

    geothermal electricity is produced in Greece, despite the fact that

    a pilot 2MWe power plant was built and operated in the 1980sin Milos Island. Several projects are in evaluation phase (Andritsoset al., 2015).

    5.6. Hungary

    Hungarys excellent geothermal potential is well-known, withimportant development for direct heat supply (mostly for the ther-

    mal water used in spas). As yet, there is no operational geothermalpower-plant in Hungary. Many projects are currently being pre-pared (Toth, 2015).

    5.7. Iceland

    The countrys geological characteristics (its location on the Mid-Atlantic Ridge) are favoring the large utilization of geothermalenergy in the energy supply of Iceland. The share of geother-mal energy in the primary energy supply of Iceland is about 69%,reaching 90% of allenergyused forhouseheating. Geothermalelec-tricity generation started 45 years ago and has now reached 29%of the total electricity needs. The total installed capacity is now665MWe and the annual generation about 5250GWh, from thefollowing fields: Nmafjall 3 MWe, Hellisheidi 303MWe, Hsavk2MWe, Krafla 60MWe, Nesjavellir 120 MWe, Reykjanes 100MWeand Svartsengi 74 MWe (Ragnarsson, 2015).

    Development since WGC2010: 90MWe of two new units atHellisheidi IV.

    Iceland Installed capacity665MWe Geothermal electricity5245GWh/y

    5.8. Italy

    The geothermal resources for electricity generation are locatedin Tuscany, in the two historical areas of Larderello-Travale(795MWe) and Mount Amiata (121MWe). The gross electricitygeneration reached 5700 GWh, the new record of electricity pro-duced from geothermal resource in Italy. Several old units havebeen decommissioned and replaced with new ones, and a newtwo-unit power plant at Bagnore IV has been commissioned. Thefirst binary power plant in Italy (Gruppo Binario Bagnore3-1 MWe)has been realized, on the liquid separated stream from the primaryflash; finally at Cornia 2 a first hybrid project with a biomass heaterhas been launched, increasing the output power from 12MWe to17MWe (Razzano and Cei, 2015).

    Development since WGC2010: 74 MWe from two new units atMount. Amiata and three at Larderello (with some decommission-ing of old plants).Italy Installed capacity 916 MWe Geothermal electricity5660GWh/y

    5.9. Latvia

    There is no operational geothermal power-plant in Latvia, but asmall binary pilot plant project is under evaluation.

    5.10. Netherland

    There is no operational geothermal power-plant in Netherland,but a small binary pilot plant project is under evaluation (VanHeekeren and Bakema, 2015).

    5.11. Poland

    The geothermal potential of the country is well known, withimportant development for direct heat supply. As yet, there is nooperational geothermal power-plant in Poland, but a small binarypilot plant at Lodz is under evaluation (Kepinska, 2015).

  • 7/26/2019 Geothermal power generation in the world 20102014 update report

    8/13

    38 R. Bertani / Geothermics 60 (2016) 3143

    5.12. Portugal

    The high temperature geothermal resources are restricted tothe volcanic islands of Azores Archipelago, with operating plants atS. Miguel Island (Ribeira Grande Geothermal Field) and advancedproject in Terceira Island (Pico Alto Geothermal Field). Power pro-duction from geothermal resources in Azores presently meets 42%of theelectrical consumption of S. Miguel, and over 22% of thetotaldemand of the archipelago (Carvalho et al., 2015).

    Development since WGC2010: no new plants.Portugal Installed capacity 29MWe Geothermal electricity 196GWh/y

    5.13. Romania

    The geothermal potential of the country is large, with impor-tant development for direct heat supply. In 2012, Transgex S.A.installed the first power generation unit in Romania: 50kWe unit,using 10l/s of 105C geothermal water at Oradea (Bendea et al.,2015).

    Development since WGC2010: a small binary unit at Oradea.

    Romania Installed capacity 0,1MWe Geothermal electricity 0,4GWh/y

    5.14. Russia

    There are several areas of the country with a good geothermalpotential, in the European part of Russia: Central region; North-ern Caucasus; Daghestan; in Siberia: Baikal rift area, Krasnoyarskregion, Chukotka, Sakhalin. Kamchatka Peninsula and the KurilIslands, with an overall evaluation of about 2000MWe of electricityand for more than 3000MWe of heat for district heating system.Several combined heat and electricity projects are ongoing. TheinstalledplantsareinKamchatka(Pauzhetskaya14MWe,Verkhne-Mutnovskaya 12 MWeandMutnovskaya50MWe) andKurilislands(Iturup 4 MWe and Kunashir 2 MWe) (Svalova and Povarov, 2015).

    Development since WGC2010: no new units.

    Russia Installed capaci ty 82 MWe Geothermal electricity 440GWh/y

    5.15. Slovakia

    Geothermal waters are widely used for recreational purposes,mostly in very popular aqua parks in many places of Slovakia, withseveral others direct utilization. A small pilot plant is under evalu-ation at Kosice, for a combined heat and electricity project (Fendekand Fendekova, 2015).

    5.16. Spain

    At present, there is no geothermal power generation in Spain,

    despite the good potential in the Canarias islands and the favor-ability of the Spanish geological setting for EGS type projects(Arrizabalaga et al., 2015).

    5.17. Switzerland

    Directuse ofgeothermal energyis a success storyin Switzerland,with all the standard utilization, from the oldest thermal spas, toheating residential and apartment houses, office buildings, agricul-tural sector and so on. The cooling application is becoming moreandmore important. Even tunnelwateris alternately used forheat-ing and cooling. Deep geothermal energy for power production isnot applied, and no power has been produced yet. A small pilotplant is planned at St. Gallen (Link et al., 2015).

    5.18. Turkey

    A significant development was achieved in Turkey in geother-mal electricity production and direct uses (district, greenhouseheating and thermal tourism) during last five years, also due tothe new Geothermal Law, its regulations and the feed in tar-iff. About 225 geothermal fields have been discovered in Turkey,and today electricity production has reached almost 400 MWe,with more than 350MWe of new plants. A liquid carbon diox-ide and dry ice production factory is integrated to the Kizilderegeothermal power plant. The existing plants are in the followingareas: Canakkale-Tuzla 7 MWe, Aydin-Hidirbeyli 92 MWe, Aydin-Salavath 35MWe, Aydin-Germencik 70 MWe, Aydin-Gmsky7MWe, Denizli-Kizildere 107MWe, Aydin-Pamukren 48 MWe,Manisa-Alasheir 24 MWe, Denizli-Gerali 3 MWe (Mertoglu et al.,2015).

    Development since WGC2010: in impressive amount of newunits, for a total of about 350 MWe.Turkey Installed capacity 407MWe Geothermal electricity3247GWh/y

    5.19. UK

    The exploitation of geothermal resources in the UK continues tobe minimal, due to the lack of high temperature resources and thelimiteddevelopmentof lowand mediumenthalpy resources. How-ever, two EGS/HDR projects in Cornwall have sites and planningapproval (Batchelor et al., 2015).

    6. Geothermal power generation: Oceania

    6.1. Australia

    In Australiathree deepwellswere completed,and after 20 yearsa new geothermal power plant (1MWe Habanero Pilot Plant) hasbeen commissioned. Unfortunately, manyof the companies involvein geothermal exploration are leaving the sector, and the number

    exploration licenses is decreasing (Beardsmore et al., 2015).Development since WGC2010: a new plant at Habanero.

    Australia Installed capacity1.1MWe Geothermal electricity 0.5GWh/y

    6.2. New Zealand

    New Zealand is in a phase of impressive growing for geothermalelectricity generation, due to the availability of high tempera-ture, productive geothermal resources associated with lowest costfor electricity generation facilities compared to other renewableenergy or fossil-fuelled options. Geothermal electricity genera-tion capacity is contributing about 16% of the national electricitygeneration (c.f. 13% in 2010) in an electricity system dominatedby renewable generation (75% of its electricity from renewableenergy sources). The productive areas are all in the Taupo volcaniczone, at Wairakei 399MWe, Kawerau 140MWe, Reporoa 57 MWe,Rotokawa 167 MWe, Ngawha 25MWe, Mokai 111MWe, Tauhara24MWe and Ngatamariki 82 MWe (Carey et al., 2015).

    Development since WGC2010: 243 MWe of new plants, inNgatamariki, Tauhara and Wairakeie.

    New Zealand Installed capacity1005MWe Geothermal electricity7000GWh/y

    6.3. Papua-New Guinea

    Papua New Guinea is located within the ring of fire, with hasnumerous active volcanoes and known geothermal systems. Therearecurrently 50 MWe(gross) of geothermal power installedat Lihir

    GoldMine.Thehighcostofdieselandfueloil,andtheunpredictable

  • 7/26/2019 Geothermal power generation in the world 20102014 update report

    9/13

    R. Bertani / Geothermics 60 (2016) 3143 39

    Table 3

    Topfive countriesfor installed capacity in 2015.

    Country 2010 MWe 2010GWh 2015MWe 2015GWh

    USA 3,098 16,603 3,450 16,600Philippines 1,904 10,311 1,870 9,646Indonesia 1,197 9,600 1,340 9,600Mexico 958 7,047 1,058 6,071New Zealand 762 4,055 1,005 7,000

    Table 4

    Topfive countriesfor theabsoluteincrease in MWe since WGC2010.

    Country MWe GWh %MWe %GWh

    Kenya 434 1.438 215% 101%USA 352 11%Turkey 316 2.757 347% 563%New Zealand 243 2.945 32% 73%Indonesia 143 12%

    Table 5

    Topfive countriesfor the% increase in MWe since WGC2010.

    Country MWe GWh %MWe %GWh

    Turkey 316 2.757 347% 563%

    Germany 20 280%Kenya 434 1.438 215% 101%Nicaragua 72 182 82% 59%New Zealand 243 2.945 32% 73%

    nature of hydro power stations, has renewed strong interest ingeothermal power (Kuna and Zehner, 2015).

    Development since WGC2010: no new plants since WGC2010 asmall unit decommissioned.

    Papua New GuineaInstalled capacity 50MWeGeothermal electricity 432GWh/y

    7. Statistical highligths

    7.1. Some ranking

    Top FiveThe Top Five Countries for capacity and produced energy are

    presented in Table3. It should be mentioned the important changeof ranking of New Zealand, (now 5th). Italy is now downgraded tothe 6th position.

    The Top Five Countries for absolute value increase are high-lighted in Table 4. Kenya and Turkey are two most importantachievements: geothermal electricity has been in a long stagnantphase, since the early development, and nowadays it is rising veryquickly and toward an impressive growing target.

    Moreover, USA, Indonesia, and New Zealand represent animportantsignal: even in countrieswhere the geothermaldevelop-ment started more than 50 year ago, still the industry is presently

    proactive in launching new projects, and the economical environ-ment is strongly positive in terms of incentives and supportingmeasures.

    The Top Five Countries for percentage increase are presentedin Table 5. The value of Turkey is impressive, for its relative largeinstalled capacity. Germany is big, but mainly due to its verysmall starting value. On the other hand, Kenya, Nicaragua and NewZealand are important geothermal countries with a significant rel-ative increase in the last five years.

    7.2. Plant classification

    Ifollowedthestandardplantclassificationwiththeclassicaldef-

    initions of binary, back pressure, single/double flash and dry steam

    Single Flash in

    operaon;

    5216; 41%

    Double Flash

    in operaon;

    2435; 19%

    Triple Flash

    in operaon;

    262; 2%

    Back

    pressure in

    operaon;

    125; 1%

    Hybrid in

    operaon;

    2; 0%

    Binary in

    operaon;

    1726; 14%

    Dry steam in

    operaon;

    2863; 23%

    Capacity, MW

    Fig. 3. Installed capacity in MWe (and%)for each plant typology (total 12,6GWe).

    Fig. 4. Number of units (and%) foreach typology (total 613).

  • 7/26/2019 Geothermal power generation in the world 20102014 update report

    10/13

    40 R. Bertani / Geothermics 60 (2016) 3143

    Table 6

    Plant category per continent (Installed Capacity, MWe).

    Country Back pressure & hybrid Binary Dry steam Single flash Double flash Triple Flash Total

    Ethiopia 7 7Kenya 48 4 543 594Africa 48 11 543 602China 3 1 24 28Indonesia 8 460 873 1340Japan 7 24 355 135 520

    Philippines 219 1286 365 1870Asia 236 484 2514 525 3758Austria 1 1France 2 10 5 16Germany 27 27Iceland 10 564 90 665Italy 1 795 120 916Portugal 29 29Russia 82 82Turkey 198 20 178 397Europe 268 795 796 273 2133Costa Rica 5 63 140 208El Salvador 9 160 35 204Guatemala 52 52Mexico 75 3 466 475 1019Nicaragua 10 8 142 160USA 2 873 1584 60 881 50 3450America 92 1008 1584 968 1391 50 5092Australia 1 1New Zealand 44 265 209 356 132 1005Papua New Guinea 50 50Oceania 44 266 259 356 132 1056World total 181 1790 2863 5079 2544 182 12640

    Table 7

    Average capacity and energyper each plant category (hybrid excluded).

    TYPE Average energy (GWh/unit) Average capacity (MWe/unit)

    Binary 31 6.3Back Pressure 76 7.0Single Flash 179 30.4Double Flash 231 37.4Triple Flash 500 90.8Dry Steam 253 45.4

    plant.In thepiecharts ofFigs.3and4 the installedcapacityin MWeand the total number of units for each category are presented.

    I have evaluated the distribution per country and per conti-nent of the individual plant characteristic, accounting the installedcapacity. Results are shown in Table 6. The average values per unitoftheinstalledcapacityandtheproducedenergyisgivenin Table7.

    Finally, in the Table 8 the list of all the new installed plant is pre-sented.

    7.3. Manufacturer andoperator ranking

    The turbine manufacturer for the plant currently in operationare presented Fig. 5. It is surprisingly to have at the first position

    Fig. 5. The most important geothermal turbine manufacturer.

  • 7/26/2019 Geothermal power generation in the world 20102014 update report

    11/13

    R. Bertani / Geothermics 60 (2016) 3143 41

    Table 8

    Thenew plantslist.

    Country: Plant Unit COD Type Manufacturer Capacity (MWe) Operator

    Australia Habanero 1 2013 Binary Peter Brotherhood 1 GeodynamicsChina North Oil Field 1 2010 Binary 0.4China Longyuan 2 2010 Binary 1 Longyuan CoChina Yangyi 1 2011 Single Flash 0.9 Jiangxi Huadian Electric Power Co. LtdCosta Rica Las Pailas 1 2011 Binary ORMAT 21 Instituto Costarricense de ElectricidadCosta Rica Las Pailas 2 2011 Binary ORMAT 21 Instituto Costarricense de Electricidad

    Germany Sauerlach 1 2012 Binary UTC Turboden 5 Municipality GermanyGermany Drrnhaar 1 2013 Binary UTC Turboden 5.6 Municipality GermanyGermany Kirchstockach 1 2013 Binary UTC Turboden 5.6 Municipality GermanyGermany Insheim 1 2013 Binary UTC Turboden 4.3 Municipality GermanyIceland Hellisheidi IV 1 2011 Single Flash Mitsubishi 45 Orkuveita ReykjavikurIceland Hellisheidi IV 2 2011 Single Flash Mitsubishi 45 Orkuveita ReykjavikurIndonesia Ulumbu 1 2012 Single Flash Fuji 2.5 PLNIndonesia Ulumbu 2 2012 Single Flash Fuji 2.5 PLNIndonesia Lahendong B1 2012 Binary 7.5 BPPTIndonesia Lahendong 4 2012 Single Flash Fuji 20 BPPTIndonesia Mataloko 1 2013 Single Flash Fuji 2.5 PLNIndonesia Ulu Belu 1 2014 Single Flash Toshiba 55 PLNIndonesia Ulu Belu 2 2014 Single Flash Toshiba 55 PLNItaly Chiusdino 1 1 2010 Dry Steam Ansaldo Tosi 20 Enel Green PowerItaly Nuova Radicondoli 2 2011 Dry Steam Ansaldo Tosi 20 Enel Green PowerItaly Bagnore Binary 1 2012 Binary Exergy 1 Enel Green PowerItaly Bagnore 4 2 2014 Single Flash Ansaldo Tosi 20 Enel Green PowerItaly Bagnore 4 1 2014 Single Flash Ansaldo Tosi 20 Enel Green PowerJapan Niigata 1 2012 Binary EcoGen 2 WasabiJapan Abo-tunnel 1 2013 binary 0.003Japan Yumura Spring 1 2014 binary 0.03Japan Hagenoyu 3 2014 binary 2Japan Shichimi Spring 1 2014 binary 0.02Japan Goto-en 2 2014 binary 0.09Japan Beppu Spring 4 2014 binary 0.5Japan Oguni Matsuya 1 2015 binary 0.06Kenya Olkaria II 3 2010 Single Flash Mitsubishi 35 KenGenKenya Eburro 1 2011 Single Flash Elliot 2.5 KenGenKenya WellHEad OW37 1 2013 Back Pressure Elliot 5 Oserian Development CompanyKenya Olkaria I 4 2014 Single Flash Toyota 70 KenGenKenya Olkaria I 5 2014 Single Flash Toyota 70 KenGenKenya Olkaria III 3a 2014 Single Flash ORMAT 13 ORMATKenya Olkaria III 3b 2014 Single Flash ORMAT 13 ORMATKenya Olkaria IV 1 2014 Single Flash Toyota 70 KenGenKenya Olkaria IV 2 2014 Single Flash Toyota 70 KenGen

    Kenya WellHEad OW43 1 2014 Back Pressure Elliot 12.8 Oserian Development CompanyKenya WellHEad 1 2014 Back Pressure Elliot 30 Oserian Development CompanyMexico Los Humeros II A 2012 Single Flash Alstom 27 Comisin Federal de ElectricidadMexico Los Humeros II B 2013 Single Flash Alstom 27 Comisin Federal de ElectricidadNew Zealand Nga Awa Purua 1 2010 Triple flash Fuji 132 Mighty River PowerNew Zealand Kawerau -Topp 1 2012 Binary ORMAT 23 Norske Skog TasmanNew Zealand Ngatamariki 1 2013 Binary Ormat 20.5 Mighty River PowerNew Zealand Ngatamariki 2 2013 Binary Ormat 20.5 Mighty River PowerNew Zealand Ngatamariki 3 2013 Binary Ormat 20.5 Mighty River PowerNew Zealand Ngatamariki 4 2013 Binary Ormat 20.5 Mighty River PowerNew Zealand Te Huka 1 2013 Binary Ormat 12 Contact EnergyNew Zealand Te Huka 2 2013 Binary Ormat 12 Contact EnergyNew Zealand Te Mihi 1 2014 Double Flash Toshiba 83 Contact EnergyNew Zealand Te Mihi 2 2014 Double Flash Toshiba 83 Contact EnergyNicaragua San Jacinto-Tizate 3 2012 Single Flash Fuji 36 Ram PowerNicaragua San Jacinto-Tizate 4 2013 Single Flash Fuji 36 Ram PowerPhilippines Maibarara 1 2014 Single Flash Fuji 20 Maibarara Geothermal

    Romania Oradea 1 2012 Binary UTC Turboden 0.05 nullTaiwan Qingshui 2 2012 Binary 0.05 nullTurkey Dora 2 2010 Binary ORMAT 9.5 MENDERESTurkey Tuzla 1 2010 Binary ORMAT 7.5 DardanelTurkey IREM 1 2011 Binary ORMAT 20 MARENTurkey DENIZ 1 2012 Binary ORMAT 24 MARENTurkey SINEM 1 2012 Binary ORMAT 24 MARENTurkey Dora 3a 2012 Binary ORMAT 9 MENDERESTurkey Germencik 2 2013 Double Flash Mitsubishi 51 GURMATTurkey Gmsky 1 2013 Binary TAS 6.6 BMTurkey Pamukren 1 2013 Binary Atlas-Copco 24 Celikler Jeotermal ElektrikTurkey Pamukren 2 2013 Binary Atlas-Copco 24 Celikler Jeotermal ElektrikTurkey Kizildere 2 2013 Double Flash Fuji 80 ZORLUTurkey Dora 3b 2014 Binary ORMAT 9 MENDERESTurkey Degirmenci 1 2014 Binary 2.5 Turcas Gney Elektrik retimTurkey Alasheir 1 2014 Binary ORMAT 24 TurkelerUSA Jersey Valley 1 2010 Binary ORMAT 19.4 ORMATUSA Puna 11 2011 Binary ORMAT 8 ORMATUSA Beowave 2 2011 Binary Turbine Air System 1.9 Beowawe PowerUSA Dixie Valley 2 2011 Binary Turbine Air System 6.2 Terra GenUSA Hudson Ranch I 1 2012 Triple Flash Fuji 49.5 EnergySource

  • 7/26/2019 Geothermal power generation in the world 20102014 update report

    12/13

    42 R. Bertani / Geothermics 60 (2016) 3143

    Table 8 (Continued)

    Country: Plant Unit COD Type Manufacturer Capacity (MWe) Operator

    USA Florida Canyon Mine 1 2012 Binary 0.1 ElectrathermUSA McGinness Hill 1 2012 Binary ORMAT 52 ORMATUSA San Emidio 1 2012 Binary Turbine Air System 12.75 US GeothermalUSA Tuscarora 1 2012 Binary ORMAT 32 ORMATUSA Neal 1 2012 Binary 23 US GeothermalUSA EGS 1 2013 Binary ORMAT 1.7 ORMATUSA Cove Fort B1 2013 Binary ORMAT 13 Enel Green Power

    USA Cove Fort B2 2013 Binary ORMAT 13 Enel Green PowerUSA Lightening Dock 2 2014 Binary 4 Raser TechnologiesUSA Don Campbell 1 2014 Binary ORMAT 16 ORMAT

    Fig. 6. The most important geothermal field operators.

    Japanese companies, whereas in Japan construction of geothermalplants is practically halted.

    In Fig. 6 the geothermal field operator active in the presentdevelopment are presented.

    8. Conclusion

    The present value of 12.7 GW is an important result, confirmingthe trend started in 2010,above the10 GW threshold toward a sec-ond exponential growing phase, mainly from the increasing in themedium-low temperature development projects through binaryplants, and an important effort in realizing all the economicallyviable projects worldwide. The short term forecasting for 2020is an hope: the expected 21GWe is on the exponential behaviorforecasting. Now it would be important to transform 8GWe ofpaper-projects in real plants in five years. This challenge will beabletogivetotheentiregeothermalcommunityaclearsignalofthepossibility and the willingness of being one of the most important

    renewable energy player in the future electricity market.I have evaluated (Bertani, 2003) the expected geothermal tar-

    gets for year 2050:

    from hydrothermal resources of 70 GWe. 140GWe in total (with EGS and other non conventional

    resources).

    If the target of 140 GW will be reached, it would be possible toproduce from geothermal up 8.3% of total world electricity pro-duction, serving 17% of world population. Moreover, 40 countries(located mostly in Africa, Central/South America, Pacific) can be100%geothermalpowered.TheoverallCO 2 saving fromgeothermal

    electricity can be in around 1000 million tons per year.

    The estimated value of 21GWe for 2020 is in line with the longterm forecasting for standard hydrothermal fields.

    References

    Andritsos, N., Dalambakis, P., Arvanitis, A., Papachristou, M., Fytikas, M., 2015.Geothermal developments in Greececountry update 20102014. In:Proceedings World Geothermal Congress 2015, Melbourne, Australia, April1924, 2015.

    Asturias, F., Grajeda, E.C., 2010. Geothermal resources and development inGuatemala, country update. In: Proceedings World Geothermal Congress, Bali,Indonesia, April 2530, 2010.

    Alfaro, C., 2015. 2015 Improvement of perception of the geothermal energyas apotential source of electrical energyin Colombia, country update. In:Proceedings World Geothermal Congress 2015, Melbourne, Australia, April1924, 2015.

    Arrizabalaga, I., De Gregoria, M., Garcia de la Noceda, C.,Hidalgo, R., Urchueguia,J.F., 2015. Country update for the Spanish geothermal sector. In: Proceedings,World Geothermal Congress, 2015, Melbourne, Australia, April 1924, 2015.

    Batchelor, T., Curtis, R., Ledingham, P.,Law, R.,2015. Country updatefor theUnitedKingdom. In: Proceedings World Geothermal Congress 2015, Melbourne,Australia, April 1924, 2015.

    Beardsmore, G., Budd, A., Huddlestone-Holmes, C., Davidson, C., 2015. CountryupdateAustralia. In: Proceedings World Geothermal Congress 2015,Melbourne, Australia, April 1924, 2015.

    Beate, B.,Urquizo, M., 2015. Geothermal country update for Ecuador: 20102015.In: Proceedings World Geothermal Congress 2015, Melbourne, Australia, April1924, 2015.

    Bendea, C., Antal, C., Rosca, M., 2014. Geothermal energy in Romania: countryupdate 20102015. In: Proceedings World Geothermal Congress 2015,Melbourne, Australia, April 1924, 2015, p. 2015.

    Bertani, R., 2003. What is geothermal potential? IGANews 53, 13.Bertani, R., 2005a. World geothermal generation 20012005: state of the art. In:

    Proceedings World Geothermal Congress, Antalya, Turkey, April 2429, 2005.Bertani, R., 2005. World geothermal power generation in the period 20012005,

    Geothermics34, 2005, 65690.Bertani, R., 2006. World geothermal power generation 20012005. GRC Bulletin

    MayJune 2006 006, 89111.Bertani, R., 2007. World geothermal generation in 2007. In: Proceedings European

    Geothermal Congress, Unterhaching, Germany, AprilMay, 2007.

    http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0045http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0045http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0065http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0060http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0050http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0045http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0045http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0045http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0045http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0045http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0045http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0045http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0045http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0045http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0045http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0040http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0035http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0030http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0025http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0020http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0015http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0010http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0005
  • 7/26/2019 Geothermal power generation in the world 20102014 update report

    13/13

    R. Bertani / Geothermics 60 (2016) 3143 43

    Bertani, R., 2010. Geothermal powergeneration in the world 20052010 updatereport. In: Proceedings World Geothermal Congress, Bali, Indonesia, April2530, 2010.

    Bertani R.,2012. World geothermal powergeneration in theworld20052010update report.Geothermics 41, 29.

    Bertani, R., et al., 2013. Summary of EGCountry update reports on geothermalenergy in Europe. In: Proceedings European Geothermal Congress, Pisa, Italy,June 46, 2013.

    Boyd, T.L., Sifford, A., Lund, W.J., 2015. TheUnited Statesof America countryupdate 2015. In: Proceedings World Geothermal Congress 2015, Melbourne,Australia, April 1924, 2015.

    Carey, B., Dunstall, M., McClintock, S.,White, B., Bignall, G., Luketina, K.,Robson, B.,Zarrouk, S.,Seward, A.,2015. 2015 New Zealand country update. In:Proceedings World Geothermal Congress 2015, Melbourne, Australia, April1924 2015.

    Carvalho,J.M.,Coelho, L., Nunes, J.C., Carvalho MdR, Garcia, J.,Cerdeira, R.,2015.Portugal country update 2015. In: Proceedings World Geothermal Congress2015, Melbourne, Australia, April 1924, 2015.

    Chandrasekharam, D., Chandrasekhar, V., 2015. Geothermal energy resources,India: country update. In: Proceedings World Geothermal Congress 2015,Melbourne, Australia, April 1924, 2015.

    Cruz, V.,Vargas, V., 2015. Geothermal country update for Peru, 20102014. In:Proceedings World Geothermal Congress 2015, Melbourne, Australia, April1924, 2015.

    Darma, S., Gunawan, R., 2015. Country update: geothermal energy use anddevelopment in Indonesia. In: Proceedings World Geothermal Congress 2015,Melbourne, Australia, April 1924, 2015.

    Fendek, M., Fendekova, M., 2015. Country update of theSlovak Republic. In:Proceedings World Geothermal Congress 2015, Melbourne, Australia, April1924, 2015.

    Fronda, A.D., Marasigan, M.C., Lazaro, V.S., 2015. Geothermal development in thePhilippines: the country update. In: Proceedings World Geothermal Congress2015, Melbourne, Australia, April 1924, 2015.

    Goldbrunner, J., 2015. Austriacountry update. In: Proceedings World GeothermalCongress 2015, Melbourne, Australia, April 1924, 2015.

    Gutirrez-Negrn, L.C.A., Maya-Gonzlez, R., Quijano-Len, J.L., 2015. Presentsituation and perspectives of geothermal in Mexico. In: Proceedings WorldGeothermal Congress 2015, Melbourne, Australia, April 1924, 2015.

    Gutirrez-Negrn, L.C.A., 2015. Mexico: An Update of the Country Update. IGANews100.

    Henriquez, W.A., 2015. Geothermal development in Honduras. In: ProceedingsWorld Geothermal Congress 2015, Melbourne, Australia, April 1924, 2015.

    Herrera, R.,et al., 2010. El Salvador country update. In: Proceedings WorldGeothermal Congress, Bali, Indonesia, April 2530, 2010.

    Huttrer, G.,LaFleur,J., 2015. 2015Country update for eastern Caribbean. In:Proceedings World Geothermal Congress 2015, Melbourne, Australia, April1924,2015, p. 2015.

    Jirakova, H., Stibitz, M., Frydrych, V., Durajova, M., 2015. Geothermal country

    update for the Czech Republic. In: Proceedings World Geothermal Congress2015, Melbourne, Australia, April 1924, 2015.Kepinska, B.,2014. Geothermal energycountry update reportfrom Poland,

    20102014. In: Proceedings World Geothermal Congress 2015, Melbourne,Australia, April 1924, 2015.

    Kuna, I., Zehner, R.,2015. Papua New Guinea country update. In: ProceedingsWorld Geothermal Congress 2015, Melbourne, Australia, April 1924, 2015.

    Lahsen, A.,Rojas, J.,Morata, D., Aravena, D.,2015. 2015 Geothermal exploration inChile: country update. In: Proceedings World Geothermal Congress 2015,Melbourne, Australia, April 1924, 2015.

    Link, K., Rybach, L., Imhasly, S.,Wyss,R., 2015. Geothermal energy inSwitzerlandcountry update. In: Proceedings World Geothermal Congress2015, Melbourne, Australia, April 1924, 2015.

    Mertoglu,O., Simsek, S., Basarir, N.,2015. Geothermal country update report ofTurkey (20102015). In: Proceedings World Geothermal Congress 2015,Melbourne, Australia, April 1924, 2015.

    Moussa, O.A., Souleiman, H., 2015. Country report, geothermal development inDjibouti Republic. In: Proceedings World Geothermal Congress 2015,Melbourne, Australia, April 1924, 2015.

    Omenda, P.,Simiyu, S.,2015. Country update report forKenya 20102014. In:Proceedings World Geothermal Congress 2015, Melbourne, Australia, April1924, 2015.

    Pesce, A.H., 2015. Argentina country update. In: Proceedings World GeothermalCongress 2015, Melbourne, Australia, April 1924, 2015.

    Porkhial, S., Yousefi, P., 2015. Geothermal energy in Iran. In: Proceedings WorldGeothermal Congress 2015, Melbourne, Australia, April 1924, 2015.

    Ragnarsson, A., 2015. Geothermal development in Iceland 20102014. In:Proceedings World Geothermal Congress 2015, Melbourne, Australia, April1924, 2015.

    Raksaskulwong, M., 2015. Update on geothermal utilizations in Thailand. In:Proceedings World Geothermal Congress 2015, Melbourne, Australia, April1924, 2015.

    Razzano, F.,Cei, M.,2015. Geothermal power generation in Italy 20102014Update report. In: Proceedings World Geothermal Congress 2015, Melbourne,Australia, April 1924, 2015.

    Ruiz Cordero, J.F., 2010. IGAWorkshop. In: SanSalvador30th October 2010, ElSalvador.

    Saibi,H., 2015. Geothermal resources in Algeria. In: Proceedings WorldGeothermal Congress 2015, Melbourne, Australia, April 1924, 2015.

    Snchez-Rivera, E., Vallejos-Ruz, O., 2015. Costa Rica country update report. In:Proceedings World Geothermal Congress 2015, Melbourne, Australia, April1924, 2015.

    Svalova, V.,Povarov,K., 2015. Geothermal energyuse in Russia. Country updatefor20102015. In: Proceedings World Geothermal Congress 2015, Melbourne,Australia, April 1924, 2015.

    Teklemariam, M., 2010. Strategy for geothermal resource exploration anddevelopment in Ethiopia. In: Proceedings World Geothermal Congress, Bali,Indonesia, April 25-30, 2010.

    Terceros, Z.D., 2000. State of thegeothermal resources in Bolivia: Laguna Coloradaproject. In: Proceedings of the World Geothermal Congress 2000,Kyushu-Tohoku, Japan, May 28-June 10, pp. 153158.

    Thompson,A., Bakhteyar, F., VanHal, G.,2015. Geothermal industry developmentin CanadaCountry Update. In: Proceedings World Geothermal Congress 2015,Melbourne, Australia, April 1924, 2015.

    Toth, A.N., 2015. Hungarian country update 20102014. In: Proceedings WorldGeothermal Congress 2015, Melbourne, Australia, April 1924, 2015.

    Tsanyao, F.Y., 2015. Introduction to the geothermal energy program in Taiwan. In:Proceedings World Geothermal Congress 2015, Melbourne, Australia, April1924, 2015.

    Van Heekeren,V., Bakema, G., 2015. The Netherlands country update ongeothermal energy. In: Proceedings World Geothermal Congress 2015,

    Melbourne, Australia, April 1924, 2015.Vernier, R., Laplaige,P., Desplan, A.,Boissavy, C.,2015. France country update. In:Proceedings World Geothermal Congress 2015, Melbourne, Australia, April1924, 2015.

    Weber,J., Ganz, B., Schellschmidt, R., Sanner, B., Schulz, R.,2015. Geothermalenergy Use in Germany. In: Proceedings World Geothermal Congress 2015,Melbourne, Australia, April 1924, 2015.

    Yasukawa, K., Sasada, M., 2015. Country update of japan: renewed opportunities.In: Proceedings World Geothermal Congress 2015, Melbourne, Australia, April1924, 2015.

    Zheng, K.,Dong, J.,Chen,Z., Tian, T., Wang, G.,2015.Speeding up industrializeddevelopment of geothermal resources in ChinaCountry update report20102014. In: Proceedings World Geothermal Congress 2015, Melbourne,Australia April 1924 2015.

    http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0070http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0070http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0070http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0070http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0070http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0080http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0080http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0080http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0080http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0085http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0085http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0085http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0085http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0090http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0090http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0090http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0090http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0095http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0095http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0095http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0100http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0100http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0100http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0100http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0105http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0105http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0105http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0105http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0105http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0105http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0110http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0110http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0110http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0110http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0115http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0115http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0115http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0115http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0120http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0120http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0120http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0120http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0125http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0125http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0125http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0125http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0130http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0130http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0130http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0130http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0140http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0140http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0140http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0145http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0145http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0145http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0150http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0150http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0150http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0150http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0155http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0155http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0155http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0155http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0160http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0160http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0160http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0165http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0165http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0165http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0170http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0170http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0170http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0170http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0175http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0175http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0175http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0175http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0175http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0180http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0180http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0180http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0180http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0180http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0185http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0185http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0185http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0185http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0190http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0190http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0190http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0190http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0190http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0195http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0195http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0195http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0200http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0200http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0200http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0205http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0205http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0205http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0205http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0205http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0210http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0210http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0210http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0210http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0215http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0215http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0215http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0215http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0215http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0220http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0220http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0225http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0225http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0225http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0230http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0230http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0230http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0230http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0235http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0235http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0235http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0235http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0235http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0240http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0240http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0240http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0245http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0245http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0245http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0245http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0245http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0250http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0250http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0250http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0250http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0250http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0255http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0255http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0255http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0255http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0260http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0260http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0260http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0260http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0260http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0265http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0265http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0265http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0265http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0270http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0270http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0270http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0270http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0275http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0275http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0275http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0275http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0280http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0280http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0280http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0280http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0280http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0285http://refhub.elsevier.com/S0375-6505(15)00155-8/sbref0285http://re