50
1 Geometric Algebra (GA) Werner Benger, 2007 CCT@LSU SciViz

Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

1

Geometric Algebra (GA)

Werner Benger, 2007

CCT@LSU SciViz

Page 2: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

2

Abstract

• Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford algebra applied to real fields. Hereby the so-called „geometrical product“ allows to expand linear algebra (as used in vector calculus in 3D) by an invertible operation to multiply and divide vectors. In two dimenions, the geometric algebra can be interpreted as the algebra of complex numbers. In extends in a natural way into three dimensions and corresponds to the well-known quaternions there, which are widely used to describe rotations in 3D as an alternative superior to matrix calculus. However, in contrast to quaternions, GA comes with a direct geometrical interpretation of the respective operations and allows a much finer differentation among the involved objects than is achieveable via quaternions. Moreover, the formalism of GA is independent from the dimension of space. For instance, rotations and reflections of objects of arbitrary dimensions can be easily described intuitively and generic in spaces of arbitrary higher dimensions.

• Due to the elegance of the GA and its wide applicabililty it is sometimes denoted as a new „fundamental language of mathematics“. Its unified formalism covers domains such as differential geometry (relativity theory), quantum mechanics, robotics and last but not least computer graphics in a natural way.

• This talk will present the basics of Geometric Algebra and specifically emphasizes on the visualization of its elementary operations. Furthermore, the potential of GA will be demonstrated via usage in various application domains.

Page 3: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

3

Motivation of GA

• Unification of many domains: quantum mechanics, computer graphics, general relativity, robotics…

• Completing algebraic operations on vectors

• Unified concept for geometry and algebra

• Superior formalism for rotations in arbitrary dimensions

• Explicit geometrical interpretation of the involved objects and operations on them

Page 4: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

4

Definition: “Algebra”

• Vector space V over field K with

multiplication “ ”

• Null-element, One-element, Inverse

• Commutative? a b = b a

• Associative? (a b) c = a (b c)

• Division algebra?• a≠0 a-1 such that a a-1 = 1 = a-1 a

• Alternatively: a b=0 a=0 or b=0

Page 5: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

5

Historical Roots

• Complex Plane (Gauss ~1800)• Real/Imaginary part: a+ib where i2= -1

• Associative, commutative division-algebra

• Polar representation: r ei = r ( cos + i sin )

• Multiplication corresponds to rotation in the plane

cos

sin

i

Page 6: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

6

Historical Roots, II

William Rowan Hamilton (1805-65) invents Quaternions (1844):

– Generalization of complex numbers:• 4 components, non commutative: ab ba

(in general)

• Basic idea: ii=jj=kk= ijk = -1

• Alternative to younger vector- and matrix algebra (Josiah Willard Gibbs, 1839-1903)

• p=(p,p), q=(q,q), p q=(pq - p q , pq + pq+ p q)

• rotation in R3 are around axis of the vector component: v’ = q v q-1

Page 7: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

7

Historical Roots, III

• Construction by Cayley-Dickson(a,b)(c,d) = (ac-d *b, *a d+cb)

– hypercomplex numbers:

• octaves/octonions (8 components)

• sedenions/hexadekanions (16 components)

• …

– incremental loss of

• commutativity (quaternions,…)

• associativity (octonions,…)

• division algebra (sedenions,…)

Page 8: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

8

Renaissance of the GA

1878: Clifford introduces “geometric algebra”, but dies at age 34

superseded by Gibb’s vector calculus

1920er: Renaissance in quantum mechanics (Pauli, Dirac)

algebra on complex fields

no geometrical interpretation

1966-2005 David Hestenes (Arizona State University) revives the geometrical interpretation

1997: Gravitation theory using GA (Lasenby, Doran, Gull; Cambridge)

2001: Geometric Algebra at SIGGRAPH (L. Dorst, S. Mann)

Page 9: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

9

Page 10: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

10

Geometry and Vectors

• Geometric interpretation of a vector– Directed line segment or tangent

• Vector-algebra in Euclidean Geometry or Tp(M)

• Addition / subtraction of vectors a+b

• Multiplication / division by scalars a

• Multiplication / Division of vectors??

Multiplication of vectors

Page 11: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

11

Complete Vector-algebra?

• Invertible product of vectors?

• What means vector-division “a/b” ?• ab=C b=a-1C

• Note: C not necessarily a vector!

• Inner product (not associative): a b Skalar– Not invertible

e.g. a b =0 with a≠0, b≠0 but orthogonal

• Outer product (associative): a b Bivektor

– Generalized cross-product from 3D: a b

– Not invertible

e.g. a b =0 with a≠0, b≠0 but parallel

Multiplikation von Vectoren

Page 12: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

12

Bivector a b

Describes the plane spun by a and b,

sign is orientation

a b b a = -a b

Defined in arbitrary dimensions, anti-symmetric ( not commutative),

associative, distributive, spans a vector space, does not require additional

structures

Multiplikation von Vektoren

Page 13: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

13

Constructing Bivectors

No unique determination of the generating vectors possible

a b = (a+λb) b

a+λb

b

=

=

b b =0

Basis-element

|a| |b| sin

Multiplikation von Vektoren

Page 14: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

14

Bivectors in R3

• 3 Basis-elementsex ey, ey ez, ez ex

• Generalization: ex ey ez is a volume

Multiplikation von Vektoren

Page 15: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

15

Vectorspace of Bivectors

Linear combinations possible

e.g.: ex ey, ez ex

Multiplikation von Vektoren

Page 16: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

16

Coordinate representation

of “ ”-product in R3

• Generic Bivector:

A = Axy ex ey + Ayz ey ez + Azx ez ex

• (axex + ayey + azez) (bxex + byey + bzez)=

axex bxex + axex byey + axex bzez +

ayey bxex + ayey byey + ayey bzez +

azez bxex + azez byey + azez bzez =

(axby - aybx)exy+(aybz-azby)eyz+(axbz-

azbx)exz

Multiplikation von Vektoren

Page 17: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

17

Inner product a b

• Describes projections

a b = |a| |b| cos = b a

Symmetric (commutative), requires quadratic form (Metric) as additional

structure, not associative (a b) c a (b c)

Multiplikation von Vektoren

Page 18: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

18

Comparing the products

• Inner product

– Not associative

• (a b) c ≠ a (b c)

– Commutative

• a b = b a

– Not invertible

– Yields a scalar

• Outer product

– Associative

• (a b) c= a (b c)

– Not commutative

• a b ≠ b a

– Not invertible

– Yields a bivector

Page 19: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

19

Geometric Product

1. Requirements and definition

2. Structure of the operands

3. Calculus using GP

4. Rotations using GP

Das Geometrische Produkt

Page 20: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

20

Requirements to GP

• For elements A,B,C of a vector

space with quadratic form Q(v)

[i.e. a metric g(u,v) = Q(u+v) - Q(u) – Q(v)]

we require:

1. Associative: (AB)C = A(BC)

2. Left-distributive: A(B+C) = AB+AC

3. Right-distributive: (B+C)A= BA+CA

4. Scalar product: A2 = Q(A) = |A|2

Das Geometrische Produkt

Page 21: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

21

Properties of the GP

• Right-angled triangle|a+b|2 = |a|2+|b|2

(A+B)(A+B) = AA+BA+AB+BB = A2 + B2

AB = -BA for A B = 0 anti-symm if orthogonal

• However: not purely anti-symmetric

|AB|2 =|A|2 |B|2 for A B = 0 (i.e. A,B parallel: B= A)

Das Geometrische Produkt

Page 22: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

22

Geometric Product

• William Kingdon Clifford (1845-79): • Combine inner and outer product to defined

the geometric product AB (1878):

AB := A B A B

• Result is not a vector, but the sum of a scalar + bivector!

• Operates on “multivectors”

• Subset of the tensoralgebra

• Geometric Product is invertible!

Das Geometrische Produkt

Page 23: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

23

Multi-vector components

• R2: A = A0 + A1 e0 + A2 e1 + A3 e0 e1

• R3: A =

A0

+

A1 e0 + A2 e1 + A3 e2

+

A4 e0 e1+A5 e1 e2+A6 e0 e2

+

A7 e0 e1 e2

Struktur von Multivektoren

2.7819…

+ +

+ +

+

+

+

Page 24: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

24

Structure of Multi-vectors

Linear combination of anti-symmetric basis elements

2n components0D 1 Scalar

1D 1 Scalar, 1 Vector

2D 1 Scalar, 2 Vectors, 1 Bivector

3D 1 Scalar, 3 Vectors, 3 Bivectors, 1 Volume

4D 1 Scalar, 4 Vectors, 6 Bivectors, 4 Volume, 1 Hyper-volume

5D …

Struktur von Multivektoren

Page 25: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

25

Inversion

• Given vectors a,b:

a b = ½ (ab + ba) symmetric part

a b = ½ (ab - ba) anti-symmetric part

a b = -(a b) (ex ey ez) Dual in 3D

Rechnen mit Multivektoren

Page 26: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

26

Reflection at a Vector

• Unit vector n, arbitrary vector v

Vector v projected to n: v║=(v n) n

Reflected vector w = v┴ – v║ = v – 2v║

thus w = v – 2(v n) n

with GP w = v – 2[½(vn+nv) ] n = v – vnn

– nvn

w = -nvn

Rechnen mit Multivektoren

Page 27: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

27

Rotations

1. Identification with Quaternions

2. Rotation in 2D

3. Rotation in nD

4. Rotation of arbitrary Multivectors in

nD

Rotation

Page 28: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

28

Geometrical Quadrate

Consider (AB)2 of Bivector-basis element

where |A|=1, |B|=1, A B = 0

AB=A B=-BA

(AB)2 = (AB) (AB) = -(AB) (BA)=-A(BB) A= -1

Basiselement

Rotation

Page 29: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

29

Quaternion Algebra

• 2D: complex numbers• i:= exey, i2 = -1

• 3D: quaternions• i:= ex ey= exey, j:= ey ez = eyez,

k:=ex ez=exez

• i2 = -1, j2 = -1 , k2 = -1

• ijk = (exey)(eyez)(exez) = -1

• 4D: Biquaternions (complex quaternions, spacetime algebra)

Rotation

Page 30: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

30

Rotation and GA

Right-multiplication of Vectors by Bivectors

ex i = ex (exey) = (exex ) ey= ey

=

ey i = ey(exey)=-ey(eyex)= -ex

=

Rotation

Page 31: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

31

Generic Rotation in 2D

• Multiple Rotationex i i = (ex i) i = ey i = -ex = -1 ex

• Arbitrary vector

A = Ax ex + Ay ey

A i = Ax ex i + Ay ey i = Ax ey - Ay ex

• Rotation by arbitrary angle:

A cos + A i sin ≡ “A e i ”

rotates vector A by angle in plane i

Inverse rotation: Ai = -iA : -

A ei = e-i A

Rotation

Page 32: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

32

Rotor in 2D

• Rotor

R := e i = cos + i sin mit i² = -1

A ei = e-i A = e-i /2 A e i/2 = R A R-1

With R=e-i /2 “Rotor”

R-1=ei /2 “inverse Rotor”

A R-2 = R2 A = R A R-1

• Product of rotors is multiple rotation

R=ABCD, R-1=DCBA is “reverse” R

Rotation

Page 33: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

33

Rotor in nD

• Rotor in plane U, Vektor v:R = cos + sin U U² = -1

Expect: Rv or vR-1 or R v R-1

• Problem: With arbitrary vector v there would be a tri-vector component:

Rv = v cos + sin (U v + U v )

iff U v ≠ 0 ( v not coplanar with U)

Rotation

Page 34: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

34

Rotation in nD

Consider: R v R-1 mit v =v┴ + v║ :

– We have: U v┴ = 0 d.h. Uv┴ =U v┴

=u1 u2 v┴= - u1 v┴ u2= v┴ u1 u2= v┴ U =v┴U

i.e. v┴ commutes with U, thus also R

R v R-1 = R v┴ R-1 + R v║ R

-1

R v┴ R-1 =(cos + sin U) v┴ (cos - sin U)

= v┴(cos² - sin² U²) = v┴

R v R-1 = v┴ + e U v║ e- U = v┴ + v║ e

-2 U

Rotation

Page 35: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

35

Rotation as multiple reflection

• Alternative Interpretation:

– Reflect vector v by vector n, then by vector m:

• v - nvn m nvn m = mn v nm

• Operation mn is Scalar+Bivector (Rotor!)

• Rotor: R = mn

• Inverse Rotor: R-1 = nm

• Theorem: Rotation is consecutive

reflection on two corresponding vectors

with the rotation angle equal to twice the

angle between these vectorsRotation

Page 36: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

36

Applications

Crystallography

Differential Geometry

Maxwell Equations

Quantum Mechanics

Relativity

Page 37: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

37

Describing Symmetries

• Multiple reflections by r1,r2,r3, … are consecutive products of vectors:

– r3r2r1 v r1r2r3 (not possible w. quaternions)

• Symmetry groups in molecules and crystals can be characterized by

– three unit vectors a,b,c

– Integer triple {p,q,r}

– where (ab)p = (bc)q = (ca)r = -1

e.g.: Methane (Tetrahedron) {3,3,3}, Benzene {6,2,2}

Page 38: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

38

Differential Geometry

Derivative operator:

:= eμμ with μ= / xμ, eμe = μ

Applicable to arbitrary multi-vectors

E.G.: with v a vector field:

v = v + v

where v Gradient (Scalar)

and v Curl (Bivector)

Page 39: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

39

Maxwell in 3D

– Faraday-Field: F = E + B

:=exeyez

– Current density: J = - j

– Maxwell-Equation: F/ t + F = J

F = E + B = E + E + B + B

Scalar : E =

Vector : E / t + B = -j

Bivector: B / t + E = 0

Pseudoscalar: B = 0

Page 40: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

40

Cl3(R) & Spinors

• GA in 3D can be represented via Pauli-matrices:

• 4 complex numbers 8 components = 23

• Basis-vectors {ex,ey,ez} with GP provide same algebraic properties as Pauli-matrices { x, y, z}

• Pauli-Spinor (2 complex numbers, 4 components),due to *= real, can be written as

= ½ eB

thus is a Rotor (even multi-vector: 1 Scalar, 3 bivector-component), i.e. is the “operation” to stretch and rotate describes interaction (of an elementary particle) with a magnetic field

0 1

1 0

0 -i

+i 0

1 0

0 -1x = ( )y = ( ) z = ( )

Page 41: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

41

Spacetime Algebra (STA)

• GA in 4D with Minkowski-Metric (+,-,-,-)

• Chose orthogonal Basis { 0, 1, 2, 3} – where 2 μ ν = μ ν+ ν μ= 2ημν i.e. 0

2 = - k2 = 1

• Structure: 1,4,6,4,1 ( n4 , 16-dimensional )– Bivector-Basis: k := k 0

– Pseudo-scalar: 0 1 2 3 = 1 2 3

1 { μ} { k, k} { μ} 1 Scalar 4 Vector 6 Bivectors 4 Pseudo-vectors 1 Pseudo-scalar

Page 42: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

42

Basis-Bivectors in STA

k: 3 timelike bi-vectors

k : 3 spacelike bivectors

x

y

z

x y z

Page 43: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

43

Structure of Bivectors

Any bi-vector can be written as – B = Bk k = ak k + bk k = a + b

– a,b: 3-Vectors (relative 0)

– a timelike component

– b spacelike component

Classification in– “complex” Bivector:

No common axes, spans the full 4D space

– “simple” Bivector:One common axis, can be

reduced to a single “Blade”

Page 44: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

44

Spacetime-Rotor

• Spacetime-rotor: R = eB =ea+ b e|B| B/|B|

R = ea+ b= eae b = [cosh a + sinh a ] [ cos b + sin b ] =

[cosh |a| + a/|a| sinh |a| ] [cos |b| + b/|b| sin|b| ]

• Interpretation:rotation in spacelike plane b by angle |b|

hyperbolic rotation in timelike plane a= a 0 with

“boost-factor” (velocity) tanh|a|

Lorentz-transformation in a , 0 !

Page 45: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

45

Maxwell Equations in 4D

• Four-dimensional gradient := μμ

• Elektro-magnetic 4-potential A:

– F = A = A - A

with A=0 is Lorentz-gauge condition

– Faraday-Field: F = (E + B) 0

Pure Bivector (3D:vector + bi-vector), but complex:

E timelike component, B spacelike

• Maxwell-Equation: F = J

Page 46: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

46

Dirac-Equation

• Relativistic Momentum in Schrödingereqn:– E=p2/2m E2 = m2 – p2

(α0mc² + ∑ αj pj c) = i ħ / twhere αj Dirac-matrices (4 4)

in Dirac-basis: 0 = α0, i = α0 αi mit [ μ, ν]= 2 ημν

covariant formulation∑ μ μ = mc²

• In GA basis vectors { 0, 1, 2, 3} provide same algebraic properties as Dirac matrices:

= mc² 0

Page 47: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

47

GA in Computergraphics

• Homogeneous Coordinates (4D):• Additional coordinate e , 3-vector: Ai / A

• Allows unified handling of directions and locations, standard in OpenGL

• conform, homogeneous coordinates (5D):

• Additional coordinates e0, e

• Signature (+,+,+,+,-) , e0 e =-1, |e0| = |e | =0

• Allows describing geometric objekts (sphere, line, plane …) as vectors in 5D

• Unions and intersections of objects are algebraic operations (“meet”, “join”)

Page 48: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

48

Objects in conform 5D GA

Punkt x + e0 + |x|2/2

e

Paar von Punkten a b

Linie a b e

Kreis a b c

Ebene a b c e

Kugel a b c d

Page 49: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

49

Implementations

• Runtime evaluation

– geoma (2001-2005),

GABLE (symbolic GA)

• Matrix-based

– CLU (2003)

• Code-Generation

– Gaigen (-2005)

• Template Meta

Programming

– GLuCat, BOOST (~2003)

• Extending programming

languages (proposed)

Page 50: Geometric Algebra (GA) - cct.lsu.eduwerner/presentations/2007/Geometric Alge… · • Geometric Algebra (GA) denotes the re-discovery and geometrical interpretation of the Clifford

50

Literatur

http://modelingnts.la.asu.edu/

http://www.mrao.cam.ac.uk/˜clifford

• David Hestenes: New Foundations for Classical Mechanics (Second Edition). ISBN 0792355148, Kluwer Academic Publishers (1999)

• Oersted Medal Lecture 2002: Reforming the Mathematical Language of Physics (David Hestenes)

• Geometric (Clifford) Algebra: a practical tool for efficient geometrical representation(Leo Dorst, University of Amsterdam)

• An Introduction to the Mathematics of the Space-Time Algebra (Richard E. Harke, University of Texas)

• EUROGRAPHICS 2004 Tutorial: Geometric Algebra and its Application to Computer Graphics (D. Hildenbrand, D. Fontijne, C. Perwass and L. Dorst)

• Rotating Astrophysical Systems and a Gauge Theory Approach to Gravity (A.N. Lasenby, C.J.L. Doran, Y. Dabrowski, A.D. Challinor, Cavendish Laboratory, Cambridge), astro-ph/9707165