11
Geodynamic implications derived from Numidian-like distal turbidites deposited along the Internal–External Domain Boundary of the Betic Cordillera (S Spain) Francisco J. Alcala ´, 1 Francesco Guerrera, 2 ManuelMartı´n-Martı´n, 3 Giuliana Raffaelli 2 and Francisco Serrano 4 1 Geo-Systems Centre (CVRM-IST), Technical University of Lisbon, 1049-001 Lisbon, Portugal; 2 Dipartimento di Scienze della Terra, della Vita e dellÕAmbiente (DiSTeVA), Universita ` degli Studi di Urbino ÔÔCarlo BoÕÕ, 61029 Urbino, Italy; 3 Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, AP 99 E-03080 Alicante, Spain; 4 Departamento de Ecologı´a y Geologı´a, Universidad de Ma ´laga, 29071 Ma ´laga, Spain Geological setting and objective The western extremity of the nascent Maghrebian Chain during the Early Miocene (Guerrera et al., 2012) pre- sented a complex palaeogeographical framework (Fig. 1A) derived from the presence of different continental blocks and depositional areas. The main continental blocks (Fig. 1A) were: (1) the Iberian Plate with its South Iberian Margin (SIM); (2) the African Plate with its northern margin; (3) the south-western sector of the ÔMesomediterranean MicroplateÕ (MM; sensu Guerrera et al., 1993, 2005, 2012). The main depositional areas were represented by the: (1) western sector of the Maghrebian Fly- sch Basin (MFB); (2) south-western sector of SIM (comprising the most internal part of the Subbetic succes- sions); (3) the North African Margin. The tectonic evolution of the above- mentioned continental blocks and the tectono-sedimentary processes in the depositional domains were controlled by the geodynamics of the area (Mar- tı´n-Algarra, 1987; Sanz de Galdeano, 1990, 1997; Crespo-Blanc et al., 1993) leading later to the Betic-Rifian Arc (Fig. 1B). During Late Oligocene-Early Mio- cene, the SIM was a sedimentation area filled by the erosion of the cra- tonic Iberian Meseta and Subbetic structural heights from the SIM itself (Alcala´ et al., 2001, 2012), giving mar- ly deposits (carbonate rich in petro- graphy; without quartz, feldspar, or mica). At the same time, the MFB was nourished by a double depositional system set on opposite internal (north) and external (south) margins of the basin (Guerrera et al., 1993, 2005, 2012; Thomas et al., 2010a; with references therein). The internal (ÔMauretanianÕ) sub-domain was nour- ished by the erosion of the MM (pre- Mesozoic Hercynian basement and a Meso-Ceonozoic sedimentary cover, both affected by Alpine orogeny) giv- ing immature turbidites (with feldspar and mica), while the external (ÔMassy- lianÕ) sub-domain received supplies from the North African Margin (pre- Palaeozoic African craton and sedi- mentary cover) forming pelites and quartzarenites of the Numidian For- mation, showing a super-mature com- position [polycyclic rounded quartz and zircon-tourmaline-rutile (ZTR) mineral association] (e.g. Durand- Delga, 1980; Guerrera, 1981 1982; Wildi, 1983; Martı´n-Algarra, 1987; Hoyez, ABSTRACT New data reveal Early Burdigalian ÔNumidian-like lithofaciesÕ in successions of the internal (southernmost) part of the South Iberian Margin (SIM) and the south-western margin of the Mesomediterranean Microplate (MM). The well-known Numidian Formation was deposited in the external (Massylian) sub-domain of the Maghrebian Flysch Basin (a south-western branch of the Tethys Ocean). The anomalous occurrence of ÔNumidian-like lithofaciesÕ is induced by the particular Early Miocene palaeo- geographical and geodynamic complexity of the sector. This consisted of a ’triple point’ with a dextral transform fault between the SIM and the MM-Maghrebian Flysch Basin system. In this framework, the ageing of Iberian reliefs and the MM collapse, coupled with an African Margin upbulging, and a shortening of the Maghrebian Flysch Basin (both related to the subduction), could have resulted in the arrival of the Numidian depositional system from so far away. Terra Nova, 25, 119–129, 2013 (A) (B) Fig. 1 (A) Early Miocene palaeogeo- graphical and palaeotectonic framework of the Western Mediterranean Region (modified from Guerrera et al., 2012). (B) Sketch map of the Maghrebian and Betic Alpine Chains incorporating the westernmost Gibraltar Arc. Correspondence: Francisco J. Alcala´, Geo- Systems Centre (CVRM-IST), Technical University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal. Tel.: +351 218 417 408; fax: +351 218 417 442; e-mail: [email protected] ȑ 2012 Blackwell Publishing Ltd 119 doi: 10.1111/ter.12014

Geodynamic implications derived from Numidian -like distal turbidites deposited along the Internal-External Domain Boundary of the Betic Cordillera (S Spain)

Embed Size (px)

Citation preview

Page 1: Geodynamic implications derived from Numidian -like distal turbidites deposited along the Internal-External Domain Boundary of the Betic Cordillera (S Spain)

Geodynamic implications derived from Numidian-like distalturbidites deposited along the Internal–External DomainBoundary of the Betic Cordillera (S Spain)

Francisco J. Alcala,1 Francesco Guerrera,2 Manuel Martın-Martın,3 Giuliana Raffaelli2 and FranciscoSerrano4

1Geo-Systems Centre (CVRM-IST), Technical University of Lisbon, 1049-001 Lisbon, Portugal; 2Dipartimento di Scienze della Terra, della

Vita e dell�Ambiente (DiSTeVA), Universita degli Studi di Urbino ��Carlo Bo��, 61029 Urbino, Italy; 3Departamento de Ciencias de la Tierra y

del Medio Ambiente, Universidad de Alicante, AP 99 E-03080 Alicante, Spain; 4Departamento de Ecologıa y Geologıa, Universidad de

Malaga, 29071 Malaga, Spain

Geological setting and objective

The western extremity of the nascentMaghrebian Chain during the EarlyMiocene (Guerrera et al., 2012) pre-sented a complex palaeogeographicalframework (Fig. 1A) derived from thepresence of different continentalblocks and depositional areas. Themain continental blocks (Fig. 1A)were: (1) the Iberian Plate with itsSouth Iberian Margin (SIM); (2) theAfrican Plate with its northern margin;(3) the south-western sector of the�Mesomediterranean Microplate�(MM; sensu Guerrera et al., 1993,2005, 2012). The main depositionalareas were represented by the: (1)western sector of the Maghrebian Fly-sch Basin (MFB); (2) south-westernsector of SIM (comprising the mostinternal part of the Subbetic succes-sions); (3) the North African Margin.The tectonic evolution of the above-

mentioned continental blocks and thetectono-sedimentary processes in thedepositional domains were controlled

by the geodynamics of the area (Mar-tın-Algarra, 1987; Sanz de Galdeano,1990, 1997; Crespo-Blanc et al., 1993)leading later to the Betic-Rifian Arc(Fig. 1B).During Late Oligocene-Early Mio-

cene, the SIM was a sedimentationarea filled by the erosion of the cra-tonic Iberian Meseta and Subbeticstructural heights from the SIM itself(Alcala et al., 2001, 2012), giving mar-ly deposits (carbonate rich in petro-graphy; without quartz, feldspar, ormica). At the same time, the MFB wasnourished by a double depositionalsystem set on opposite internal (north)and external (south) margins of thebasin (Guerrera et al., 1993, 2005,2012; Thomas et al., 2010a; withreferences therein). The internal(�Mauretanian�) sub-domain was nour-ished by the erosion of the MM (pre-Mesozoic Hercynian basement and aMeso-Ceonozoic sedimentary cover,both affected by Alpine orogeny) giv-ing immature turbidites (with feldsparand mica), while the external (�Massy-lian�) sub-domain received suppliesfrom the North African Margin (pre-Palaeozoic African craton and sedi-mentary cover) forming pelites andquartzarenites of the Numidian For-mation, showing a super-mature com-position [polycyclic rounded quartz

and zircon-tourmaline-rutile (ZTR)mineral association] (e.g. Durand-Delga, 1980;Guerrera, 1981 ⁄1982;Wildi,1983; Martın-Algarra, 1987; Hoyez,

ABSTRACT

New data reveal Early Burdigalian �Numidian-like lithofacies� insuccessions of the internal (southernmost) part of the SouthIberian Margin (SIM) and the south-western margin of theMesomediterranean Microplate (MM). The well-known NumidianFormation was deposited in the external (Massylian) sub-domainof the Maghrebian Flysch Basin (a south-western branch of theTethys Ocean). The anomalous occurrence of �Numidian-likelithofacies� is induced by the particular Early Miocene palaeo-geographical and geodynamic complexity of the sector. This

consisted of a ’triple point’ with a dextral transform faultbetween the SIM and the MM-Maghrebian Flysch Basin system. Inthis framework, the ageing of Iberian reliefs and the MMcollapse, coupled with an African Margin upbulging, and ashortening of the Maghrebian Flysch Basin (both related to thesubduction), could have resulted in the arrival of the Numidiandepositional system from so far away.

Terra Nova, 25, 119–129, 2013

(A)

(B)

Fig. 1 (A) Early Miocene palaeogeo-graphical and palaeotectonic frameworkof the Western Mediterranean Region(modified from Guerrera et al., 2012).(B) Sketch map of the Maghrebian andBetic Alpine Chains incorporating thewesternmost Gibraltar Arc.

Correspondence: Francisco J. Alcala, Geo-

Systems Centre (CVRM-IST), Technical

University of Lisbon, Av. Rovisco Pais, 1,

1049-001 Lisbon, Portugal. Tel.: +351

218 417 408; fax:+351 218 417 442; e-mail:

[email protected]

� 2012 Blackwell Publishing Ltd 119

doi: 10.1111/ter.12014

Page 2: Geodynamic implications derived from Numidian -like distal turbidites deposited along the Internal-External Domain Boundary of the Betic Cordillera (S Spain)

1989; Moretti et al., 1991; Guerreraet al., 1992, 1993, 2012; Patacca et al.,1992; Thomas et al., 2010a,b; andreferences therein). Moreover, the lat-eral evolution of facies and the inter-ferences between these latter two main(internal and external) depositionalsystems generated �Mixed Successions�along an intermediate position of thebasin (e.g. Didon and Hoyez, 1978;

Guerrera et al., 1986, 1992; Grassoet al., 1987); as well as external �LateralFacies� towards the African marginand foreland (Guerrera et al., 2012).In this context, the presence of Early

Miocene Numidian-like depositsstratigraphically inter-bedded or over-lying specific successions (SIM andMM) of the Betic margin of the MFB(Fig. 1A) is reported. The occurrence

of Numidian-like lithofacies outside itsnormal depositional area adds com-plexity to the palaeogeographicalframework. The prolongation of theNumidian depositional system reach-ing the opposite margin of the MFBneeds to be taken into account. Thiscomplex palaeogeography was proba-bly controlled by the plate-boundaryevolution, represented by a triple point

(A) (C)

(B)

Fig. 2 (A) Western Internal–External Zone Boundary of the Betic Cordillera represented by several units from the InternalSubbetic (External Betic Zone), from the Maghrebian Flysch Basin, and from the Internal Zone (Alpujarride and Malaguidecomplexes). (B) Eastern sector showing Central (CIS) and Western (WIS) Internal Subbetic, Central Internalmost Subbetic(CIMS), and Penibetic (PE) sub-domains and Units with the location of the successions studied: TA Tajo Almarado; Ca-HoCabritos-Hoya; ZA Zafarraya. (C) Western sector showing Frontal Internal Units (FRU) with the location of Arguelles succession(AR). Regional geological sketches are according to Martın-Algarra (1987) and Alcala (1998).

Numidian-like distal turbidites (S Spain) • F. J. Alcala et al. Terra Nova, Vol 25, No. 2, 119–129

.............................................................................................................................................................

120 � 2012 Blackwell Publishing Ltd

Page 3: Geodynamic implications derived from Numidian -like distal turbidites deposited along the Internal-External Domain Boundary of the Betic Cordillera (S Spain)

with a subduction of the Africa Plateunder the MM and a transform fault(locally lateral ramp) between theMMand the SIM (Fig. 1A).The successions representative of

this situation (cited in the literatureby: Didon, 1960, 1969; Peyre, 1974;Bourgois, 1978; Olivier, 1984; Martın-Algarra, 1987), analysed here with aninterdisciplinary approach, can beconsidered a new contribution to theframework of its geodynamic context.In addition, the proposed study repre-sents a preliminary elementary modelto analyse similar successions in com-parable geodynamic contexts, such asthe Southern Apennines in Italy.Four successions have been studied

(Figs 2 and 3): (1) Tajo Almarado, (2)Cabritos-Hoya, (3) Zafarraya, and (4)Arguelles. Only the Tajo Almarado

succession is clearly rooted in a Meso-zoic-Palaeogene Penibetic (PE: Wes-tern Internal Subbetic of the SIM)substratum, while the other belong totectonic sheets with dubious palaeo-geographical assignation (see Martın-Algarra, 1987). Given the clasticprovenance, the Palaeogene stratigra-phy, and the clay mineral assem-blages, the Cabritos-Hoya andZafarraya successions were considereddeposited in the Central Internalmost(southernmost) Subbetic (CIMS) byAlcala (1998) and Alcala et al. (2001,2012). The Arguelles succession, withthe presence of �Numidoide� (Durand-Delga, 1972), was assigned by Martın-Algarra (1987) to the frontal units ofthe Internal Zone (FRU) and depo-sited in the western margin of theMM. The first three aforementioned

successions have been recently definedas �Iberian Numidian Lateral Facies�,while the fourth as �Ultra-internalNumidian Lateral Facies� (see Gue-rrera et al., 2012).

Results

Stratigraphy

The study areas are located to thenorth (Fig. 2B) and to the west(Fig. 2C) of Malaga Province and tothe north-east to Gibraltar (S Spain).In both sectors, the Internal–ExternalBetic Zone boundary is represented byseveral units derived from the above-mentioned domains.The Oligocene-Early Aquitanian

p.p. (Tables 1–3) intervals of the foursuccessions studied are made up of

Fig. 3 Correlation of stratigraphic sections of the Late Oligocene-Early Miocene successions from Penibetic (Tajo Almarado),Central Internalmost Subbetic (Cabritos-Hoya and Zafarraya), and Frontal Internal (Arguelles). Samples for biostratigraphicstudy (biozonation), and mineralogy and petrography analyses are also located in each column. Rup, Rupelian.

Terra Nova, Vol 25, No. 2, 119–129 F. J. Alcala et al. • Numidian-like distal turbidites (S Spain)

.............................................................................................................................................................

� 2012 Blackwell Publishing Ltd 121

Page 4: Geodynamic implications derived from Numidian -like distal turbidites deposited along the Internal-External Domain Boundary of the Betic Cordillera (S Spain)

marly calcareous (scaglia-like) levelswith calcareous conglomerates andlimestones or sandy limestones withlarger foraminifera (Fig. 3).

All these successions show Numi-dian-like lithofacies, stratigraphicallyinterbedded, with marly lithofacies intheir upper part, consisting of: (1)

quartzarenites (and micro-conglomer-ates locally); (2) brownish �tobacco�pelites; (3) silexite beds (Fig. 3). Usu-ally, the Numidian-like turbidites are<10 cm, according to a distal situa-tion, with sharp basal contacts (notool marks are visible), with only aparallel lamination being recogniz-able. Only in Tajo Almarado andCabritos-Hoya successions does athick erosive lenticular turbidtic bedend the successions. The Numidian-like intervals are all dated here as EarlyBurdigalian (Fig. 3) by integratedanalyses using planktonic foraminif-era, larger foraminifera, and calcare-ous nannoplankton (Tables 1–3).

Mineralogy and clay geochemistry

A total of 40 clay samples (Fig. 3 andTable 4) were studied by X-ray dif-fraction using a Phillips PW 1710 �diffractometer, following standardprocedures (Schultz, 1964; Biscaye,1965; Croudace and Robinson, 1983;Alcala et al., 2001, 2012). The chem-ical composition of illite and smectiteon selected samples marked withasterisk in Fig. 3 were determinedusing a Philips CM20 STEM � Twindevice (Table 5). From those 40 sam-ples, nine were identified with miner-alogical Numidian characteristics(Table 4).The crystallinity of typical detrital

minerals (Ernest, 1963; Kubler, 1968;Lanson, 1997) such as quartz and illite(Fig. 4B) was a marker used for thedistality of sediments (maturity); lowvalues indicate mature sediment. TheAlIV:SiIV, MgVI:AlVI, and MgVI:FeVI ratios in dioctahedric and trioc-tahedric positions of illite and smectite(Fig. 4C and Table 5) allows deduc-tions of the capacity for Si x Al,Al x Mg, and Fe x Mg substitutionsin the mineral structure as theytransform; low values indicate maturesediment.Early Miocene Subbetic successions

belong to the erosion of emergedMesozoic and Tertiary Subbetic terr-anes (Adatte and Bolle, 2001; Alcalaet al., 2001, 2012), giving a clay min-eral assemblage characterized by thesmectite+illite+I-S (illite-smectite)mixed-layer (Table 4). The typicalNumidian successions are character-ized by the illite+kaolinite+I-Smixed-layer assemblage while thetypical Mauretanian ones include

Table 1 Planktonic foraminifera assemblages (samples f in Fig. 3), by using the

biostratigraphic zonation of Blow (1969). Successions: Cabritos-Hoya (Ca-Ho),

Zafarraya (ZA), Arguelles (AR).

Succession Ca-Ho ZA AR

Sample (f) 1 2 3 4 5 6 7 8 9 10

Catatypsydrax dissimilis X X X X X

Catatypsydrax unicavus X X X X X X

Globigerina anguliofficinalis X

Globigerina angulisuturalis X X

Globigerina eocaena X

Globigerina euapertura X

Globigerina woodi X X

Globorotalia obesa X

Globorotalia opima nana X X X

Globigerina ouachitaensis ciperoensis X

Globigerina ouachitaensis ouachitaensis X X

Globigerina praebulloides X X X X X X

Globigerina gr. tripartita X X X

Globigerina venezuelana

Globigerinita naparimaensis X

Globoquadrina cf. altispira globosa X

Globoquadrina baroemoenesis X

Globoquadrina dehiscens X

Globoquadrina globularis X X X

Globigerinoides primordius X X X X

Globigerinoides parawoodi X X

Globigerinoides gr. trilobus X X X

Globorotalia kugleri X

Globorotalia pseudokugleri X X

Globorotalia siakensis X X

Globorotalia zealandica X

Globorotaloides suteri X X X X

Globorotaloides tapuriensis X

Neogloboquadrina nana X X

Neogloboquadrina opima X X X X

Neogloboquadrina siakensis X X X X

Biozonation P22 N4 N4 N4 N5 N5 N5 P21a P22 N4

Table 2 Shallow benthic macroforaminifera assemblages (samples b in Fig. 3), by

using the biostratigraphic zonation of Cahuzac and Poignant (1997). Successions:

Cabritos-Hoya (Ca-Ho), Zafarraya (ZA), Arguelles (AR).

Succession Ca-Ho ZA AR

Sample (b) 1 2 3 4 5 6 7 8 9

Asterociclina sp. X

Discocyclina sp. X

Operculina complanata X X X X X

Heterostegina assilinoides X X X X X

Spiroclypeus sp. X

Nephrolepidina sp. X

Miogypsinoides sp. X X

Miogypsina sp. gunteri X X

Neorotalia viennoti X X X X X X X X

Sphaerogypsina globula X X

Biozonation SB22B SB24 SB22B SB22B SB22B SB23 SB23 SB22B SB24

Numidian-like distal turbidites (S Spain) • F. J. Alcala et al. Terra Nova, Vol 25, No. 2, 119–129

.............................................................................................................................................................

122 � 2012 Blackwell Publishing Ltd

Page 5: Geodynamic implications derived from Numidian -like distal turbidites deposited along the Internal-External Domain Boundary of the Betic Cordillera (S Spain)

the illite+chlorite+I-S mixed-layerassemblage (see Ruiz Cruz and Lin-ares, 1992; Ruiz Cruz, 1999; Barberaet al., 2009; and references therein).Crystallinity of quartz and illite, andchemical substitutions in dioctahedricin trioctahedric positions of illite andsmectite varies from moderate forMauretanian and Subbetic succes-sions to very low for Numidian ones.The Numidian-like clayey intervals

studied here show a mixture with Sub-betic and ⁄or Mauretanean inputs. TheNumidian inputmay vary from 30% to70% for those selected clays with Nu-midian-like appearance in the field(Fig. 4A). The consequences of mix-ture are: (1) smectite and illite (themost abundant clay-mineral phases;Table 4) are found in inverse amountsdepending on the Subbetic (smectite-rich) or Numidian (illite-rich) domi-nance; (2) kaolinite (aminoritymineralphase for Subbetic successions;Table 4) can reach 23% when a Numi-dian input (kaolinite-rich) take place;(3) chlorite appears sometimes intraces, suggesting incorporation of sed-iment from the MM. Crystallinity ofquartz and illite (Fig. 4B), and geo-chemistry of illite and smectite (Fig. 4C)agree with data from literature forSubbetic and Numidian successions.

Petrography

A total of 18 sandstones were studied(modal analysis in Table 6, areniteclassification in Fig. 5, and photomi-crographs in Fig. 6) by counting morethan 500 grains (Gazzi, 1966; Dickin-son, 1970). At the first order ofclassification (Zuffa, 1980, 1985), sam-ples p12 and p13 are calclithites(Fig. 5; field b), p11 and p14 arehybrid arenites (Fig. 5; field c), andthe others are terrigenous arenites(Fig. 5; field a). At the second orderof classification, three main areniticpetrofacies were distinguished:(1) quartz-arenites: very abundant

mono- and poly-crystalline quartz(Fig. 5; field d) generally with highsphericity (sometimes with rutileinclusions), opaque minerals, ZTR,and glaucony. The very high compo-sitional maturity is compatible withthe ultra-mature quartzose (polycy-clic) Numidian Fm (Moretti et al.,1991; Guerrera et al., 1992; Thomaset al., 2010a; cum bibl).(2) sub-litharenites: mono- and

poly-crystalline quartz (sometimeswith zircon ⁄ rutile), from rounded toangular, chert, feldspars, glaucony,mica, carbonate rock fragments, bio-clasts, ZTR, and opaque minerals

(Fig. 5; field e). Carbonatic cementand matrix (partly enriched in ironoxides) predominates over silica ce-ment. The high amount of quartzsuggests a high compositional matu-rity, indicating an African origin.Immature feldspar and mica couldindicate a lower proportion of MMsupply, while the carbonatic cementand matrix could signify a minorSubbetic incorporation. This litho-facies can be interpreted as a mixtureof Numidian quartz and other sup-plies coming from the SIM and MM,as reported by Ardito et al. (1985) inthe Southern Apennines.(3) litharenites: prevalence of car-

bonate lithic fragments and bioclastsover quartz grains (Fig. 5; fields f), ahigh amount of carbonatic matrix andcement, silica cement, and low ZTRand heavy minerals. This immaturepetrofacies differs markedly from theNumidian-like, indicating a non-Afri-can supply.

Conclusions and geodynamicimplications

New field data coupled with specificmineralogical, geochemical, and pet-rographic analyses attest to the occur-rence of very mature Numidian-likelithofacies, stratigraphically interbed-ded in successions deposited over theopposite margin represented by thesouthernmost SIM (with a significantcarbonate composition) and its con-tinuation in the western margin of theMM of the Maghrebian Chain (withan immature composition). The Nu-midian-like intervals have been datedby integrated biostratigraphic analy-ses as Early Burdigalian (Tables 1–3).The existence of a �silexite�-rich inter-val associated with Numidian lithofa-cies in the upper portion of the allsuccessions allows the correlation andconfirms the age, as this event is wellknown in different units of the Ma-ghrebian Chain (Guerrera et al., 1992;and references therein). Petrography(sensuDickinson, 1970; Fig. 5) indicatesthat the ultra-mature quartzarenitescome from the erosion of a �inner craton�corresponding to the African Plate,according to our interpretation (Table 5;Fig. 6). The illite+kaolinite-rich claymineral associations of selected Nu-midian-like samples (Table 4), theirlow crystallinity of quartz and illite(Fig. 4), and the low Si x Al and

Table 3 Calcareous nannoplankton assemblages for Tajo Almarado (TA) succession

(samples n in Fig. 3), by using the biostratigraphic zonation of Martini (1971).

Sample (n) 1 2 3 4 5 6 7 8 9 10 11 12

S. ciperoensis X X

R. bisecta X X X X X X

R. scrippsae X X X X X X X X X X

Z. bijugatus X X

H. carteri X X X X

S. calyculus X X

I. fusa X

C. miopelagicus X X X X X X X X X X X X

C. pelagicus X X X X X X X X X X X X

Cy. abisectus X X X X X X X X X X X X

Cy. floridanus X X X X X X X X X X X X

D. deflandrei X X X X X X X X X X X X

P. multipora X X X

Py. inversus X

Py. orangensis X X

R. daviesii X X X X X X X X X X X X

R.gartneri X X X X X X X X X X X X

S. moriformis X X X X X X X X X X X X

S. conicus X X X X X

D. adamanteus X

H. recta X X X

D. druggii X

Biozonation NP-25 NP-25 NN-1 NN-1 NN-1 NN-1 NN-1 NN-1 NN-1 NN-1 NN-2 NN-2

Terra Nova, Vol 25, No. 2, 119–129 F. J. Alcala et al. • Numidian-like distal turbidites (S Spain)

.............................................................................................................................................................

� 2012 Blackwell Publishing Ltd 123

Page 6: Geodynamic implications derived from Numidian -like distal turbidites deposited along the Internal-External Domain Boundary of the Betic Cordillera (S Spain)

Al x Mg substitutions in dioctahedricand trioctahedric positions of illiteand smectite (Table 5) corroboratethis postulation.Although some cases of far run-out

turbidites travelling thousands of kilo-metre are described (Wynn et al.,2010), the Numidian-like lithofaciescoming from the faraway Africansource was presumably also the con-sequence of the geodynamic complex-ity of the area during the EarliestMiocene (Martın-Algarra, 1987; Plattand Vissers, 1989; Sanz de Galdeano,1990, 1997; Crespo-Blanc et al., 1993;Alcala et al., 2012; Fig. 7). According

Table 4 Average bulk and clay mineralogy (in %) of the Early Miocene successions studied (samples m in Fig. 3). Qtz, quartz;

Phy, phyllosilicates; Cte, calcite; Dol, dolomite; Fd, K-feldspar; Plg, plagioclase; Hem, hematite; CTO, CT Opal; Clp,

clinoptilolite; S, smectite; I-S, mixed-layer illite-smectite; I, illite; K, kaolinite; Chl, chlorite; Pal, palygorskite; tr, trace values.

Successions: Tajo Almarado (TA), Cabritos-Hoya (Ca-Ho), Zafarraya (ZA), Arguelles (AR).

SuccessionSample(m)

Bulk mineralogy Clay mineralogy

Quartz�I(001):I(101)

Illite�I(002):I(001)

Qtz Phy Cte Dol Fd Plg Hem OCT Clp S I-S Chl I K Pal

TA 1� <5 37 56 <5 <5 44 39 14 <5 0.25 0.302� 5 25 67 <5 tr 39 35 23 <5 0.25 0.46

3 6 27 66 tr 43 28 26 <5 0.20 0.284� 11 28 54 <5 <5 22 19 <5 38 7 12 0.24 0.345� 19 59 17 tr <5 tr 37 12 <5 39 10 0.33 0.29

6 10 36 52 <5 34 31 32 <5 0.17 0.277*,� 18 54 20 <5 <5 Tr 42 13 39 6 0.24 0.198* 5 78 11 tr tr Tr tr tr 40 16 tr 20 23 0.21 0.22

9*,� 14 36 46 tr Tr tr 28 18 5 29 20 0.23 0.21Ca-Ho 10� <5 27 68 tr 31 26 tr 25 6 11 0.36 1.26

11 <5 18 79 42 23 tr 20 6 8 0.25 1.0012 6 67 25 tr tr 31 31 <5 25 5 6 0.28 0.97

13� <5 5 59 33 37 19 31 13 0.30 0.8614 <5 7 90 <5 41 23 27 <5 7 0.50 1.1015 6 37 30 22 tr tr tr <5 22 31 <5 29 6 10 0.21 1.05

16� 5 31 54 6 tr <5 tr 34 25 tr 36 <5 0.37 0.8317*,� 23 21 48 6 <5 40 25 28 7 0.16 0.4818*,� 14 53 21 tr tr 8 41 18 tr 21 19 0.18 0.3219� 26 28 36 8 <5 35 30 30 5 0.16 0.8020*,� 14 42 34 7 tr 63 8 28 tr 0.15 0.33

ZA 21� <5 34 58 5 <5 tr 16 41 30 <5 9 0.38 0.7022� 5 44 46 <5 <5 19 37 <5 27 10 <5 0.26 0.84

23 <5 27 67 tr <5 26 33 <5 31 <5 5 0.25 0.7624� 5 47 43 tr <5 <5 24 25 <5 33 8 7 0.24 0.5725� 6 44 48 tr tr 18 30 50 <5 0.20 0.7126* 13 43 41 tr tr tr 8 31 52 9 0.20 0.3827*,� 12 34 51 tr tr tr <5 40 19 <5 21 15 <5 0.23 0.3028*,� 14 76 7 <5 10 56 <5 16 12 <5 0.14 0.3229� 24 68 7 tr 27 33 <5 21 15 0.20 0.8630� 19 75 8 tr tr tr 39 16 <5 28 15 0.23 0.32

AR 31 6 8 72 14 42 <5 <5 45 <5 <5 0.34 0.6832� 11 69 19 tr 42 <5 <5 39 13 tr 0.27 0.8133� 9 56 33 tr 48 <5 <5 40 <5 tr 0.24 0.71

34 <5 19 76 tr tr 42 <5 tr 47 <5 5 0.23 0.6535 7 52 38 tr tr 42 <5 tr 48 <5 <5 0.21 0.54

36� 5 55 38 tr 34 <5 6 45 12 tr 0.20 0.7437� tr 8 88 tr tr 27 <5 5 50 7 8 0.24 0.6738*,� 12 53 32 tr tr tr 25 <5 5 53 10 <5 0.21 0.3739* 25 59 14 <5 22 21 <5 30 15 10 0.22 0.3340*,� 20 66 9 <5 <5 tr 35 26 tr 25 14 0.19 0.34

*Samples catalogued as Numidian-like facies (Fig. 3).�Samples selected for geochemical analysis (Table 5).�Intensity ratios of the I(001):I(101) peaks of quartz and I(002):I(001) peaks of illite (after Lanson, 1997).

Table 5 Range of chemical compositions of illite and smectite and some X-ray

diffraction parameters for those selected samples marked with asterisk in successions

of Fig. 3.

Internal Subbetic facies Numidian-like intervals

Illite Smectite Illite Smectite

SiIV 3.38–3.19 3.69–3.57 3.45–3.21 3.74–3.41AlIV 0.62–0.81 0.31–0.43 0.55–0.79 0.26–0.59AlVI 1.40–1.69 1.02–1.30 1.44–1.63 1.03–1.37FeVI 0.15–0.31 0.37–0.53 0.28–0.39 0.41–0.48MgVI 0.16–0.28 0.32–0.48 0.08–0.17 0.18–0.46K 0.81–0.92 0.22–0.48 0.86–0.95 0.19–0.46Ca 0.02–0.11 0.02–0.09b0 (A) 9.026–9.044 8.961–9.014Crystallinity (º2h) 0.28–0.91 0.24–0.38

XIV and XVI, dioctahedric and trioctahedric positions occupied by the element X in the mineral structure respectively; b0,basal spacing of smectite (after Ernest, 1963); Crystallinity (º2h), Kubler index of illite (after Kubler, 1968).

Numidian-like distal turbidites (S Spain) • F. J. Alcala et al. Terra Nova, Vol 25, No. 2, 119–129

.............................................................................................................................................................

124 � 2012 Blackwell Publishing Ltd

Page 7: Geodynamic implications derived from Numidian -like distal turbidites deposited along the Internal-External Domain Boundary of the Betic Cordillera (S Spain)

to some current models (Guerreraet al., 2012; and references therein),the geodynamic scenario was probablyrepresented by a �triple point� consistingof a dextral transform fault separatingthe SIM from the MM-MaghrebianFlysch Basin (MM-MFB) with a sub-duction contact. The displacement inthe transform with local lateral rampmovement could individuate tectonicsheets (Fig. 7), giving the unrootedunits of the Central Internalmost Sub-

betic (Zafarraya and Cabritos-Hoyasuccessions). In the Frontal Units(FRU) of the MM (Arguelles succes-sion), a subduction branch accretion-ary prism developed (Vera, 2004). Thefuture evolution of this triple pointmarks the future Internal–ExternalBetic-Rifian Zone Boundary and theGibraltar Arc shape (Fig. 1B).In view of previous data on the

Numidian Formation at south-wes-tern Mediterranean scale (Guerrera

et al., 1992, 2012; Thomas et al.,2010a), this anomaly may beexplained by certain factors (Fig. 7):1 A coeval rejuvenation of the Afri-

canMargin due to the basement upbul-ging related to the subduction of theMFB-African plate system under theMM (Guerrera et al., 2012) must havefavouredthemainNumidiandischarge.2 The north–south shortening of the

MFB due to its subduction under theMM also favoured the Numidian

(A)

(B)

(C)

Fig. 4 (A) Clay-mineral composition of the Subbetic (A) and Numidian-like intervals (C) after data in Table 4, and typicalNumidian (B) after data from Ruiz Cruz (1999). Data are clustered by an illite (I), kaolinite (K), and smectite+I-S mixed-layer(S+IS) ternary plot, where: a and b are the clay-mineral composition of two samples selected as end-members for A and B, and c isthe clay-mineral composition of a C sample being a congruent mixture of A and B; a, b, and c are expressed as 100-K (in %). Thequotient x ¼ d2 � a=ðd2 � aþ d1 � bÞ allows estimating the fraction of B into c samples, where d1 and d2 are the distance of segmentsb-c and a-c measured in the ternary plot along the illite axis. x¢ = 0.3 and x’’ = 0.7 are the fractions of B into c¢ and c’’, twotheoretical samples that define the clay-mineral compositional field of the Numidian-like intervals. (B) Intensity ratios of theI(001):I(101) peaks of quartz and I(002):I(001) peaks of illite according lithofacies and successions, after data in Table 4. (C)AlIV:SiIV ratio in dioctahedric, and MgVI:AlVI and MgVI:FeVI ratios in trioctahedric positions of illite (I) and smectite (S), and thebasal spacing of smectite (b0) according lithofacies, after data in Table 5. n, number of samples.

Terra Nova, Vol 25, No. 2, 119–129 F. J. Alcala et al. • Numidian-like distal turbidites (S Spain)

.............................................................................................................................................................

� 2012 Blackwell Publishing Ltd 125

Page 8: Geodynamic implications derived from Numidian -like distal turbidites deposited along the Internal-External Domain Boundary of the Betic Cordillera (S Spain)

system reaching of the oppositemargin.3 The presence of a starved deposi-

tional zone in the northern part of thewesternmost MFB due to the scarcityof the supplies from the MM andIberia-SIM could also have favoureda redirection of the Numidian systemstowards this starved area, reaching thesouthernmost SIM and the western-mostFRU. This canbe explainedby thefact that during the Burdigalian, theIberianMassifwas amature area,while

the MM underwent the rupture andrifting to give rise to the futureAlboranSea (western branch of the Mediterra-nean Sea), leading to an orographiccollapse (Platt and Vissers, 1989).4 The palaeographical-geodynamic

model proposed in the Fig. 7 showsalso an asymmetry in the Africanmargin with a forebulge in theeastern part (facing the MM) re-lated to the subduction and a softrelief in the western part (facing theSIM-Iberia). This could explain the

main source area for the Numidiansupply in the present-day Algeriaand Tunisia area, excluding Mor-occo.From the above, it can be deduced

that the reconstructions of these par-ticular Numidian-like Facies, recog-nized outside its traditional place ofdeposition, can furnish a new key forunderstanding the palaeogeographicaland geodynamic framework of thewestern Mediterranean areas duringthe early Miocene.

Table 6 Modal point-counting analysis (in %) of the Early Miocene successions studied (samples p in Fig. 3). Successions: Tajo

Almarado (TA), Cabritos-Hoya (Ca-Ho), Zafarraya (ZA), Arguelles (AR).

Succession TA Ca-Ho ZA AR

Sample (p) 1 4 5 7 8 9 11 12 13 14 15 16 17 18

Qm 44.88 47.41 53.65 80.5 84.32 82.01 23.55 20.21 11 14.16 51.34 83.45 46.13 86.34

Qp-c 12.93 6.67 6.71 1.79 8.3 9.53 2.19 2.99 2.03 1.42 5.65 9.27 9.93 3.2

Qr ) 0.3 0.45 ) 0.18 ) 3.6 0.75 0.51 2.83 0.3 ) 0.51 )Qp-f 1.26 2.22 3.73 0.18 ) 0.18 1.54 2.84 0.85 1.24 2.68 ) 0.84 )Ch 0.72 0.3 0.3 0.18 ) ) 0.64 2.69 1.52 1.42 0.45 ) 0.67 )Qr-f ) ) ) ) ) ) ) 0.15 0.17 1.06 ) ) ) )K 1.97 1.19 1.04 1.79 0.74 0.36 0.26 ) ) 1.06 1.04 0.36 2.02 1.01

Kr 0.36 0.15 ) ) ) ) 0.13 ) ) ) ) ) 0.17 )P 0.36 1.04 0.45 1.79 0.37 ) 0.26 ) ) 1.95 0.74 ) 0.51 0.67

Pr 0.18 0.15 0.15 0.18 ) ) ) ) ) ) ) ) ) )Lm ) ) 0.15 ) ) ) ) ) ) 2.3 ) ) ) )Ls ) ) ) ) ) ) 0.51 0.15 ) ) ) ) ) )Lc 10.23 10.81 12.67 ) ) ) 32.05 35.78 45.01 35.4 13.69 ) 11.28 )M 0.72 0.74 1.04 0.54 ) 0.18 ) 0.3 1.02 1.59 0.74 ) 0.67 0.17

H 1.26 2.37 1.04 4.47 1.85 0.36 1.54 1.2 0.85 0.53 1.79 2.18 1.52 3.04

Gl 1.8 2.96 3.28 3.22 1.29 1.98 5.28 2.99 3.21 4.6 2.68 1.45 3.54 1.69

Fo 2.51 5.48 4.92 ) ) ) 2.19 5.54 2.71 1.95 2.53 ) 4.88 )Ma 16.34 13.78 4.77 0.54 0.55 0.18 16.22 13.17 11.84 9.56 10.42 ) 13.97 )Cm 1.97 2.37 2.98 ) ) ) 3.86 3.29 14.72 15.22 5.36 ) 1.68 )Sm 0.54 0.3 0.45 ) ) ) 2.96 7.34 4.4 1.77 ) ) 0.34 )Pm ) 1.04 0.75 ) 0.92 1.08 0.26 ) ) ) ) 0.55 ) )Po 1.62 0.3 0.89 4.29 1.48 4.14 2.96 0.6 0.17 1.77 0.3 2.73 0.34 3.54

ZTR 0.36 0.44 0.6 0.54 ) ) ) ) ) 0.18 0.3 ) 0.67 0.34

TOT 100 100 100 100 100 100 100 100 100 100 100 100 100 100

NCE 81.26 76.04 76.2 96.05 98.67 97.91 46.42 41.39 26.04 41.23 77.13 98.5 75.56 97.9

CE 12.87 13.15 14.05 ) ) ) 43.46 47.33 65.36 49.38 16.31 ) 13.54 )NCI-CI 5.87 10.81 9.75 3.95 1.33 2.09 10.12 11.29 8.6 9.38 6.56 1.5 10.91 2.1

TOT 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Q 82.02 81.01 81.77 95.65 98.82 99.61 48.71 45.21 26.32 35.31 79.61 99.61 80.61 98.15

F 3.94 3.59 2.07 4.35 1.18 0.39 0.99 ) ) 4.79 2.35 0.39 3.74 1.85

L+C 14.04 15.4 16.17 ) ) ) 50.3 54.79 73.68 60 18.04 ) 15.65 )TOT 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Qm 70.61 68.6 68.34 95.04 98.82 99.22 31.19 24.92 12.94 19.15 65.7 99.61 68.57 97.97

F 3.51 3.18 1.84 4.34 1.18 0.39 0.68 ) ) 3.13 2.05 0.38 3.27 1.85

Lt 25.88 28.22 29.82 0.62 ) 0.39 68.13 75.08 87.06 77.72 32.24 ) 28.16 0.18

TOT 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Parameters adopted: Qm, monocrystalline quartz; Qp, polycrystalline quartzose grains (Qp-c coarse; Qp-f fine); Qr, single or composite medium- to coarse-grained

polycrystalline quartz within crystalline lithic grains (metamorphic clasts); Ch, chert (micro-cryptocrystalline quartz); Qr-f, fine-grained quartz in lithic fragment; K, K-

feldspar; Kr, K-feldspar in crystalline lithic fragments; P, plagioclase; Pr, plagioclase in crystalline lithic fragments; Lm, metamorphic lithic clasts; Ls, siliciclastic lithic

clasts; Lc, carbonatic lithic clasts; M, minerals of the mica group (muscovite, biotite, chlorite); H, heavy minerals; Gl, glaucony grains; Fo, fossils; Ma, matrix; Cm,

carbonate cement; Sm, silica cement; Pm, phyllosilicate cement; Po, pores; ZTR, zircone-tourmaline-rutile; NCE, non-carbonate extrabasinal grains; CE, carbonate

extrabasinal grains; NCI+CI, non-carbonate intrabasinal grains plus carbonate intrabasinal grains; Q, total quartz; F, total feldspar; L+C, fine-grained rock fragments

(metamorphic and siliciclastic lithic clasts) including carbonate rocks; Lt, total lithic fragments plus polycrystalline quartz; TOT, total amount.

Numidian-like distal turbidites (S Spain) • F. J. Alcala et al. Terra Nova, Vol 25, No. 2, 119–129

.............................................................................................................................................................

126 � 2012 Blackwell Publishing Ltd

Page 9: Geodynamic implications derived from Numidian -like distal turbidites deposited along the Internal-External Domain Boundary of the Betic Cordillera (S Spain)

(A)

(a)

(c)

(b)

(d)

(e)

(f)

(B) (C)

(g)

(h)

(i)

(l)

Fig. 5 Petrography analysis from data in Table 6. (A) First-order ternary plot showing the total sand fraction (after Zuffa, 1980):NCE, non-carbonate extrabasinal grains; CE, carbonate extrabasinal grains; NCI+CI, non-carbonate intrabasinal grains pluscarbonate intrabasinal grains; (a) terrigenous arenites; (b) calclithites; (c) hybrid arenites. (B) Second-order ternary plot showingthe terrigenous fraction only (after Gazzi et al., 1973): Q, total quartz; F, total feldspar; L+C, fine-grained rock fragments(metamorphic and siliciclastic lithic clasts) including carbonate rocks; (d) quartz-arenites; (e) sub-litharenites; (f) litharenites. (C)Third-order ternary plot showing the compositional fields defined by Dickinson (1970): Qm, monocrystalline quartz; F, totalfeldspar; Lt, total lithic fragments plus polycrystalline quartz; (g) inner craton; (h) quartzose recycled; (i) transitional recycled; (l)lithic recycled.

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

Fig. 6 Photomicrographs of the main petrofacies recognized in samples of Table 6. (A) Sample p8, Numidian quartz-arenite; (B)sample p9, Numidian quartz-arenite; (C) sample p18, Numidian quartz-arenite; (D) sample p7, detail of a zircon crystal inNumidian quartz-arenite; (E) sample p1, sub-litharenite; (F) sample p5, sub-litharenite; (G) sample p12, litharenite; (H) samplep13, litharenite; (I) sample p3, fine-conglomerate with foraminifers. Sample p3 (I) is plain-polarized light and the other samples arecross-polarized light. Samples and successions (location in Fig. 3): p1 to p5 (Tajo Almarado); p7 to p9 (Cabritos-Hoya); p12 andp13 (Zafarraya); p18 (Arguelles).

Terra Nova, Vol 25, No. 2, 119–129 F. J. Alcala et al. • Numidian-like distal turbidites (S Spain)

.............................................................................................................................................................

� 2012 Blackwell Publishing Ltd 127

Page 10: Geodynamic implications derived from Numidian -like distal turbidites deposited along the Internal-External Domain Boundary of the Betic Cordillera (S Spain)

Acknowledgements

This research was supported by UrbinoUniversity �Carlo Bo� grant (responsible F.Guerrera), Spanish CICYT ResearchProjects CGL2009-09249, CGL2011-30153-CO2-02, and CGL2012-32169,Portuguese FCT Research ProjectPTDC ⁄CLI ⁄72585 ⁄2006, Research Groupsand projects of the Generalitat Valencianafrom Alicante University (CTMA-IGA),and Research Group 146 of the Juntade Andalucıa. The first author is alsograteful to the Portuguese FCT �Ciencia2008� Programme Contract C2008-IST ⁄CVRM.1. Valuable comments and sugges-

tions by Professors M.F.H. Thomas and A.Martın-Algarra are greatly appreciated.A native speaker (David Nesbitt) expertin scientific translations has correctedthe English language version of themanuscript.

References

Adatte, T. and Bolle, M.P., 2001. Palaeo-cene-early Eocene climatic evolution inthe Tethyan realm: clay mineral evidence.Clay Mineral., 36, 249–261.

Alcala, F.J., 1998. Tertiary paleogeographyof the High Chain (NE of Malagaprovince: S Spain): stratigraphy and

mineralogy. MSc thesis, University ofGranada, Spain. 184 pp.

Alcala, F.J., Martın-Martın, M. andLopez-Galindo, A., 2001. Clay mineralogyof the Tertiary sediments in the InternalSubbetic of Malaga Province, S Spain:implications for geodynamic evolution.Clay Mineral., 36, 615–620.

Alcala,F.J.,Lopez-Galindo,A.andMartın-Martın, M., 2012. Clay mineralogy as atool for integrated sequence stratigraphicand palaeogeographic reconstructions:Late Oligocene-Early AquitanianWes-tern Internal South IberianMargin,Spain.Geol. J. doi: 10.1002 ⁄gj.2451

Ardito, M.C., Colaluce, G., Dazzaro, L.,Del Gaudio, V., Lops, B., Moresi, M.,Piccarreta, G. and Rapisardi, L., 1985.Le arenarie dell�Appennino Dauno –Osservazioni geologiche, mineralogiche epetrografiche. In: 3rd ‘‘Convegno Nazio-nale Attivita estrattiva dei minerali di IIcategoria’’ (ANIN, ed.), pp. 50–53. PEI,Bari, Italy.

Barbera, G., Lo Giudice, A., Mazzoleni, P.and Pappalardo, A., 2009. Combinedstatistical and petrological analysis ofprovenance and diagenetic history ofmudrocks: application to Alpine Tethy-des shales (Sicily, Italy). Sed. Geol., 213,27–40.

Biscaye, P.E., 1965. Mineralogy and sedi-mentation of recent deep sea clay in theAtlantic Ocean and adjacent seas andoceans. Geol. Soc. Am. Bull., 76, 803–832.

Blow, W.H., 1969. Late Middle Eocene toRecent planktonic foraminifera bio-stratigraphy. In: Proceedings of the FirstInternational Conference PlanktonicMicrofossils, Geneva (P. Bronnimannand H.H. Renz, eds), pp. 119–442. Brill,Leiden, the Netherlands.

Bourgois, J., 1978. La transversale deRonda, Cordilleres Betiques, Espagne.Donnees geologiques pour un modeled�evolution de l�Arc de Gibraltar. PhDthesis, University of Besancon, France.445 pp.

Cahuzac, B. and Poignant, A., 1997. Essaide biozonation de l�Oligo-Miocene dansles basins europeens a l�aide des grandsforaminiferes neritiques. Bull. Soc. Geol.France, 168, 155–169.

Crespo-Blanc, A., Garcıa-Duenas, V. andOrozco, M., 1993. Systemes en extensiondans la Chaıne Betique centrale: quereste-t-il de la structure en nappes ducomplexe Alpujarride? C.R. de l�Acade-mie des Sciences de Paris, Serie II, 317,971–977.

Croudace, J.W. and Robinson, N.D., 1983.A simple, rapid and precise smearmethod for the preparation of orientedclay mounts. Clay Mineral., 18, 337–340.

Dickinson, W.R., 1970. Interpreting detri-tal modes of greywacke and arkose.J. Sed. Petrol., 40, 695–707.

Fig. 7 Synthetic palaeogeographical and palaeotectonic sketch map and geologicalsections proposed for the Western Mediterranean area during the early Burdigalian.Mesomediterranean Microplate and Maghrebian Flysch Basin are according toGuerrera et al. (2005, 2012).

Numidian-like distal turbidites (S Spain) • F. J. Alcala et al. Terra Nova, Vol 25, No. 2, 119–129

.............................................................................................................................................................

128 � 2012 Blackwell Publishing Ltd

Page 11: Geodynamic implications derived from Numidian -like distal turbidites deposited along the Internal-External Domain Boundary of the Betic Cordillera (S Spain)

Didon, J., 1960. Les unites ultrabetiques dela zona du flysch gaditan au nord etnord-est de Algesiras (schema tectoniqueet interpretation paleogeographique).Memoire hors serie de la SocieteGeologique de France, 1, 265–272.

Didon, J., 1969. Etude geologique duCampo de Gibraltar (Espagne meridio-nale). PhD thesis, University of Paris,France 539 pp.

Didon, J. and Hoyez, B., 1978. Les seriesmixtes, numidien et greso-micace, dansle Rif occidental (Maroc). CR Somm.Soc. Geol. Fr., 6, 304–307.

Durand-Delga, M., 1980. La Mediterraneeoccidentale: etapes de sa genese etproblemes structuraux lies a celle-ci.Memoire hors serie de la SocieteGeologique de France, 10, 203–224.

Durand-Delga, M., 1972. La courbure deGibraltar, extremite occidentale deschaınes alpines, unit l�Europe et l�Afri-que. Eclogae Geol. Helv., 65, 265–278.

Ernest, W.G., 1963. Significance ofphengite micas from low-grade schists.Am. Mineral., 48, 1357–1373.

Gazzi, P., 1966. Le arenarie del flyschsopracretaceo dell�AppenninoModenese;correlazioni con il Flysh di Monghidoro.Acta Mineral. Petrogr., 12, 69–97.

Gazzi, P., Zuffa, G.G., Gandolfi, G. andPaganelli, L., 1973. Provenienza e dis-persione litoranea delle sabbie dellespiagge adriatiche fra le foci dell�Isonzoe del Foglia: inquadramento regionale.Soc. Geol. Ital. Mem., 12, 1–37.

Grasso, M., Guerrera, F., Loiacono, F.,Puglisi, D., Romeo, M., Balenzano, F.,Carmisciano, R., Di Pietro, M., Gon-zalez Donoso, J.M. and Martın-Al-garra, A., 1987. Caratterizzazionesedimentologica, biostratigrafica e min-eralogico-petrografica di ‘‘SuccessioniMiste’’ inframioceniche affioranti inSpagna (Catena Betica) e in Italia me-ridionale (M.ti Nebrodi e Appenninolucano). Boll. Soc. Geol. Ital., 106, 475–516.

Guerrera, F., 1981 ⁄1982. Successions tur-biditiques dans les flyschs mauretanienet numidien du Rif (Maroc). Rev. Geol.Dyn. Geogr. Phys., 23, 85–96.

Guerrera, F., Loiacono, F. and Grasso,M., 1986. Dati preliminari sulle su-ccessioni oligo-mioceniche ‘‘miste’’affioranti lungo la Catena Betico-Maghrebide-Appennino Meridionale:una famiglia di flysch con evidenti im-plicazioni paleogeografiche e paleotet-toniche. Boll. Soc. Geol. Ital., 105, 99–110.

Guerrera, F., Loiacono, F., Puglisi, D. andMoretti, E., 1992. The Numidian Nappein the Maghrebian chain: state of the art.Boll. Soc. Geol. Ital., 111, 217–253.

Guerrera, F., Martın-Algarra, A. and Pe-rrone, V., 1993. Late Oligocene-Miocenesyn- late-orogenic successions in Westernand Central Mediterranean Chains from

the Betic Cordillera to the SouthernApennines. Terra Nova, 5, 525–544.

Guerrera, F., Martın-Martın, M., Perrone,V. and Tramontana, M., 2005. Tectono-sedimentary evolution of the southernbranch of the Western Tethys (Maghre-bian Flysch Basin and Lucanian Ocean):consequences for Western Mediterra-nean geodynamics. Terra Nova, 17, 358–367.

Guerrera, F., Martın-Algarra, A. andMartın-Martın, M., 2012. Tectono-sedi-mentary evolution of the �NumidianFormation� and Lateral Facies (southernbranch of the western Tethys): con-straints for central-western Mediterra-nean geodynamics. Terra Nova, 24,34–41.

Hoyez, B., 1989. Le Numidien et les FlyschsOligo-miocenes de la bordure sud de laMediterranee occidentale. PhD thesis,University of Lille, France. 495 pp.

Kubler, B., 1968. Evaluation quantitativedu metamorphisme par la cristallinite del�illite Etat des progres realises dans cesdernieres annees. Bull. Centre Rech.Pau., 2, 385–397.

Lanson, B., 1997. Decomposition ofexperimental X-ray diffraction patterns(profile fitting): a convenient way tostudy clay minerals. Clay Clay Mineral.,45, 132–146.

Martın-Algarra, A., 1987. Alpine geologicalevolution of the Internal-External Beticzones contact (central and western sec-tor). PhD thesis, University of Granada,Spain. 1171 pp.

Martini, E., 1971. Standard Tertiary andQuaternary calcareous nannoplanctonzonation. In: Proceedings of the 2ndInternational Conference Planktonik Mi-crofossils Roma (A. Farinacci, ed.), pp.739–785. Tecnoscienza, Rome, Italy.

Moretti, E., Coccioni, R., Guerrera, F.,Lahondere, J.-C., Loiacono, F. andPuglisi, D., 1991. Numidian sequencebetween the Guelma and Costantine(Eastern Tell, Algeria). Terra Nova, 3,153–165.

Olivier, Ph., 1984. Evolution de la limiteentre zone interne et zones externes dansl�arc de Gibraltar (Maroc-Espagne).PhD thesis, University Paul Sabatier,Toulouse, France. 229 pp.

Patacca, E., Scandone, P., Bellatalla, M.,Perilli, N. and Santini, U., 1992. TheNumidian-sand event in the SouthernApennines. Sci. Geol. Mem., 43, 297–337.

Peyre, Y., 1974. Geology of Antequera andsurroundings (Betic Cordilleras, Spain).PhD thesis, University of Paris, France.528 pp.

Platt, J.P. and Vissers, R.L.M., 1989.Extensional collapse of thickened conti-nental lithosfere: a working hypothesisfor the Alboran Sea and Gibraltar Arc.Geology, 17, 540–553.

Ruiz Cruz, M.D., 1999. Clay mineralassemblages in flysch from the Campo deGibraltar area (Spain). Clay Mineral.,34, 345–364.

Ruiz Cruz, M.D. and Linares, J., 1992.Geochemical analysis of sedimentsfrom the Campo de Gibraltar area (SSpain). Mineral. Petrogr. Acta, 35, 287–294.

Sanz de Galdeano, C., 1990. Geologicevolution of the Betic Cordilleras in theWestern Mediterranean, Miocene to thepresent. Tectonophysics, 172, 107–119.

Sanz de Galdeano, C., 1997. La Zona In-terna Betico-Rifena. Monografıas Tierrasdel Sur. University of Granada, Spain.316 pp.

Schultz, L.G., 1964. Quantitative interpre-tation of mineralogical compositionfrom X-ray and chemical data for thePierre Shale. U.S. Geological SurveyProfessional Paper 391-C. 31 pp.

Thomas, M.F.H., Bodin, S., Redfern, J.and Irving, D.H.B., 2010a. A con-strained Africa-craton source for Ceno-zoic Numidian Flysch: implications forthe paleogeography of the westernMediterranean basin. Earth Sci. Rev.,101, 1–23.

Thomas, M.F.H., Bodin, S. and Redfern,J., 2010b. Comment on: ��Europeanprovenance of the Numidian Flysch innorthern Tunisia�� (Fildes et al., 2010).Terra Nova, 22, 501–505.

Vera, J.A., 2004. Geology of Spain. Geo-logical Society of Spain and GeologicalSurvey of Spain, Madrid. 884 pp (inSpanish).

Wildi, W., 1983. La chaıne tello-rifaine(Algerie, Maroc, Tunisie): structure,stratigraphie et evolution du Trias auMiocene. Rev. Geol. Dynam. Geog.Phys., 24, 201–297.

Wynn, R.B., Talling, P.J., Masson, D.G.,Stevenson, C.J., Cronin, B.T. and LeBas, T.P., 2010. Investigating the Tim-ing, Processes and Deposits of One ofthe World�s Largest Submarine GravityFlows: The �Bed 5 Event� Off NorthwestAfrica. In: Submarine Mass Movementsand Their Consequences, Advances inNatural and Technological Hazards Re-search, vol. 28 (D.C. Mosher et al., eds),pp. 463–474. Springer Science + Busi-ness Media B.V. 2010, Dordrecht, theNetherlands.

Zuffa, G.G., 1980. Hybrid arenites: theircomposition and classification. J. Sed.Petrol., 50, 21–29.

Zuffa, G.G., 1985. Optical analyses ofarenites: influence of methodology oncompositional results. In: Provenance ofArenites (G.G. Zuffa, ed.), pp. 165–189.NATO ASI Series, Dordrecht, Reidel,the Netherlands.

Received 19 April 2012; revised versionaccepted 11 October 2012

Terra Nova, Vol 25, No. 2, 119–129 F. J. Alcala et al. • Numidian-like distal turbidites (S Spain)

.............................................................................................................................................................

� 2012 Blackwell Publishing Ltd 129