GENETICSgoodman.pdf

  • Upload
    jv-gamo

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 GENETICSgoodman.pdf

    1/41

    GENETICSGENETICS

  • 8/18/2019 GENETICSgoodman.pdf

    2/41

    GeneticsGenetics

    • The study of heredityheredity.

    •• Gregor Mendel (1860Gregor Mendel (1860’’s)s) discovered the

    fundamental principlesprinciples of geneticsgenetics by breedingbreedinggarden peasgarden peas.

  • 8/18/2019 GENETICSgoodman.pdf

    3/41

    GeneticsGenetics••  Alleles Alleles

    1. Alternative forms of genes.genes.2. Units that determine heritable traits.

    3.Dominant allelesDominant alleles (

    TTTT -

    tall pea plantstall pea plants)

    a. homozygous dominanta. homozygous dominant

    4. Recessive allelesRecessive alleles (tttt - dwarf pea plantsdwarf pea plants)

    a. homozygous recessivea. homozygous recessive

    5. HeterozygousHeterozygous (TtTt - tall pea plantstall pea plants)

  • 8/18/2019 GENETICSgoodman.pdf

    4/41

    PhenotypePhenotype

    •• Outward appearanceOutward appearance•• Physical characteristicsPhysical characteristics

    •• Examples:Examples:

    1.1. tall pea planttall pea plant

    2.2.

    dwarf pea plantdwarf pea plant

  • 8/18/2019 GENETICSgoodman.pdf

    5/41

    GenotypeGenotype

    ••  Arrangement of genes that produces the Arrangement of genes that produces the

    phenotypephenotype•• Example:Example:

    1.1. tall pea planttall pea plant

    TT = tall (homozygous dominant)(homozygous dominant)

    2.2. dwarf pea plantdwarf pea plant

    tt = dwarf (homozygous recessive)(homozygous recessive)3.3. tall pea planttall pea plant

    Tt = tall (heterozygous)(heterozygous)

  • 8/18/2019 GENETICSgoodman.pdf

    6/41

    Punnett squarePunnett square

    • A Punnett squarePunnett square is used to show thepossible combinationscombinations of gametesgametes.

  • 8/18/2019 GENETICSgoodman.pdf

    7/41

    Breed the P generationP generation

    •• tall (TT) vs. dwarf (tt) pea plantstall (TT) vs. dwarf (tt) pea plants

    t

    t

    T T

  • 8/18/2019 GENETICSgoodman.pdf

    8/41

    tall (TT) vs. dwarf (tt) pea plantstall (TT) vs. dwarf (tt) pea plants

    t

    t

    T T

    Tt

    Tt

    Tt

    Tt All Tt = tall(heterozygous tall)

    produces theFF11 generationgeneration

  • 8/18/2019 GENETICSgoodman.pdf

    9/41

    Breed the FF11 generationgeneration

    •• tall (Tt) vs. tall (Tt) pea plantstall (Tt) vs. tall (Tt) pea plants

    T

    t

    T t

  • 8/18/2019 GENETICSgoodman.pdf

    10/41

    tall (Tt) vs. tall (Tt) pea plantstall (Tt) vs. tall (Tt) pea plants

    TT

    Tt

    Tt

    tt

    T

    t

    T t

    produces the

    FF22 generationgeneration

    1/4 (25%) = TT

    1/2 (50%) = Tt

    1/4 (25%) = tt

    1:2:1 genotype1:2:1 genotype

    3:1 phenotype3:1 phenotype

  • 8/18/2019 GENETICSgoodman.pdf

    11/41

    Monohybrid CrossMonohybrid Cross

    • A breeding experiment that tracks the inheritanceof a single trait.single trait.

    •• MendelMendel ’’ss ““ principle of segregationprinciple of segregation””

    a. pairs of genes separate during gametegamete

    formation (meiosis).(meiosis).

    b. the fusion of gametesgametes at fertilization pairsgenes once again.

  • 8/18/2019 GENETICSgoodman.pdf

    12/41

    Homologous ChromosomesHomologous Chromosomes

    eye color locus

    b = blue eyes

    eye color locus

    B = brown eyes

    Paternal Maternal

    This person would

    have brown eyes (Bb)

  • 8/18/2019 GENETICSgoodman.pdf

    13/41

    MeiosisMeiosis -- eye color eye color 

    Bb

    diploid (2n)

    B

    b

    meiosis I

    B

    B

    b

    b

    sperm

    haploid (n)

    meiosis II

  • 8/18/2019 GENETICSgoodman.pdf

    14/41

    Monohybrid CrossMonohybrid Cross

    •• ExampleExample: Cross between two heterozygotesheterozygotesfor brown eyes (Bb)

    BB = brown eyes

    Bb = brown eyesbb = blue eyes

    B

    b

    B b

    Bb x Bb

    male

    gametes

    female gametes

  • 8/18/2019 GENETICSgoodman.pdf

    15/41

    Monohybrid CrossMonohybrid Cross

    BB

    Bb

    Bb

    bb

    B

    b

    B b

    Bb x Bb

    1/4 = BB - brown eyed1/2 = Bb - brown eyed

    1/4 = bb - blue eyed

    1:2:1 genotype3:1 phenotype

  • 8/18/2019 GENETICSgoodman.pdf

    16/41

    Dihybrid CrossDihybrid Cross

    • A breeding experiment that tracks the inheritanceof two traits.two traits.

    •• MendelMendel ’’ss ““ principle of independent assortmentprinciple of independent assortment””

    a. each pair of alleles segregates independently

    during gamete formation (metaphase I)(metaphase I)

    b. formula: 22nn (n = # of heterozygotes)(n = # of heterozygotes)

  • 8/18/2019 GENETICSgoodman.pdf

    17/41

    Independent AssortmentIndependent Assortment

    •• Question:Question: How many gametes wil l be producedfor the following allele arrangements?

    • Remember: 22nn

    (n = # of heterozygotes)(n = # of heterozygotes)

    1.1. RrYyRrYy

    2.2.  AaBbCCDd AaBbCCDd

    3.3. MmNnOoPPQQRrssTtQqMmNnOoPPQQRrssTtQq

  • 8/18/2019 GENETICSgoodman.pdf

    18/41

     Answer: Answer:

    1. RrYy: 21. RrYy: 2nn = 2= 222 == 4 gametes4 gametes

    RY Ry rY ryRY Ry rY ry

    2. AaBbCCDd: 22. AaBbCCDd: 2nn = 2= 233 == 8 gametes8 gametes

     ABCD ABCd AbCD AbCd ABCD ABCd AbCD AbCd

    aBCD aBCd abCD abCDaBCD aBCd abCD abCD

    3. MmNnOoPPQQRrssTtQq: 23. MmNnOoPPQQRrssTtQq: 2nn = 2= 266 == 64 gametes64 gametes

  • 8/18/2019 GENETICSgoodman.pdf

    19/41

    Dihybrid CrossDihybrid Cross

    •• Example:Example: cross between roundround and yellowyellowheterozygous pea seeds.

    RR = round= roundr r  = wrinkled= wrinkled

    YY = yellow= yellow

    yy = green= green RY Ry rY ryRY Ry rY ry x RY Ry rY ryRY Ry rY rypossible gametes produced

    RrYyRrYy x RrYyRrYy

  • 8/18/2019 GENETICSgoodman.pdf

    20/41

    Dihybrid CrossDihybrid Cross

    RYRY RyRy rYrY ryry

    RYRY

    RyRy

    rYrY

    ryry

  • 8/18/2019 GENETICSgoodman.pdf

    21/41

    Dihybrid CrossDihybrid Cross

    RRYY

    RRYy

    RrYY

    RrYy

    RRYy

    RRyy

    RrYy

    Rryy

    RrYY

    RrYy

    rrYY

    rrYy

    RrYy

    Rryy

    rrYy

    rryy

    Round/Yellow: 9

    Round/green: 3

    wrinkled/Yellow: 3

    wrinkled/green: 1

    9:3:3:1 phenotypic ratio

    RYRY RyRy rYrY ryry

    RYRY

    RyRy

    rYrY

    ryry

  • 8/18/2019 GENETICSgoodman.pdf

    22/41

    Test CrossTest Cross

    • A mating between an individual of unknown genotypeunknown genotypeand a homozygous recessivehomozygous recessive individual.

    •• Example:Example: bbC__bbC__ x bbccbbcc

    BB = brown eyesBb = brown eyes

    bb = blue eyes

    CC = curly hair 

    Cc = curly hair 

    cc = straight hair 

    bCbC b___ b___ 

    bcbc

  • 8/18/2019 GENETICSgoodman.pdf

    23/41

    Test CrossTest Cross

    •• Possible results:Possible results:

    bCbC b___ b___ 

    bcbc bbCc bbCc

    C bCbC b___ b___ 

    bcbc bbCc bbccor 

    c

  • 8/18/2019 GENETICSgoodman.pdf

    24/41

    Incomplete DominanceIncomplete Dominance

    •• F1 hybridsF1 hybrids have an appearance somewhat inin

    betweenbetween the phenotypesphenotypes of the two parentalvarieties.

    •• Example:Example: snapdragons (flower)snapdragons (flower)

    • red (RR) x white (rr)

    RR = red flower RR = red flower rr = white flower 

    R R

  • 8/18/2019 GENETICSgoodman.pdf

    25/41

    Incomplete DominanceIncomplete Dominance

    Rr 

    Rr 

    Rr 

    Rr 

    R R

     All Rr = pink(heterozygous pink)

    produces theFF11 generationgeneration

  • 8/18/2019 GENETICSgoodman.pdf

    26/41

    CodominanceCodominance

    •• Two allelesTwo alleles are expressed (multiple allelesmultiple alleles)in heterozygous individualsheterozygous individuals.

    •• Example:Example: bloodblood

    1. type A = I AI A or I Ai

    2. type B = IBIB or IBi

    3. type AB = I AIB

    4. type O = ii

  • 8/18/2019 GENETICSgoodman.pdf

    27/41

    CodominanceCodominance

    •• Example:Example: homozygous male B (IB

    IB

    )x

    heterozygous female A (I Ai)

    I AIB I AIB

    IBi IBi

    1/2 = I AIB1/2 = IBi

    I A

    IB IB

    i

  • 8/18/2019 GENETICSgoodman.pdf

    28/41

    CodominanceCodominance

    •• Example:Example: male O (ii) x female AB (I AIB)

    I Ai IBi

    I Ai IBi

    1/2 = I Ai

    1/2 = IB

    i

    i

    I A IB

    i

  • 8/18/2019 GENETICSgoodman.pdf

    29/41

    CodominanceCodominance

    •• QuestionQuestion: If a boy has a blood type O andhis sister has blood type AB,

    what are the genotypes and

    phenotypes of their parents.

    • boy - type O (ii) X girl - type AB (I AIB)

  • 8/18/2019 GENETICSgoodman.pdf

    30/41

    CodominanceCodominance

    ••  Answer: Answer:

    I AIB

    ii

    Parents:Parents:

    genotypesgenotypes = I Ai and IBi

    phenotypesphenotypes =  A and B

    IB

    I A i

    i

  • 8/18/2019 GENETICSgoodman.pdf

    31/41

    SexSex--linked Traitslinked Traits

    • Traits (genes) located on the sexsexchromosomeschromosomes

    •• Example:Example: fruit fliesfruit flies

    (redred-eyed male) X (whitewhite-eyed female)

  • 8/18/2019 GENETICSgoodman.pdf

    32/41

    SexSex--linked Traitslinked Traits

    Sex ChromosomesSex Chromosomes

    XX chromosome - female Xy chromosome - male

    fruit fly

    eye color 

  • 8/18/2019 GENETICSgoodman.pdf

    33/41

    SexSex--linked Traitslinked Traits

    •• Example:Example: fruit fliesfruit flies

    (red-eyed male) X (white-eyed female)

    •• Remember:Remember: the Y chromosomeY chromosome in malesdoes not carry traits.

    RR = red eyed

    Rr = red eyed

    rr = white eyed

    Xy = male

    XX = female

    Xr 

    XR y

    Xr 

  • 8/18/2019 GENETICSgoodman.pdf

    34/41

    SexSex--linked Traitslinked Traits

    XR Xr 

    XR Xr 

    Xr y

    Xr y

    1/2 red eyed and female

    1/2 white eyed and male

    Xr 

    XR y

    Xr 

  • 8/18/2019 GENETICSgoodman.pdf

    35/41

    Population GeneticsPopulation Genetics

    • The study of genetic changesgenetic changes in populationspopulations.• The science of microevolutionary changesmicroevolutionary changes in

    populationspopulations.

    •• HardyHardy--Weinberg equilibrium:Weinberg equilibrium:

    the principle that shuffling of genes that occurs

    during sexual reproduction, by itself, cannot

    change the overall genetic makeup of a population.

    •• HardyHardy--Wienberg equation:Wienberg equation: 1 = p1 = p22 + 2pq + q+ 2pq + q22

  • 8/18/2019 GENETICSgoodman.pdf

    36/41

    Question:Question:

    •• How do we get this equation?How do we get this equation?

     Answer: Answer: ““ SquareSquare”” 1 = p + q1 = p + q

     

    1122 = (p + q)= (p + q)22

     

    1 = p1 = p22 + 2pq + q+ 2pq + q22

  • 8/18/2019 GENETICSgoodman.pdf

    37/41

    HardyHardy--Wienberg equationWienberg equation

    •• Five conditionsFive conditions are required for Hardy-Wienbergequilibrium.

    1.1. large populationlarge population

    2.2. isolated populationisolated population3.3. no net mutationsno net mutations

    4.4. random matingrandom mating

    5.5. no natural selectionno natural selection

  • 8/18/2019 GENETICSgoodman.pdf

    38/41

    •• Need to remember the following:Need to remember the following:

    pp22 = homozygous dominant= homozygous dominant

    2pq = heterozygous2pq = heterozygous

    qq22 = homozygous recessive= homozygous recessive

    ImportantImportant

  • 8/18/2019 GENETICSgoodman.pdf

    39/41

    • Iguanas with webbed feet (recessive trait)(recessive trait) makeup 4% of the population. What in the population

    is heterozygousheterozygous and homozygoushomozygous dominantdominant.

    Question:Question:

  • 8/18/2019 GENETICSgoodman.pdf

    40/41

     Answer: Answer:

    1. q1. q22 = 4% or .04= 4% or .04 qq22 = .04= .04 q = .2q = .2

    2. then use 1 = p + q2. then use 1 = p + q1 = p + .21 = p + .2 11 -- .2 = p.2 = p .8 = p.8 = p

    3. for heterozygous use 2pq3. for heterozygous use 2pq

    2(.8)(.2) = .32 or 32%2(.8)(.2) = .32 or 32%

    4. For homozygous dominant use p4. For homozygous dominant use p22

    .8.822 = .64 or 64%= .64 or 64%

  • 8/18/2019 GENETICSgoodman.pdf

    41/41

    HardyHardy--Wienberg equationWienberg equation

    1 = p1 = p22 + 2pq + q+ 2pq + q22

    •• 64% = p64% = p22 = homozygous dominant= homozygous dominant

    •• 32% = 2pq32% = 2pq = heterozygous= heterozygous

    •• 04%04% = q= q22 = homozygous recessive= homozygous recessive

    •• 100%100%