29
Genetic Engineering of D. radiodurans for uranium bioremediation from high radiation environment Shree Kumar Apte Molecular Biology Division Bhabha Atomic Research Centre, Mumbai-400085, India

Genetic Engineering of D. radiodurans for uranium ... · Genetic Engineering of D. radiodurans for uranium bioremediation from high radiation environment Shree Kumar Apte Molecular

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Genetic Engineering of D. radiodurans for uranium

bioremediation from high radiation environment

Shree Kumar Apte

Molecular Biology Division

Bhabha Atomic Research Centre, Mumbai-400085, India

8th European Biotechnology Congress, Frankfurt, Germany

August 18, 2015

Uranium resources

Primary

High grade ore: 2% U (20,000 ppm)

Low grade ore: 0.1% U (1000 ppm)

[India : 0.03-0.06% U (300-600 ppm)]

Uranium in sea water

3ppb / 13 nM, pH 7.5-7.8

Di-/Tetravalent uranyl carbonate complex,

[UO2(CO3 )3] 2-/ [UO2(CO3)3]

4-

Total U in sea water: 4.5 billion tonnes

(1000 X of terrestial ores)

Secondary Rock phosphate: 100-200 ppm

Monazite: 50-200 ppm

Carbonaceous matter: 300 ppm

Uranium in spent fuel

Acidic waste

< 1mM uranyl nitrate, pH 3-7

Alkaline waste

< 1mM uranyl carbonate, pH 7-10

Dilute solutions with 1- 4 mM uranium at pH 5-10 need to be addressed

Mechanism of metal precipitation by PhoN

Localised high

concentration

of Pi

Outer membrane

Inner membrane

Periplasm

Cytoplasm

PhoN -Phosphoglycerate

Pi

UO22+ (soluble)

HUO2PO4 (insoluble and

membrane bound)

Over expression of PhoN

S.typhi E. coli Controls E.coli

5µg 50µg 5µg PhoN

5µg

Engineering E. coli for PhoN Overexpression

Samonella phoN gene with its native promoter works well in E. coli

(Seetharam, Soundarajan, Udas, Rao and Apte, Proc. Biochem. 44: 246-250, 2009)

Multicopy plasmid (pUC19) based PhoN overexpression

VIABLE CELLS ARE NOT NEEDED

E.

>95% URANIUM (1mM) IS PRECIPITATED

FROM AQUEOUS SOLUTIONS BY GM coli

URANIUM BIO-PRECIPITATION with BACTERIA

0 1 2 3 4

0

20

40

60

80

100

% U

ran

ium

pre

cip

ita

ted

Time (hrs)

citrate buffer

unbuffered

acetate buffer

Post-lyophilisation Performance of E. coli bearing phoN

Cells retained their integrity and activities, but lost viability

79 4781 206 months

ND832 163 months

ND850 891 month

83 7989 590 month

Lyophilized cells following storage for

83 5932 43

Resuspended

fresh E. coli

cells bearing

phoN

Cadmium

removed

(%)

PhoN

ActivitySystem used

79 4781 206 months

ND832 163 months

ND850 891 month

83 7989 590 month

Lyophilized cells following storage for

83 5932 43

Resuspended

fresh E. coli

cells bearing

phoN

Cadmium

removed

(%)

PhoN

ActivitySystem used

Metal

(Seetharam, Soundarajan, Udas, Rao and Apte, Proc. Biochem. 44: 246-250, 2009)

Column based uranium precipitation by E. coli-phoN clones

E. coli-pRAD1 E. coli-pPN1

Total Loading on the column

7.6 g of U/g dry wt. of cells

INPUT SOLUTION

5 mM Uranyl Nitrate with10 mM

β-glycerophosphate in 1.5 litres

of 2 mM Acetate Buffer

COLUMN

200 mg of lyophilized cells

immobilized in 15%

polyacrylamide gel.

GEL VOLUME : 100 ml

Run time : 56 h

The Extreme Radioresistance of Deinococcus radiodurans

Provides opportunities for novel basic research and applications

Engineering phoN in Deinococcus radiodurans

DAG-f

groESL promoter groESL ORF

DAG-r

D. rad. D. rad.

Restriction digested

with XbaI and NdeI

256 bps

815 bps

T3

phoN promoter phoN ORF(pASR1) (pASR1)BamHI

DAP-f

Restriction digested

with NdeI and BamHI

DAG-f

groESL promoter groESL ORF

DAG-r

D. rad. D. rad.

Restriction digested

with XbaI and NdeI

256 bps

DAG-f

groESL promoter groESL ORF

DAG-r

D. rad. D. rad.

DAG-f

groESL promoter groESL ORF

DAG-r

D. rad. D. rad.

Restriction digested

with XbaI and NdeI

256 bps

815 bps

T3

phoN promoter phoN ORF(pASR1) (pASR1)BamHI

DAP-f

Restriction digested

with NdeI and BamHI

815 bps

T3

phoN promoter phoN ORF(pASR1) (pASR1)BamHI

DAP-f

T3

phoN promoter phoN ORF(pASR1) (pASR1)BamHI

DAP-f

Restriction digested

with NdeI and BamHI

Restriction digested

with XbaI and NdeI

Restriction digested

with NdeI and BamHI

(Appukuttan , Rao & Apte, Appl. Env. Microbiol. 72: 7873-7878, 2006)

1 - E. coli - pRAD1

2 - E. coli - groESL+phoN (GN)

3 - E. coli - full phoN (CL#50)

4 - D. rad - pRAD1

5 - D. rad - full phoN (CL#29)

6 - D. rad - groESL+phoN (DN)

Deinococcus radiodurans Wild type Engineered

Genetic engineering of phoN gene into D. radiodurans

(Appukuttan , Rao & Apte, Appl. Env. Microbiol. 72: 7873-7878, 2006)

E. coli (c)

D. radiodurans (c)

D. radiodurans (i)

E. coli (i)

0 2 4 6 8 10

0

20

40

60

80

100 %

U

ran

ium

pre

cip

ita

ted

Time (h)

Uranium precipitation by E. coli and Deinococcus clones

under 6kGy dose of irradiation

(Appukuttan, Rao & Apte, Appl. Env. Microbiol. 72: 7873-7878, 2006)

Cell-surface bound uranyl phosphate precipitate (SEM)

Seeing is believing …………….

Cell-surface bound uranyl phosphate precipitate (TEM)

γ-ray

7 kGy

Mito-C

20 µg ml-1

H2O2

50 mM C S C S C S C S

UV

5 kJ m-2

pSN4 pSN3

60Co, γ-ray (7 kGy)

pSN2

C T C T C T

rpsF 6 ssb

phoN

pRN1

pSN2

-102bp

pSN3

-132bp

pSN4

-351bp

RDRM2 RDRM 1

rpsF 18

C S

60Co, γ-ray (7 kGy)

pSN4

pSN3

pSN2

pRN1

A Radiation responsive Deinococcal Promoter (Pssb)

(Ujaoney, Potnis, Dani, Mukhopadhyay & Apte, J.Bacteriol., 2011)

(a)

Control Irradiated

56.8 Gy/min

4 Gy/min

Control Irradiated Control Irradiated0

50

100

150

200

250

300

350

400 56.8 Gy/min

4 Gy/min

nanom

ole

s p

NP

rele

ased /

mg

cell

pro

tein

/ m

in

(c)

(b)

0 2 4 6 8 10

100

150

200

250

300

350

400

450

500

nm

ole

s p

NP

re

lea

se

d /

mg

ce

ll p

rote

in /

min

Dose (kGy)

(d)

0 1 2 3

0

100

200

300

400

500

Ura

niu

m p

recip

ita

ted

(m

g)

/ g

dry

bio

ma

ss

Time (h)

Deinococcus (pSN4) C

Deinococcus (pSN4) I

Deinococcus (pPN1) C

Deinococcus (pPN1) I

Use of radiation-induced Pssb promoter for U bioprecipitation

0 1 2 3 4 5 6 7 8 9 10 11 12

0

2

4

6

8

10

nm

ole

s p

-NP

/min

pH

5

pH optima for acid and alkaline phosphatase

of Novosphingobium sp. BSAR-1

Zymogram for alkaline

phosphatase analysis

175kDa

An Alkaline Phosphatase Over-producer Bacterial Isolate

Genetic Basis of this

Enzyme Activity was

investigated and cloned

9

(Nilgiriwala, Alahari, Rao and Apte, Appl. Env. Microbiol. 74: 5516-5523, 2008)

Phenotype of various native and

recombinant PhoK expressing strains

(Nilgiriwala, Alahari, Rao and Apte, Appl. Env. Microbiol. 74: 5516-5523, 2008)

Uranium bioprecipitation at pH 9.0 using PhoK

0 1 2 3 4 5 6 7 8 240

20

40

60

80

100

Ura

niu

m p

rec

ipit

ati

on

(%

of

inp

ut)

Time (h)

BSAR1

KN20

EK4

0.5 mM UC, 5 mM BGP

(Nilgiriwala, Alahari, Rao and Apte, Appl. Env. Microbiol. 74: 5516-5523, 2008)

Precipitate identified as H2(UO2)2(PO4)2.8H2O, metaautunite or

chernikovite by Powder-XRD analysis

10 15 20 25 30 35 40 45 50

0

10

20

30

40

50

40.8

1

30.2

5

Inte

nsi

ty

2

25.4

7

23.4

9

41.7

9

32.2

3

27.2

9

20.4

7

17.9

3

15.9

9

(Nilgiriwala, Alahari, Rao and Apte, Appl. Env. Microbiol. 74: 5516-5523, 2008)

BSAR-1

KN20

pET29b

EK4

- cells

- GP

White light

UV light

Uranium precipitation at pH 9.0 using PhoK alkaline phosphatase

Deino-PhoK without uranium treatment Deino-PhoK with uranium treatment

TEM images of Deino-PhoK cells

500 nm

Needle shaped crystals of uranyl phosphate seen in uranium treated samples

500 nm

Seeing is believing …….

A B C

Empty beads Deino-PhoK (-U) Deino-PhoK (+U)

D E

Easy recovery of precipitated uranyl phosphate through beads

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50

20

40

60

80

100

% U

pre

cip

itate

d

Time (h)

Deino-PhoK beads

Deino-pRAD1 beads

0 1 2 3 4

20

40

60

80

100

120

Deino-PhoK

beads

supernatant

Deino-pRAD1

beads

supernatant

Flu

roscen

ce i

nte

nsit

y (

AU

)

Time (h)

Clones

Specific Activity

(nmoles of p-NP

liberated/min/mg of

total cellular protein)

Deino- pRAD1 18 + 5

Deino-PhoK 7000 + 1000

Deino-PhoN 200 + 10

1 Deino-pRAD1

2 Deino-PhoK

3 Deino-PhoN

Phosphatase activity of recombinant strains Recombinant Deinococcus

strains on PDP-MG plate

Comparison of Deino-PhoN and Deino-PhoK strains

1 2 3 4

0

20

40

60

80

100

Deino-PhoK

Deino-PhoN

Deino-control

%U

pre

cip

itate

d

Time in hours

Maximum loading possible with Deino-PhoN

Maximum loading possible with Deino-PhoK

0.0 0.5 1.0 1.5 2.0 2.50

20

40

60

80

100

10mM

% U

pre

cip

itate

d

Time(h)

Deino-PhoK

1 mM U + 5mM GP

2 mM U + 5mM GP

5 mM U + 10mM GP

10 mM U + 20mM GP

controls (Deino-pRAD1)

10 mMU + 20mMGP

10 mM U + 20mM GP

( without cells)

0

1

2

3

4

5

6

7

8

9

10

11

12

5mM

2mM

U g

/g o

f d

ry w

eig

ht

of

Dein

o-P

ho

K c

ell

s

1mM

SUMMARY

Metal precipitation using phosphatases is an old story.

Novelty of the present work :

Use of heavy metal tolerant enzymes

Cloning/characterization of a very active alkaline phosphatase (PhoK)

Extension of metal bioremediation to alkaline solutions

Recombinant radioresistant microbes to biorecover uranium from

acidic/alkaline solutions in high radiation environments.

Lyophilization to extend shelf-life while retaining precipitation ability

Volume reduction, high U loading, easy recovery

Related Publications

Appukuttan, D, Rao, A. S. and Apte, S. K. (2006) Appl. Env. Microbiol. 72 : 7873-7878.

Nilgiriwala, K., Alahari, A., Rao, A. S. and Apte, S. K. (2008) Appl. Env. Microbiol. 1784 : 1256-1264.

Seetharam, C., Soundarajan, S., Udas, A. C., Rao, A. S. and Apte, S. K. (2009) Proc. Biochem. 44 : 246-

250.

Nilgiriwala, K., Bihani, S C., Das, A., Prashar, V., Kumar, M., Ferrer, J-L, Apte, S. K. and Hosur, M. V. (2009)

Acta Cryst. F65 : 917-919.

Ujaoney, A. K., Potnis, A., Mukhopadhyay, R. and Apte, S. K. (2010) J. Bacteriol. 192 : 5637-5644.

Bihani, S., Das, A., Nilgiriwala, K., Prashar, V., Pirocchi, M., Apte, S. K., Ferrer, J. and Hosur, M. V. (2011)

PLoS ONE 6 : e22767.

Appukuttan, D., Seetharam, C., Padma, N., Rao, A. S. and Apte, S. K. (2011) J. Biotechnol. 154 : 285-

290.

Seetharam-Misra C., Appukuttan D., Kantamreddi V. S. S., Rao A. S. and Apte S. K. (2012)

Bioengineered Bugs 3 : 44-48.

Kulkarni, S., Ballal, A. and Apte, S. K. (2013) J. Hazard. Metals 262 : 853-861.

Misra, C.S., Mukhopadhyaya, R. and Apte, S. K. (2014) J. Biotechnol. 189 : 88–93.

ACKNOWLEDGEMENTS

Deinococcus radiodurans strain R1 M. Daly & K. Minton

Useful Vectors Mary Lidstrom

PhoN for U/Cd bioprecipitation Deepti Appukuttan, Chitra Seetharam & A.S. Rao

PhoK for U bioprecipitatio Kayzad Nilgiriwala, Anuradha Alahari & A. S. Rao,

Sayali Kulkarni,

SEM-EDX Shovit Bhattacharya & N. Padma (TPPED, BARC)

TEM Anand Ballal, Alka Gupta

ICP-MS Sanjukta A. Kumar (ACD, BARC)

AAS A.C. Udas & Suvarna Soundarajan (ACD, BARC)

XRD Analysis N. Raghumani & Rakesh Shukla (CD, BARC)

Funding : Department of Atomic Energy and Department of Science & technology, India

Addition of PhoK does not compromise or alter radioresistance

Irradiation (6 kGy, 60Co -rays) does not influence bioprecipitation

0.0 0.5 1.0 1.5 2.0 2.5 3.00

20

40

60

80

100

Unirradiated cells

Irradiated cells

% U

pre

cip

ita

ted

Time (h)

B A

0 3 6 9 12 15 18 21

105

106

107

108

D10=15.5kGy

Deino-pRAD1

Deino-PhoK

CF

U/m

l

Dose (kGy)

D10=15.63kGy

Recombinant strain functions well in high radiation environment