15
INSTALLATION NETWORK INC. ASMITA DUBEY 9796924 JAVIER HUERTAS 1508758 RAHUL PAUL 6224865 ROY BADER 9766227 XIANG SHENG TAO 9755209 GAS TURBINE DESIGN PRESENTATION

Gas Turbine Project

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Gas Turbine Project

INSTALLATION NETWORK INC.

ASMITA DUBEY 9796924JAVIER HUERTAS 1508758RAHUL PAUL 6224865ROY BADER 9766227XIANG SHENG TAO 9755209

GAS TURBINE DESIGN PRESENTATION

Page 2: Gas Turbine Project

DESIGN PROCESS

• Cycle analysis and calculation of inlet and outlet conditions of each components, component work, SHP, Thermal efficiency and SFC

Cycle calculations

• From the ranges given, choose the best combination that can match or approach the required efficiency.

• Generate the Geometry(No of vanes and blades, gas and metal angles etc..)

• Off design performance

HPT design

• Factory standard cost Vs stage efficiency• Acquisition cost Vs operational cost• Optimum design (compromise between efficiency and cost)Trade study

Page 3: Gas Turbine Project

PART ACYCLE CALCULATION

HPT entry temperature

1233 K

PT work 952.89 KW

SFC .38 Kg/Kwh

Thermal Efficiency 25 %

From the cycle calculation we obtained the key parameters,

At the Inlet of the LPC we are using the International Standard Atmosphere table to obtain the static pressure and assuming static pressure = stagnation pressure

•  We are considering the effect of the HPT Vane cooling air to obtain To at the blade inlet

• At LPT inlet we are neglecting the effect in temperature of disk cooling air

Page 4: Gas Turbine Project

KEY PARAMETERS

Variable LPC Inlet LPC Outlet HPC Inlet HPC

OutletCombustor

InletCombustor Outlet

HPT Inlet Vane

HPT Inlet Blade

HPT Outlet Blade

LPT Inlet LPT Outlet PT Inlet PT

OutletExhaust Inlet

Exhaust

Outlet

Mass flow (lb/sec) 12.00 12.00 12.00 12.00 10.80 11.02 11.02 11.62 11.62 11.80 11.80 11.92 11.92 12.04 12.04

Po (bar) 0.875 3.50 3.50 10.50 10.50 10.34 10.34 9.99 4.24 4.24 2.10 2.08 0.888 0.888 0.875

To (K) 296.48 462.10 462.10 662.56 662.56 1233.90 1233.901200.13

1017.00 1017.00 868.02 868.02 714.25 714.25 714.25

W (kW) 904.80 1095.16 1106.22 913.94 952.89

Page 5: Gas Turbine Project

PART CHPT DESIGN

INSTALLATION NETWORK TEAM

HPT DESIGN

LOSS

CAL

CULA

TIO

NS

& E

FFIC

IEN

CYG

EOM

ETRI

C PA

RAM

ETER

SH

UB

& T

IP

DES

IGN

PA

RAM

ETER

S

MEA

NLI

NE

DES

IGN

PA

RAM

ETER

SIN

PUT

DAT

A

YES

NO

BLADE LOSS COEFFICIENTSKp*fRe + Ks + KTE

FREE VORTEX DESIGN

HUB & TIP VELOCITY

TRIANGLES

VANE GEOMETRYHUB, MEANLINE

AND TIP

START

PART A CYCLE CALCULATIONS

CHARACTERISTICS (GIVEN)

ηtt CALCULATION

ηtto (Tip Clearance = 0)

VANE LOSS COEFFICIENTSKp*fRe + Ks + KTE

DESIGN VARIABLES SET-UP

Kclr calculation

ηtt

AMDC LOSS SYSTEM

ηtt & GEOMETRY

OPTIMAL?

BLADE GEOMETRYHUB, MEANLINE

AND TIP

VELOCITY TRIANGLES AT INLET & EXIT OF EACH COMPONENT

GASPATH SCHEMATICS

END DESIGN

Page 6: Gas Turbine Project

HPT Design – Input data

DESIGN VARIABLES SET-UP

START

GASPATH SCHEMATICS

CHARACTERISTICS (GIVEN)

VELOCITY TRIANGLES AT INLET & EXIT OF EACH COMPONENT

PART A – HPT CYCLE CALCULATIONS

Component Parameter ValueInlet Mach number 0,125Inlet Swirl relative to axial (deg) -10Exit Mach number 0,3 to 0,45Exit Swirl (deg) 10 to 30Target field life (hours) 5000Aspect ratio 0,7Zweifel Coefficient at mean 0,70 to 0,80Trailing edge thickness minimum (in) 0,045Aspect ratio 1,45Zweifel Coefficient at mean 0,85 to 0,95Trailing edge thickness minimum (in) 0,025

Blade Containment Consideration

AN^2 NOT exceed 4 x 10^10Rim Speed limit 1200 ft/s

GIVEN CHARACTERISTICS

Stage

Vane

Blade

Parameter ValueExit Mach number 0,45Exit Swirl (deg) 20Zweifel Coefficient at mean vane 0,70

Zweifel Coefficient at mean blade 0,85Reaction: (T2-T3) / (T1-T3) 0,4AN^2 4E+10Rim Speed (ft/s) 1200

Design Variables Set-up

Page 7: Gas Turbine Project

ASSUMPTIONS

Assumptions • Po,To at Vane outlet = Po, To at Blade Inlet•  Cx Hub = Cx Mean = Cx Tip ( applying free vortex theory)•  Incidence and deviation = 0 (as design conditions)•  Because of variable section at vanes we are using r average and h average for vane design•  For Loss Calculation we are following the  Kacker & Okapuu Loss Prediction Model

explained in class.• Delta tc/h = 1,8%

Critical values• AN^2=maximal (4 x10^10) to obtain the high efficiency• Rim speed (U hub) maximal = 1200 ft/s to obtain high efficiency• Vane Zweifel coefficient at mean=0,7 (using minimum value to maximize quantity of

vanes)•  Blade Zweifel coefficient at mean=0,85 to reduce blade loading

Page 8: Gas Turbine Project

Meanline Design Parameters

1 2 3

Vane Inlet Blade Inlet Blade Outlet

mass flow (lb/s) 11,02 11,62 11,62To (R) 2221,02 2160,23 1830,61

T (R) 2215,26 1944,42 1770,91

Po (bar) 10,34 9,99 4,24

P (bar) 10,23 6,56 3,71

Mn 0,13 0,82 0,45

Mn rel 0,28 0,94densité (lb/ft^3) 0,1809 0,123 0,082

A (in^2) 31,654 23,957 23,957

U (ft/s) 1376,00 1376,00

alpha (deg) -10,00 72,10 20,00beta (deg) 26,35 63,21

C (ft/s) 281,40 1721,35 905,76

Ca (ft/s) 277,13 529,02 851,14

Cw (ft/s) -48,86 1638,04 309,79

V (ft/s) 590,36 1888,47

φ 0,38 0,62

ψ 2,83

R 0,40

VELOCITY DIAGRAM (meanline)

Variable

Page 9: Gas Turbine Project

HUB & TIP VELOCITY TRIANGLES

Ca constant with radius r&

Cw * radius = constant

FREE VORTEX DESIGN

Hub & Tip Design Parameters

Page 10: Gas Turbine Project

YES

NO

HUB & TIP VELOCITY TRIANGLES

BLADE GEOMETRYHUB, MEANLINE AND TIP

ηtt CALCULATION

VANE GEOMETRYHUB, MEANLINE AND TIP

ηtt & GEOMETRY

OPTIMAL?

Geometric Parameters

Vane geometry Hub Mean Tip

Airfoil count 22 22 22

Axial chord (in) 0,88 0,88 1,01

Leading edge diameter (in) 0,04 0,04 0,04

Trailing edge diameter (in) 0,05 0,05 0,05

Stagger angle (deg) 56,78 56,78 51,22

Metal angle (deg) inlet= -10 ; exit = 74,27 inlet= -10 ; exit = 72,10 inlet= -10 ; exit = 69,98

Throat opening (in) 0,34 0,34 0,40

Radio (in) 3,36 3,93 4,49

Blade geometry Hub Mean Tip

Airfoil count 49 49 49

Axial chord (in) 0,65 0,59 0,42

Leading edge diameter (in) 0,02 0,02 0,02

Trailing edge diameter (in) 0,03 0,03 0,03

Stagger angle (deg) 18,47 29,73 51,56

Metal angle (deg) inlet= 52,07 ; exit = 61,31 inlet= 26,35 ; exit = 63,21 inlet= -10,71 ; exit = 65,02

Throat opening (in) 0,18 0,23 0,22

Radio (in) 3,36 3,86 4,35

Page 11: Gas Turbine Project

Loss Calculation and Efficiency

YES

ηtt

END DESIGN

BLADE LOSS COEFFICIENTSKp*fRe + Ks + KTE

AMDC LOSS SYSTEM

VANE LOSS COEFFICIENTSKp*fRe + Ks + KTE

ηtto (Tip Clearance = 0)

ηtt & GEOMETRY

OPTIMAL?

Kclr calculation(Assuming delta tc/h = 1.8%)

Page 12: Gas Turbine Project

Off-Design

Considerations• U at meanline reduced by 10%• Mass flow = Mass flow design• Alpha2 = Alpha 2 Design• Beta 3 = Beta 3 Design• C2 = C2 Design• Ca2= Ca2 Design• Pitch = Pitch Design

Methodology• Kp and Ks are calculated from Moustapha et al.

Correlation for Turbine Airfoils• fRe, KTE and Kclr are calculated from the

results from the new velocity triangles

Results• Incidence of 10.72 degrees• KT in the blades increase from 0.1 to 0.16• Efficiency reduces to 85,6%

Page 13: Gas Turbine Project

PART DHPT DESIGN TRADE OFF'S

MATERIAL and FSC TO CUTOMER

Blade stress σ = (2⫪ρAN²)

Economical benefits

Blade material

Acquisition Cost

Overhauling Cost

TOTAL

X 16660 2,40,000 256660

Y 12495 3,20,000 332495

Z 29155 1,60,000 189155

Acquisition cost

Overhauling cost

Total cost0

50000

100000

150000

200000

250000

300000

350000

XYZ

Page 14: Gas Turbine Project

FACTORY STANDARD COST VS. STAGE EFFICIENCY

Selection of best concept.

86.5 87 87.5 88 88.5 89 89.5 90 90.5

-200000

-100000

0

100000

200000

300000 Savings ($)

Savings ($)

Fuel cost($)

HPT effi-ciency(%)

Page 15: Gas Turbine Project

THANK YOU !