23
6/29/11 1 CO 2 Capture by Amine Scrubbing By Gary T. Rochelle Luminant Carbon Management Program Department of Chemical Engineering The University of Texas at AusJn RECS June 9, 2011 Central Messages Amine Scrubbing is THE technology for CO 2 capture from Coal Power plants Energy consumpJon by amines is approaching 20 % of the plant output, a pracJcal lower limit. Solvent degradaJon & contaminaJon will probably limit the chemical cost to less than $5/lb.

Gary Rochelle Presentation

  • Upload
    recsco2

  • View
    100

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Gary Rochelle Presentation

6/29/11

1

CO2CapturebyAmineScrubbingBy

GaryT.Rochelle

LuminantCarbonManagementProgram

DepartmentofChemicalEngineering

TheUniversityofTexasatAusJn

RECS

June9,2011

CentralMessages

•  AmineScrubbingisTHEtechnologyforCO2capturefromCoalPowerplants

•  EnergyconsumpJonbyaminesisapproaching20%oftheplantoutput,apracJcallowerlimit.

•  SolventdegradaJon&contaminaJonwillprobablylimitthechemicalcosttolessthan$5/lb.

Page 2: Gary Rochelle Presentation

6/29/11

2

IbelievethatCO2willberegulated

becauseourscienJstshaveshownthatsignificantglobalwarmingisresulJngfromconJnuingemissionsofCO2

CoalCombusJonisanimportantcontrollablesourceofCO2emissions.

CarbonCapture&Storage(CCS)isanimportantopJonforexisJngcoal‐firedpowerplants

SourcesofGlobalWarming(IPCC,2007)

‐1 ‐0.5 0 0.5 1 1.5 2

Netanthropogenic

CO2

CH4,etc

directaerosols

cloudaerosols

solar

Radia%veForcing(W/m2)

Page 3: Gary Rochelle Presentation

6/29/11

3

ModelswithonlynaturalforcingsModelswithbothnatural&anthropogenicforcings

40%ofUSCO2emissionsareFromElectricityGeneraJon

78%

Page 4: Gary Rochelle Presentation

6/29/11

4

Page 5: Gary Rochelle Presentation

6/29/11

5

Page 6: Gary Rochelle Presentation

6/29/11

6

Other Solutions for Coal •  Oxy-Combustion

– O2 plant & compression require more energy – Gas recycle, boiler modification for high CO2 – Gas cleanup, compression including air leaks

•  Coal Gasification / Combined Cycle – O2 plant, complex gasifier, cleanup, CO2 removal – Not ready for deployment – Relatively more expensive on PRB or lignite – New plants only

•  Neither is Tail end: More suitable for new plants – Require higher development cost, time, and risk – Not suitable for on/off to address peaking

Page 7: Gary Rochelle Presentation

6/29/11

7

HistoryRepeatsCaCO3Slurry:::AmineScrubbing

CaCO3 Event Amine 1936 1st commercial plant 1980

1958 Too commercial for Gov. support “Nearly Insurmountable” issues

1991

1960-75 Government funds advanced alts 1990-

1970-85 Govern. & EPRI fund test facilities 2010-

1968 60-250 MW prototypes 2015

1977 500+ MW deployed per regulations First choice dominates

2020

MessagesonEnergy•  ReversibilityisKing•  GreaterCapacityreducesSensibleQ•  SaturaJonStrippingismorereversible

•  FasterSolventsEnhanceReversibility•  GreaterHeatofAbsorpJonReducesEnergy•  GreaterStrippingTismorereversible•  EnhancedStrippingismorereversible

•  Energyisapproaching50%oftheoreJcal,apracJcallimit

Page 8: Gary Rochelle Presentation

6/29/11

8

Carbonate & Tertiary/Hindered Amines

HO-CH2-CH2-N-CH2-CH2-OH ↔ MDEAH+ + HCO- ׀ 3

CH3 60 kJ/gmol, slow Methyldiethanolamine (MDEA)

CH3 ׀ ׀ HO-CH2-CH2-NH2 + CO2 ↔ AMPH+ + HCO-

׀ 3 CH3 60 kJ/gmol, slow 2-Aminomethylpropanolamine (AMP, KS-1(?))

CO3= + CO2 + H2O ↔ 2 HCO-

3 20 kJ/gmol Carbonate Bicarbonate very slow

+ CO2 ↔ +HPZ-COO-

Piperazine (PZ)

Primary and Secondary Amines 60-85 kJ/gmol, fast

CH2-CH2

HN NH CH2-CH2

2 HO-CH2-CH2-NH2 + CO2 ↔ HO-CH2-CH2-NH-COO- + MEAH+

Monoethanolamine (MEA) MEA Carbamate (MEACOO-)

2 NH3 + CO2 ↔ NH2-COO- + NH4+

Ammonia

Page 9: Gary Rochelle Presentation

6/29/11

9

Page 10: Gary Rochelle Presentation

6/29/11

10

Page 11: Gary Rochelle Presentation

6/29/11

11

Sensibleheatloss–25kwh/tonne•  Q=CpΔT/capacity

=3.5J/mol‐K*5K/(0.88moles/kg)

=20kJ/moleCO2,Steamat155oC

Mass transfer coefficients

Bulk gas

Bulk liquid

Gas film Liquid film

22 4/19/2011

KG

CO2 flux = k (∆ CO2)

PCO2, b PCO2, i

[CO2]i

[CO2]b (=PCO2*)

∙(PCO2,b – PCO2*) CO2 flux =

CO2 flux = kg (PCO2,b- PCO2,i) = kl ([CO2]i – [CO2]b) = kg’ (PCO2,i – PCO2*)

Gas-Liquid Interface

Henry’s Law: PCO2i= He * [CO2]i

Page 12: Gary Rochelle Presentation

6/29/11

12

Gas Film Reaction Film Diffusion Film

Bulk Gas Bulk Liquid

PCO2,b PCO2,i

G-L Interface

[CO2]i

[CO2]b

(PCO2*)

fast chemical rxn

23 4/19/2011

Pseudo 1st order kinetics

CO2 removal = area∙KG(∆PCO2)≈f(area,kg’) Packing Solvent

EsJmateareafromk’g•  Lnmeank’gΔP=2.4e‐3mol/s‐m2

–  Lean:2.2e‐6*(0.012–0.005)*105–  Rich:5e‐7*(0.12‐0.05)*105

•  Absorberpackingvolume–  1.9e3m3for800MW,250M2/M3

•  0.9tonneCO2/MW‐hr–  25X25X13.5m–  1.5m/sgasvelocity

•  Exergylost/moleCO2–  RTln(0.12/0.05)=14kwh/tonneCO2

Page 13: Gary Rochelle Presentation

6/29/11

13

Page 14: Gary Rochelle Presentation

6/29/11

14

GreaterTstrip&ΔHCO2reduceWeq

MEA120°C

PZ

Singlestageflashat90‐150°CCompressionto150barLeanPCO2=0.5kPaat40°C

90°C 150°C

Page 15: Gary Rochelle Presentation

6/29/11

15

Page 16: Gary Rochelle Presentation

6/29/11

16

Page 17: Gary Rochelle Presentation

6/29/11

17

Page 18: Gary Rochelle Presentation

6/29/11

18

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1 1.2

k g' av

g (x

107

mol

/pa∙

s∙m

2 )

CO2 Capacity (mol CO2/kg solvent) 4/19/2011 35

Amino Acids

SarK

PZ Derivatives

Primary Amine

MEA

EDA Hindered Amines

2-PE

5/5 MDEA/PZ

PZ based solvents

PZ

2MPZ

Two-dimension comparison of solvents

FastSolvents

Amine (m)Capacity -∆Habs

@PCO2 =1.5kPa kg,

’avg x1e-7

@40 °C

DegT(oC)k1=3e‐6s

mol/kg solv kJ/mol mol/s·Pa·m2 3e‐9s‐1

PZ 8 0.79 70 8.5 163

1-MPZ 8 0.83 67 8.4 148

MDEA/PZ 5/5 0.99 70 8.3 138

2-MPZ/PZ 4/4 0.84 70 7.1 155

MDEA/PZ 7/2 0.80 68 6.9 138

2-MPZ 8 0.93 72 5.9 151

HEP 7.7 0.68 69 5.3 130

MEA 7 0.47 82 4.3 120

Page 19: Gary Rochelle Presentation

6/29/11

19

SlowSolvents

Amine (m)Capacity -∆Habs

@PCO2 =1.5kPa kg,

’avg x1e-7

@40 °C

DegTk1=3e‐9s‐1

mol/kg solv kJ/mol mol/s·Pa·m2 oC

PZ 8 0.79 70 8.5 163

MEA 7 0.47 82 4.3 120

DGA® 10 0.38 81 3.6 132

AEP 6 0.66 72 3.5 121

2-PE 8 1.23 73 3.5 120

MAPA 8 0.42 84 3.1 114

AMP 4.8 0.96 73 2.4 137

MessagesonSolventManagement•  ThermalDegradaJon

–  LimitsmaxStripperT–  TMEA<TMDEA<TAMP<TPZ

•  FreeRadicalAutooxidaJon–  Iffast,inabsorber::ifslow,inheatexchanger– Alkanolamine>terJary>Hindered>cyclic(PZ)–  CatalyzebyFe+2,Cu+2,Mn+2

–  Inhibitbyperoxide/radicalscavengers,terJaryamine

•  VolaJlityofaminesanddegradaJonproducts– Absorberwaterwashmaywork–  Reducedbyhydrophilicgroups&speciaJon– NitrosaminesfromNO2/NO2

‐+secondaryamine–  ReclaimingrequiredforcoalimpuriJes

Page 20: Gary Rochelle Presentation

6/29/11

20

5MechanismsforThermalDegradaJon

•  1.CarbamatePolymerizaJon‐MEA•  2.CyclicUrea‐Ethylenediamine

•  3.ArmSwitching/EliminaJon‐TerJaryAmine

•  4.SN2RingOpening–Piperazine•  5.BlendSynergism–Piperazine/MEA

Page 21: Gary Rochelle Presentation

6/29/11

21

O2solubility&MassTransfer

0.E+0

2.E‐5

4.E‐5

6.E‐5

2.E‐04 2.E‐03 2.E‐02

AmineOxida

%on

(mol/m

olCO2)

OxygenRateConstant(s‐1)

Total

Absorber

ExchangerSump

PZ

MEAMDEA

Page 22: Gary Rochelle Presentation

6/29/11

22

VolaJlityIssues

•  AminevolaJlity–  InH2O–  InloadedsoluJon– AsamethylateddegradaJonproduct,e.g.1.4dimethylpiperazine,methylamine

•  OxidaJonproducts– HEI–  Formamide– Ammonia– NitrosaminefromsecamineandNO2/NO2

Amine Volatility (Pa) at 40 oC Amine Ldg = 0 Ldg: PCO2=500 Pa

@ 40oC

5m MDEA/5m PZ 0.17/3.43 0.16/0.51

7m MDEA/2m PZ 0.56/0.91 0.42/0.21

8m PZ (8.8) 0.78

12m EDA 87 1

7m MEA 10 2.7

5m AMP 14.2 11.2

Page 23: Gary Rochelle Presentation

6/29/11

23

Conclusions

•  AmineScrubbingcanbeDeployedby2019•  ImprovedAmineSolventsandProcesses

– ReduceEnergyfrom400%to200%ofMinimumW– ProvideStable,BenignSolvents– SimplifysystemstoreducecapitalCost

•  AsLimestoneSlurryRulesFGDauer30yrs;AmineScrubbingwilldominateCO2capture.

•  OthertechnologiesareunlikelytocompeteforPost‐combusJoncapture.