6
eGaN® FET DATASHEET EPC2214 EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 1 EPC2214 – Automotive 80 V (D-S) Enhancement Mode Power Transistor V DS , 80 V R DS(on) , 20 mΩ I D , 10 A, AEC-Q101 EPC2214 eGaN® FETs are supplied only in passivated die form with solder bumps Die Size: 1.35 mm x 1.35 mm Applications • Lidar/Pulsed Power Applications • DC-DC Conversion • Wireless Power Transfer Benefits • Ultra High Efficiency • Ultra Low R DS(on) • Ultra Low Q G • Ultra Small Footprint EFFICIENT POWER CONVERSION HAL G D S Maximum Ratings PARAMETER VALUE UNIT V DS Drain-to-Source Voltage (Continuous) 80 V I D Continuous (T A = 25°C) 10 A Pulsed (25°C, T PULSE = 300 µs) 47 V GS Gate-to-Source Voltage 6 V Gate-to-Source Voltage -4 T J Operating Temperature –40 to 150 °C T STG Storage Temperature –40 to 150 Static Characteristics (T J = 25°C unless otherwise stated) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT BV DSS Drain-to-Source Voltage V GS = 0 V, I D = 0.2 mA 80 V I DSS Drain-Source Leakage V DS = 64 V, V GS = 0 V, T J = 25°C 0.003 0.15 mA I GSS Gate-to-Source Forward Leakage V GS = 5 V, T J = 25°C 0.003 1.1 mA Gate-to-Source Forward Leakage # V GS = 5 V, T J = 125°C 0.01 2.5 mA Gate-to-Source Reverse Leakage V GS = -4 V, T J = 25°C 0.003 0.15 mA V GS(TH) Gate Threshold Voltage V DS = V GS , I D = 2 mA 0.8 1.4 2.5 V R DS(on) Drain-Source On Resistance V GS = 5 V, I D = 6 A 15 20 V SD Source-Drain Forward Voltage I S = 0.5 A, V GS = 0 V 1.9 V # Defined by design. Not subject to production test. Thermal Characteristics PARAMETER TYP UNIT R θJC Thermal Resistance, Junction-to-Case 2.7 °C/W R θJB Thermal Resistance, Junction-to-Board 7.5 R θJA Thermal Resistance, Junction-to-Ambient (Note 1) 81 Note 1: R θJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low R DS(on) , while its lateral device structure and majority carrier diode provide exceptionally low Q G and zero Q RR . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Gallium Nitride (GaN) ICs and Semiconductors – EPC - EPC2214 – … · 2020. 5. 19. · EPC2214 – Automotive 80 V (D-S) Enhancement Mode Power Transistor. V. DS, 80 V R. DS(on),

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Gallium Nitride (GaN) ICs and Semiconductors – EPC - EPC2214 – … · 2020. 5. 19. · EPC2214 – Automotive 80 V (D-S) Enhancement Mode Power Transistor. V. DS, 80 V R. DS(on),

eGaN® FET DATASHEET EPC2214

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 1

EPC2214 – Automotive 80 V (D-S) Enhancement Mode Power TransistorVDS , 80 VRDS(on) , 20 mΩID , 10 A, AEC-Q101

EPC2214 eGaN® FETs are supplied only inpassivated die form with solder bumps Die Size: 1.35 mm x 1.35 mm

Applications• Lidar/Pulsed Power Applications• DC-DC Conversion• Wireless Power Transfer

Benefits• Ultra High Efficiency• Ultra Low RDS(on)

• Ultra Low QG

• Ultra Small Footprint

EFFICIENT POWER CONVERSION

HAL

G

D

S

Maximum Ratings

PARAMETER VALUE UNITVDS Drain-to-Source Voltage (Continuous) 80 V

ID

Continuous (TA = 25°C) 10A

Pulsed (25°C, TPULSE = 300 µs) 47

VGS

Gate-to-Source Voltage 6V

Gate-to-Source Voltage -4

TJ Operating Temperature –40 to 150°C

TSTG Storage Temperature –40 to 150

Static Characteristics (TJ= 25°C unless otherwise stated)PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

BVDSS Drain-to-Source Voltage VGS = 0 V, ID = 0.2 mA 80 V

IDSS Drain-Source Leakage VDS = 64 V, VGS = 0 V, TJ = 25°C 0.003 0.15 mA

IGSS

Gate-to-Source Forward Leakage VGS = 5 V, TJ = 25°C 0.003 1.1 mA

Gate-to-Source Forward Leakage# VGS = 5 V, TJ = 125°C 0.01 2.5 mA

Gate-to-Source Reverse Leakage VGS = -4 V, TJ = 25°C 0.003 0.15 mA

VGS(TH) Gate Threshold Voltage VDS = VGS, ID = 2 mA 0.8 1.4 2.5 V

RDS(on) Drain-Source On Resistance VGS = 5 V, ID = 6 A 15 20 mΩ

VSD Source-Drain Forward Voltage IS = 0.5 A, VGS = 0 V 1.9 V# Defined by design. Not subject to production test.

Thermal Characteristics

PARAMETER TYP UNIT

RθJC Thermal Resistance, Junction-to-Case 2.7

°C/WRθJB Thermal Resistance, Junction-to-Board 7.5

RθJA Thermal Resistance, Junction-to-Ambient (Note 1) 81

Note 1: RθJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details

Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low RDS(on), while its lateral device structure and majority carrier diode provide exceptionally low QG and zero QRR. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Page 2: Gallium Nitride (GaN) ICs and Semiconductors – EPC - EPC2214 – … · 2020. 5. 19. · EPC2214 – Automotive 80 V (D-S) Enhancement Mode Power Transistor. V. DS, 80 V R. DS(on),

eGaN® FET DATASHEET EPC2214

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 2

40

30

20

10

0 0 0.5 1.0 1.5 2.0 2.5 3.0

I D –

Drai

n Cu

rrent

(A)

VDS – Drain-to-Source Voltage (A)

Figure 1: Typical Output Characteristics at 25°C

VGS = 5 V

VGS = 4 V

VGS = 3 V

VGS = 2 V

R DS(o

n) –

Dra

in-to

-Sou

rce R

esist

ance

(mΩ

)

VGS – Gate-to-Source Voltage (V) 3.0 3.5 2.0 2.5 4.0 4.5 5.0

Figure 3: RDS(on) vs. VGS for Various Drain Currents

ID = 3 AID = 6 AID = 9 AID = 12 A

60

50

40

30

20

10

0

I D –

Drai

n Cu

rrent

(A)

1.00.5 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

25˚C125˚C

VDS = 3 V

VGS – Gate-to-Source Voltage (V)

Figure 2: Transfer Characteristics

25°C125°C

VDS = 3 V

40

30

20

10

0

60

50

40

30

20

10

0

Figure 4: RDS(on) vs. VGS for Various Temperatures

25°C125°C

ID = 6 A

R DS(

on) –

Dra

in-to

-Sou

rce R

esist

ance

(mΩ

)

VGS – Gate-to-Source Voltage (V) 3.0 3.5 2.0 2.5 4.0 4.5 5.0

Dynamic Characteristics (TJ= 25˚C unless otherwise stated)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

CISS Input Capacitance#

VDS = 40 V, VGS = 0 V

198 238

pF

CRSS Reverse Transfer Capacitance 1.8

COSS Output Capacitance# 129 194

COSS(ER) Effective Output Capacitance, Energy Related (Note 2)VDS = 0 to 40 V, VGS = 0 V

171

COSS(TR) Effective Output Capacitance, Time Related (Note 3) 211

RG Gate Resistance 0.65 Ω

QG Total Gate Charge# VDS = 40 V, VGS = 5 V, ID = 6 A 1.8 2.2

nC

QGS Gate to Source Charge

VDS = 40 V, ID = 6 A

0.5

QGD Gate to Drain Charge 0.3

QG(TH) Gate Charge at Threshold 0.4

QOSS Output Charge# VDS = 40 V, VGS = 0 V 8 12

QRR Source-Drain Recovery Charge 0

# Defined by design. Not subject to production test.Note 2: COSS(ER) is a fixed capacitance that gives the same stored energy as COSS while VDS is rising from 0 to 50% BVDSS. Note 3: COSS(TR) is a fixed capacitance that gives the same charging time as COSS while VDS is rising from 0 to 50% BVDSS.

Page 3: Gallium Nitride (GaN) ICs and Semiconductors – EPC - EPC2214 – … · 2020. 5. 19. · EPC2214 – Automotive 80 V (D-S) Enhancement Mode Power Transistor. V. DS, 80 V R. DS(on),

eGaN® FET DATASHEET EPC2214

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 3

Capa

citan

ce (p

F)

1000

100

10

10 20 40 60 80

Figure 5b: Capacitance (Log Scale)

VDS – Drain-to-Source Voltage (V)

COSS = CGD + CSD

CISS = CGD + CGS

CRSS = CGD

0.50 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

I SD –

Sour

ce-to

-Dra

in Cu

rrent

(A)

VSD – Source-to-Drain Voltage (V)

Figure 8: Reverse Drain-Source Characteristics

25°C

VGS = 0 V

125°C40

30

20

10

0

Capa

citan

ce (p

F)

0 20 40 60 80

Figure 5a: Capacitance (Linear Scale)

VDS – Drain-to-Source Voltage (V)

COSS = CGD + CSD

CISS = CGD + CGS

CRSS = CGD

350

300

250

200

150

100

50

0

0 0.5 1.0 1.5 2.0

Figure 7: Gate Charge

V GS –

Gat

e-to

-Sou

rce V

olta

ge (V

)

QG – Gate Charge (nC)

ID = 6 A

VDS = 40 V

5

4

3

2

1

00 20 40 60 8010 30 50 70

Figure 6: Output Charge and COSS Stored Energy

Q OSS

– Ou

tput

Char

ge (n

C)

E OSS

– C OS

S Sto

red E

nerg

y (μJ

)

VDS – Drain-to-Source Voltage (V)

14.0

11.2

8.4

5.8

2.8

0

0.45

0.36

0.27

0.18

0.09

0.00

Figure 9: Normalized On-State Resistance vs. Temperature

ID = 6 A

VGS = 5 V

Norm

alize

d On

-Sta

te R

esist

ance

RDS

(on)

2.0

1.8

1.6

1.4

1.2

1.0

0.80 25 50 75 100 125 150

TJ – Junction Temperature (°C)

All measurements were done with substrate shortened to source.

Page 4: Gallium Nitride (GaN) ICs and Semiconductors – EPC - EPC2214 – … · 2020. 5. 19. · EPC2214 – Automotive 80 V (D-S) Enhancement Mode Power Transistor. V. DS, 80 V R. DS(on),

eGaN® FET DATASHEET EPC2214

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 4

Figure 11: Transient Thermal Response Curves

tp, Rectangular Pulse Duration, seconds

Z θJB

, Nor

mal

ized T

herm

al Im

peda

nce

0.5

0.050.02

Single Pulse0.01

0.20.1

Duty Cycle:

10-5 10-4 10-3 10-2 10-1 1 101

1

0.1

0.01

0.001

Notes:Duty Factor: D = t1/t2

Peak TJ = PDM x ZθJB x RθJB + TB

PDM

t1

t2

Junction-to-Board

tp, Rectangular Pulse Duration, seconds

Z θJC

, Nor

mal

ized T

herm

al Im

peda

nce

0.5

0.1

0.02

0.05

Single Pulse

0.01

0.2

Duty Cycle:

Junction-to-Case

Notes:Duty Factor: D = t1/t2

Peak TJ = PDM x ZθJC x RθJC + TC

PDM

t1

t2

10-6 10-5 10-4 10-3 10-2 10-1 1

1

0.1

0.01

0.001

Figure 10: Normalized Threshold Voltage vs. Temperature

Norm

alize

d Th

resh

old

Volta

ge

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.60 25 50 75 100 125 150

TJ – Junction Temperature (°C)

ID = 2 mA

Page 5: Gallium Nitride (GaN) ICs and Semiconductors – EPC - EPC2214 – … · 2020. 5. 19. · EPC2214 – Automotive 80 V (D-S) Enhancement Mode Power Transistor. V. DS, 80 V R. DS(on),

eGaN® FET DATASHEET EPC2214

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 5

2214YYYYZZZZ EPC2214 2214 YYYY ZZZZ

Die orientation dot

Gate Pad bump is under this corner

Part #Marking Line 1

Lot_Date CodeMarking Line 2

Lot_Date CodeMarking Line 3

PartNumber

Laser Markings

DIE MARKINGS

YYYYZZZZ

TAPE AND REEL CONFIGURATION4 mm pitch, 8 mm wide tape on 7” reel

7” reel

a

d e f g

c

b

Dimension (mm) target min max a 8.00 7.90 8.30 b 1.75 1.65 1.85

c (note 2) 3.50 3.45 3.55 d 4.00 3.90 4.10 e 4.00 3.90 4.10

f (note 2) 2.00 1.95 2.05 g 1.5 1.5 1.6

Note 1: MSL 1 (moisture sensitivity level 1) classi�ed according to IPC/JEDEC industry standard.Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

Dieorientationdot

Gatesolder bump isunder thiscorner

Die is placed into pocketsolder bump side down(face side down)

Loaded Tape Feed Direction

Figure 12: Safe Operating Area 100

10

1

0.1 0.1 1 10 100

I D – D

rain

Curre

nt (A

)

VDS – Drain-Source Voltage (V)TJ = Max Rated, TC = +25°C, Single Pulse

Limited by RDS(on)

Pulse Width 1 ms

100 µs10 µs

EPC2214 (note 1)

2214

Page 6: Gallium Nitride (GaN) ICs and Semiconductors – EPC - EPC2214 – … · 2020. 5. 19. · EPC2214 – Automotive 80 V (D-S) Enhancement Mode Power Transistor. V. DS, 80 V R. DS(on),

eGaN® FET DATASHEET EPC2214

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2020 | | 6

Information subject to change without notice.

Revised May, 2020

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN® is a registered trademark of Efficient Power Conversion Corporation.EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

RECOMMENDEDLAND PATTERN (measurements in µm)

The land pattern is solder mask definedSolder mask is 10 μm smaller per side than bump

DIE OUTLINEPad View

Side View

DIM

Micrometers

MIN Nominal MAX

A 1320 1350 1380B 1320 1350 1380

c 450

d 225

DIM Micrometers

A 1350B 1350c 450

d1 205

DIM Micrometers

A 1350B 1350c 450

d1 225

d c c

d1

d1

dc

c

3 9

2 8

1 7

6

5

4

A

B

RECOMMENDEDSTENCIL DRAWING (measurements in µm)

Recommended stencil should be 4 mil (100 µm) thick, must be laser cut, openings per drawing.The corner has a radius of R60.Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Additional assembly resources available at https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

d c c

d1

d1

dc

c

3 9

2 8

1 7

6

5

4

A

BB

A

d c c

d

dc

c

805

685 +

/−15

120 +

/ −12

Seating Plane

3 9

2 8

1 7

6

5

4

Pad 1 is Gate;Pads 4, 5, 6, 7 are Drain;Pads 2, 3, 8, 9 are Source.

Pad 1 is Gate;Pads 4, 5, 6, 7 are Drain;Pads 2, 3, 8, 9 are Source.