Fuzzy Relational Equations

Embed Size (px)

Citation preview

  • 7/30/2019 Fuzzy Relational Equations

    1/7

    A F U Z Z Y R E L A T I O N A L E Q U A T I O N

    I N

    D Y N A M I C F U Z Z Y S Y S T E M S

    M . K U R A N O ( C h i b a U n i v e r s i t y ) , M . Y A S U D A ( C h i b a U n i v e r s i t y ) ,

    J . N A K A G A M I ( C h i b a U n i v e r s i t y ) & Y . Y O S H I D A ( K i t a k y u s h u U n i v e r s i t y )

    A b s t r a c t : F o r a d y n a m i c f u z z y s y s t e m , t h e f u n d a m e n t a l m e t h o d i s t o a n a l y z e i t s r e c u r s i v e r e l a t i o n

    o f t h e f u z z y s t a t e s . I t i s s i m i l a r t h a t t h e B e l l m a n e q u a t i o n i s t h e i m p o r t a n t t o o l i n t h e d y n a m i c

    p r o g r a m m i n g . H e r e w e w i l l c o n s i d e r t h e e x i s t e n c e a n d t h e u n i q u e n e s s o f s o l u t i o n o f a f u z z y r e l a t i o n a l

    e q u a t i o n . T w o e x a m p l e s , w h i c h s a t i s e s o u r c o n d i t i o n s , a r e g i v e n t o i l l u s t r a t e t h e r e s u l t s .

    1 I n t r o d u c t i o n a n d n o t a t i o n s

    W e u s e t h e n o t a t i o n s i n 4 ] . L e t X b e a c o m p a c t m e t r i c s p a c e . W e d e n o t e b y 2

    X

    t h e c o l l e c t i o n o f a l l

    s u b s e t s o f X , a n d d e n o t e b y C ( X ) t h e c o l l e c t i o n o f a l l c l o s e d s u b s e t s o f X . L e t b e t h e H a u s d o r m e t r i c

    o n 2

    X

    . T h e n i t i s w e l l - k n o w n ( 3 ] ) t h a t ( C ( X ) ) i s a c o m p a c t m e t r i c s p a c e . L e t F ( X ) b e t h e s e t o f a l l

    f u z z y s e t s ~s X ! 0 1 ] w h i c h a r e u p p e r s e m i - c o n t i n u o u s a n d s a t i s f y s u p

    x 2 X

    ~s ( x ) = 1 . L e t ~q X X !

    0 1 ] b e a c o n t i n u o u s f u z z y r e l a t i o n o n X

    I n t h i s p a p e r , w e c o n s i d e r t h e e x i s t e n c e a n d u n i q u e n e s s o f s o l u t i o n ~p 2 F ( X ) i n t h e f o l l o w i n g f u z z y

    r e l a t i o n a l e q u a t i o n ( 1 . 1 ) f o r a g i v e n c o n t i n u o u s f u z z y r e l a t i o n ~q o n X ( s e e 4 ] ) :

    ~p ( y ) = s u p

    x 2 X

    f ~p ( x ) ~q ( x y ) g y 2 X ( 1 . 1 )

    w h e r e a b : = m i n f a b g f o r r e a l n u m b e r s a a n d b . W e d e n e a m a p ~q

    2

    X

    ! 2

    X

    ( 2 0 1 ] ) b y

    ~q

    ( D ) =

    8

    0 f o r s o m e x 2 D g f o r = 0 D 2 2

    X

    D 6= ;

    X f o r 0 1 D = ;

    ( 1 . 2 )

    w h e r e c l d e n o t e s t h e c l o s u r e o f a s e t . E s p e c i a l l y , w e p u t ~q

    ( x ) : = ~q

    ( f x g ) f o r x 2 X . W e n o t e t h a t ~q

    C ( X ) ! C ( X )

    L e m m a 1 . 1 ( 4 , L e m m a 2 ] ) . F o r e a c h 2 0 1 , t h e m a p ~q

    C ( X ) ! C ( X ) i s c o n t i n u o u s w i t h r e s p e c t

    t o

    F o r ~s 2 F ( X ) , t h e - c u t ~s

    2 0 1 ] i s d e n e d b y

    ~s

    = f x 2 X ~s ( x ) g ( 6= 0 ) a n d ~s

    0

    : = c l f x 2 X ~s ( x ) > 0 g

    L e m m a 1 . 2 .

    ( i ) F o r ~s 2 F ( X ) ~s s a t i s e s ( 1 . 1 ) i f a n d o n l y i f

    ~q

    ( ~s

    ) = ~s

    2 0 1 ( 1 . 3 )

    ( i i ) W e s u p p o s e t h a t a f a m i l y o f s u b s e t s f D

    2 0 1 g ( C ( X ) ) s a t i s e s t h e f o l l o w i n g c o n d i t i o n s ( a )

    ( b ) a n d ( c ) :

    1

  • 7/30/2019 Fuzzy Relational Equations

    2/7

    ( a ) D

    D

    f o r 0 < 1 ;

    ( b ) l i m

    "

    D

    = D

    f o r 6= 0 ;

    ( c ) ~q

    ( D

    ) = D

    f o r 2 0 1

    T h e n ~s ( x ) : = s u p

    2 0 1

    f 1

    D

    ( x ) g x 2 X , s a t i s e s ~s 2 F ( X ) a n d ( 1 . 1 ) , w h e r e 1

    D

    d e n o t e s t h e

    c h a r a c t e r i s t i c f u n c t i o n o f a s e t D 2 2

    X

    P r o o f . ( i ) i s t r i v i a l . ( i i ) i s f r o m ( i ) a n d 4 , L e m m a 3 ] . 2

    2 T h e e x i s t e n c e o f s o l u t i o n s

    F o r 2 0 1 ] a n d x 2 X , a s e q u e n c e f ~q

    k

    ( x ) g

    k = 1 2

    i s d e n e d i t e r a t i v e l y b y

    ~q

    0

    ( x ) = f x g ~q

    1

    ( x ) : = ~q

    ( x ) a n d ~q

    k + 1

    ( x ) : = ~q

    ( ~q

    k

    ( x ) ) f o r k = 1 2

    T h e n , l e t G

    ( x ) =

    S

    1

    k = 1

    ~q

    k

    ( x ) a n d

    F

    ( x ) =

    1

    k = 0

    ~q

    k

    ( x ) = f x g G

    ( x ) ( 2 . 1 )

    W e n o w c o n s i d e r a c l a s s o f i n v a r i a n t p o i n t s f o r t h i s i t e r a t i o n p r o c e d u r e , t h a t i s , x 2 G

    ( x ) . S o p u t

    R

    = f x 2 X x 2 G

    ( x ) g f o r 2 0 1 ( 2 . 2 )

    E a c h s t a t e o f R

    i s c a l l e d a s a n \ - r e c u r r e n t " s t a t e a n d i t i s s t u d i e d b y 7 ] . T h e f o l l o w i n g p r o p e r t i e s ( i )

    a n d ( i i ) h o l d c l e a r l y :

    ( i ) ~q

    ( F

    ( x ) ) = G

    ( x ) f o r 2 0 1 ] a n d x 2 X

    ( i i ) R

    R

    f o r 0 < 1

    L e m m a 2 . 1 . I f z 2 R

    1

    , t h e f o l l o w i n g ( i ) a n d ( i i ) h o l d :

    ( i ) ~q

    ( F

    ( z ) ) = F

    ( z ) f o r 2 0 1 ;

    ( i i ) F

    ( z ) F

    ( z ) f o r 0 < 1

    P r o o f . S i n c e z 2 R

    1

    R

    , w e h a v e

    ~q

    ( F

    ( z ) ) = G

    ( z ) = F

    ( z )

    S o , w e o b t a i n ( i ) . ( i i ) i s t r i v i a l . 2

    F o r z 2 R

    1

    , w e d e n e

    ^

    F

    ( z ) =

    \

    <

    c l f F

    ( z ) g ( 6= 0 ) a n d

    ^

    F

    0

    ( z ) : = c l f F

    0

    ( z ) g ( 2 . 3 )

    w h e r e c l f F

    ( z ) g d e n o t e s t h e c l o s u r e o f F

    ( z )

    L e m m a 2 . 2 . I f z 2 R

    1

    , t h e f o l l o w i n g ( i ) ( i i ) a n d ( i i i ) h o l d :

    ( i ) ~q

    (

    ^

    F

    ( z ) ) =

    ^

    F

    ( z ) f o r 2 0 1 ;

    ( i i )

    ^

    F

    ( z )

    ^

    F

    ( z ) f o r 0 < 1 ;

    ( i i i )

    ^

    F

    ( z ) = l i m

    "

    ^

    F

    ( z ) f o r 6= 0

    2

  • 7/30/2019 Fuzzy Relational Equations

    3/7

    P r o o f . ( i i ) i s t r i v i a l f r o m L e m m a 2 . 1 a n d ( i i i ) i s a l s o t r i v i a l f r o m t h e d e n i t i o n . T o p r o v e ( i ) , l e t =

    0 . F r o m L e m m a 2 . 1 ( i ) , w e h a v e ~q

    0

    ( F

    0

    ( z ) ) = F

    0

    ( z ) . B y t h e c o n t i n u i t y o f ~q , w e c a n c h e c k ~q

    0

    ( c l f F

    0

    ( z ) g ) =

    c l f F

    0

    ( z ) g i n a s i m i l a r w a y t o t h e p r o o f o f 4 , L e m m a 1 ] . T h e r e f o r e , ~q

    0

    (

    ^

    F

    ( z ) ) =

    ^

    F

    0

    ( z ) . L e t > 0 a n d y 2

    ~q

    (

    ^

    F

    ( z ) ) . B y L e m m a 1 . 1 , w e h a v e

    y 2

    \

    <

    ~q

    ( c l f F

    ( z ) g ) =

    1

    \

    n = 1

    ~q

    ( c l f F

    ( 1 = n ) _ 0

    ( z ) g )

    F r o m t h e c o n t i n u i t y o f ~q , f o r n 1 , t h e r e e x i s t s x

    n

    2 F

    ( 1 = n ) _ 0

    ( z ) s u c h t h a t ~q ( x

    n

    y ) ? 1 = n B y

    L e m m a 2 . 1 ( i ) ,

    y 2 ~q

    ( 1 = n ) _ 0

    ( F

    ( 1 = n ) _ 0

    ( z ) ) = F

    ( 1 = n ) _ 0

    ( z ) c l f F

    ( 1 = n ) _ 0

    ( z ) g

    f o r a l l n 1 . S o , y 2

    ^

    F

    ( z ) . T h e r e f o r e , w e o b t a i n

    ~q

    (

    ^

    F

    ( z ) )

    ^

    F

    ( z )

    W h i l e , f r o m L e m m a 2 . 1 ( i ) , w e h a v e

    c l f F

    ( z ) g ~q

    ( c l f F

    ( z ) g )

    f o r < < . T h e n

    ^

    F

    ( z ) =

    \

    <

    c l f F

    ( z ) g

    \

    <

    ~q

    ( c l f F

    ( z ) g ) = ~q

    ( c l f F

    ( z ) g )

    f o r < . S o , w e g e t

    ^

    F

    ( z )

    \

    <

    ~q

    ( c l f F

    ( z ) g ) = ~q

    \

    <

    c l f F

    ( z ) g

    !

    = ~q

    (

    ^

    F

    ( z ) )

    T h e r e f o r e , w e c a n o b t a i n ( i ) . 2

    L e t z 2 R

    1

    . S i n c e f

    ^

    F

    ( z ) 2 0 1 g s a t i s e s t h e c o n d i t i o n s ( a ) { ( c ) o f L e m m a 1 . 2 ( i i ) , w e o b t a i n t h e

    f o l l o w i n g t h e o r e m .

    T h e o r e m 2 . 1 .

    ( i ) I f R

    1

    6= ; , t h e n t h e r e e x i s t s a s o l u t i o n o f ( 1 1 )

    ( i i ) L e t z 2 R

    1

    . D e n e a f u z z y s t a t e

    ~s

    z

    ( x ) : = s u p

    2 0 1

    n

    1

    ^

    F

    ( z )

    ( x )

    o

    x 2 X ( 2 . 4 )

    T h e n ~s

    z

    2 F ( X ) s a t i s e s ( 1 1 )

    A s s u m e t h a t R

    1

    6= ; . W e i n t r o d u c e a n e q u i v a l e n t r e l a t i o n o n R

    a s f o l l o w s : F o r z

    1

    z

    2

    2 R

    z

    1

    z

    2

    m e a n s t h a t z

    1

    2 F

    ( z

    2

    ) a n d z

    2

    2 F

    ( z

    1

    )

    T h e n w e c o u l d i d e n t i f y t h e s t a t e s o f R

    w h i c h i s e q u i v a l e n t w i t h r e s p e c t t o , a n d s o p u t

    R

    = R

    =

    L e m m a 2 . 3 . F o r z

    1

    z

    2

    2 R

    1

    z

    1

    z

    2

    i f a n d o n l y i f F

    ( z

    1

    ) = F

    ( z

    2

    ) f o r a l l 2 0 1

    3

  • 7/30/2019 Fuzzy Relational Equations

    4/7

    P r o o f . L e t z

    1

    z

    2

    . T h e n , w e h a v e z

    1

    2 F

    1

    ( z

    2

    ) F

    ( z

    2

    ) f o r a n y 2 0 1 ] . F r o m t h e d e n i t i o n ( 2 . 1 ) o f

    F

    ( z

    1

    ) , w e o b t a i n F

    ( z

    1

    ) F

    ( z

    2

    ) S i n c e w e h a v e F

    ( z

    2

    ) F

    ( z

    1

    ) s i m i l a r l y , F

    ( z

    1

    ) = F

    ( z

    2

    ) h o l d s . T h e

    r e v e r s e p r o o f i s t r i v i a l . 2

    F r o m T h e o r e m 2 . 1 a n d L e m m a 2 . 3 , t h e n u m b e r o f s o l u t i o n s o f ( 1 . 1 ) i s g r e a t e r t h a n o r e q u a l s t o t h e n u m -

    b e r o f \ 1 - r e c u r r e n t " s e t s . T o c o n s i d e r t h e c l a s s o f s o l u t i o n ( 1 . 1 ) , l e t P = f ~p 2 F ( X ) ~p i s a s o l u t i o n o f ( 1 . 1 ) g

    T h e n P h a s t h e f o l l o w i n g p r o p e r t y :

    T h e o r e m 2 . 2 . L e t ~p

    k

    2 P ( k = 1 2 l ) . T h e n :

    ( i ) P u t

    ~p ( x ) : = m a x

    k = 1 2

    ~p

    k

    ( x ) f o r x 2 X

    T h e n ~p 2 P

    ( i i ) L e t f

    k

    2 0 1 k = 1 2 l g s a t i s f y m a x

    k = 1 2

    k

    = 1 . P u t

    ~p ( x ) : = m a x

    k = 1 2

    f

    k

    ~p

    k

    ( x ) g f o r x 2 X

    T h e n ~p 2 P

    P r o o f . ( i i ) T a k i n g t h e - c u t o f ~p 2 F ( X ) , w e h a v e

    ~p

    =

    k

    k

    ~p

    k

    T h e n ,

    ~q

    ( ~p

    ) = ~q

    0

    @

    k

    k

    ~p

    k

    1

    A

    =

    k

    k

    ~q

    ( ~p

    k

    ) =

    k

    k

    ~p

    k

    = ~p

    T h e r e f o r e , w e o b t a i n ( i i ) f r o m L e m m a 1 . 2 ( i ) . ( i ) i s p r o v e d s i m i l a r l y . 2

    3 T h e u n i q u e n e s s o f s o l u t i o n s

    I n t h i s s e c t i o n , w e d i s c u s s t h e u n i q u e n e s s o f s o l u t i o n s o f t h e e q u a t i o n ( 1 . 1 ) u n d e r c o n v e x i t y a n d c o m p a c t n e s s .

    L e t B b e a c o n v e x s u b s e t o f a n n - d i m e n s i o n a l E u c l i d e a n s p a c e R

    n

    a n d C

    c

    ( B ) t h e c l a s s o f a l l c l o s e d a n d

    c o n v e x s u b s e t s o f B . T h r o u g h o u t t h i s s e c t i o n , w e a s s u m e t h a t t h e s t a t e s p a c e X i s a c o n v e x a n d c o m p a c t

    s u b s e t o f R

    n

    . T h e f u z z y s e t ~s 2 F ( X ) i s c a l l e d c o n v e x i f i t s - c u t ~s

    i s c o n v e x f o r e a c h 2 0 1 ] . L e t

    F

    c

    ( X ) = f ~s 2 F ~s i s c o n v e x g

    B y a p p l y i n g K a k u t a n i ' s x e d p o i n t t h e o r e m ( 2 ] ) , w e h a v e t h e f o l l o w i n g .

    L e m m a 3 . 1 . L e t 2 0 1 a n d ~q

    ( x ) i s c o n v e x f o r e a c h x 2 X . T h e n , f o r a n y A 2 C

    c

    ( X ) w i t h A =

    ~q

    ( A ) , t h e r e e x i s t s a n x 2 X s u c h t h a t ~q ( x x )

    P r o o f . T h e m a p ~q

    A ! C

    c

    ( A ) w i t h ~q

    ( x ) 2 C

    c

    ( A ) f o r a l l x 2 A i s c o n t i n u o u s f r o m L e m m a 1 . 1 , s o

    K a k u t a n i ' s x e d p o i n t t h e o r e m g u a r a n t e e s t h e e x i s t e n c e o f a n e l e m e n t x 2 A s u c h t h a t x 2 ~q

    ( x ) , w h i c h

    i m p l i e s ~q ( x x ) . T h i s c o m p l e t e s t h e p r o o f . 2

    W e a s s u m e t h a t ~q

    ( x ) i s c o n v e x f o r e a c h x 2 X . A s a c o n s e q u e n c e , w e h a v e a p r o p e r t y o f t h e s o l u t i o n s

    o f ( 1 . 1 ) .

    P r o p o s i t i o n 3 . 1 . L e t p 2 F

    c

    ( X ) b e a s o l u t i o n o f ( 1 . 1 ) . T h e n , f o r e a c h 2 0 1 , t h e r e e x i s t s a n x 2 p

    w i t h ~q ( x x )

    P r o o f . B y L e m m a 1 . 2 , ~p

    = ~q

    ( ~p

    ) f o r e a c h 2 0 1 ] . T h u s , L e m m a 3 . 1 c l e a r l y p r o v e s t h e d e s i r e d r e s u l t .

    2

    N o w , w e g i v e s u c i e n t c o n d i t i o n s f o r t h e u n i q u e n e s s o f s o l u t i o n s o f ( 1 . 1 ) . L e t U

    = f x 2 X ~q ( x x )

    g f o r 2 0 1

    A s s u m p t i o n A . T h e f o l l o w i n g A 1 { A 3 h o l d .

    4

  • 7/30/2019 Fuzzy Relational Equations

    5/7

    A 1 . T h e s e t U

    1

    i s a o n e - p o i n t s e t , s a y u . T h a t i s , U

    1

    = f u g

    A 2 U

    F

    ( u ) f o r e a c h 2 0 1 ] , w h e r e u i s g i v e n b y A 1 a n d F

    ( u ) i s d e n e d b y ( 2 . 1 ) .

    A 3 . L e t 2 0 1 ] a n d A 2 C

    c

    ( X ) . I f A = ~q

    ( A ) , t h e n

    A =

    x 2 U

    \ A

    F

    ( x )

    T h e o r e m 3 . 1 . U n d e r A s s u m p t i o n A , t h e e q u a t i o n ( 1 . 1 ) h a s a u n i q u e s o l u t i o n i n F

    c

    ( X )

    P r o o f . L e t ~p ~p 2 F

    c

    ( X ) b e s o l u t i o n s o f ( 1 . 1 ) . B y L e m m a 3 . 1 , ~p

    1

    \ U

    1

    6= a n d ~p

    1

    \ U

    1

    6= . S i n c e U

    1

    i s a

    o n e - p o i n t s e t , u 2 ~p

    1

    a n d u 2 ~p

    1

    . T h u s , b y A 3 , ~p

    1

    = F

    1

    ( u ) a n d ~p

    1

    = F

    1

    ( u ) , w h i c h i m p l i e s ~p

    1

    = ~p

    1

    W e

    n o w s h o w t h a t ~p

    =

    ^

    F

    ( u ) f o r 0 < 1 . S i n c e u 2 ~p

    = ~q

    ( ~p

    ) , i t h o l d s t h a t F

    ( u ) ~p

    . T h e r e f o r e ,

    s i n c e ~p

    i s c l o s e d ,

    ^

    F

    ( u ) =

    <

    c l f F

    ( u ) g

    <

    ~p

    ( u ) = ~p

    O n t h e o t h e r h a n d , w e h a v e

    ~p

    S

    x 2 U

    \ ~p

    c l f F

    ( x ) g ( f r o m A 3 )

    S

    x 2 F

    ( u ) \ ~p

    c l f F

    ( x ) g ( f r o m A 2 )

    S

    x 2

    ^

    F

    ( u )

    c l f F

    ( x ) g

    F r o m t h a t x 2

    ^

    F

    ( u ) m e a n s

    ^

    F

    ( x )

    ^

    F

    ( u ) , i t h o l d s t h a t

    ~p

    c l f F

    ( u ) g

    ^

    F

    ( u )

    T h e a b o v e s h o w s ~p

    =

    ^

    F ( u ) . S i m i l a r l y ~p

    =

    ^

    F

    ( u ) . T h u s , ~p

    = ~p

    . T h i s c o m p l e t e s t h e p r o o f . 2

    4 N u m e r i c a l e x a m p l e s

    H e r e t w o n u m e r i c a l e x a m p l e s o f S e c t i o n 2 a n d 3 a r e g i v e n t o c o m p r e h e n d c o m p u t a t i o n a l a s p e c t o f t h i s

    p a p e r .

    E x a m p l e 1 . L e t X = 0 1 ] . F o r a n y g 0 1 ! 0 1 ] , l e t

    ~q ( x y ) : = ( 1 ? y ? g ( x ) ) _ 0 ; x ; y 2 0 1

    W e a s s u m e t h a t g ( ) i s s t r i c t l y i n c r e a s i n g a n d c o n t i n u o u s a n d t h a t t h e r e e x i s t s a u n i q u e x

    0

    2 0 1 ] w i t h

    x

    0

    = g ( x

    0

    ) . U n d e r t h e a b o v e c o n d i t i o n , R

    1

    = f x

    0

    g a n d f o r e a c h 2 0 1 )

    U

    = x

    x

    ( 4 . 1 )

    w h e n x

    x

    i s a u n i q u e s o l u t i o n o f x = g ( x ) ? ( 1 ? ) x = g ( x ) + ( 1 ? ) r e s p e c t i v e l y a n d x

    = 0 x

    = 1

    i f t h e s o l u t i o n d o e s n o t e x i s t i n 0 , 1 ] .

    C l e a r l y , U

    i s a u n i q u e s o l u t i o n o f t h e e q u a t i o n A = ~p

    ( A ) i n C

    c

    ( 0 1 ] ) , s o t h a t A s s u m p t i o n A i n S e c t i o n

    3 h o l d s i n t h i s c a s e . T h u s , b y T h e o r e m 3 . 1 ,

    ~s ( x ) = s u p

    2 0 1

    f I

    U

    ( x ) g ( 4 . 2 )

    i s a u n i q u e c o n v e x s o l u t i o n o f ( 1 . 1 ) . F o r a c o n c r e t e e x a m p l e s u c h a s g ( x ) = ( 2 x

    2

    + 1 ) = 4 , t h e n i t i s s e e n t h a t

    R

    1

    = f ( 2 ?

    p

    2 ) = 2 g a n d

    x

    =

    1 ?

    p

    5 = 2 ? 2

    _ 0

    x

    =

    1 3 = 4 <

    1 ?

    p

    2 ? 3 = 2 3 = 4 1

    5

  • 7/30/2019 Fuzzy Relational Equations

    6/7

    B y ( 4 . 1 ) a n d ( 4 . 2 ) , t h e u n i q u e s o l u t i o n i s a s f o l l o w s ( F i g . 1 ) :

    ~s ( x ) =

    ? x

    2

    = 2 + x + 3 = 4 0 x 1 ?

    p

    2 = 2

    x

    2

    = 2 ? x + 5 = 4 1 ?

    p

    2 = 2 < x 1

    F i g . 1 T h e u n i q u e s o l u t i o n ~s

    E x a m p l e 2 . T h i s e x a m p l e h a s t w o p e a k s f o r t h e f u z z y r e l a t i o n . L e t X = 0 1 ] a n d

    ~q ( x y ) = ( 1 ? y ? ( x

    2

    + 1 ) = 4 ) _ ( 1 ? y ? ( x

    2

    + 2 ) = 4 )

    f o r x y 2 0 1 ] . T h e n , R

    1

    = f a b g , w h e r e a = 2 ?

    p

    3 b = 2 ?

    p

    2 . B y s i m p l e c a l c u l a t i o n , w e g e t

    ^

    F

    ( a ) = x

    a

    x

    a

    ] a n d

    ^

    F

    ( b ) = x

    b

    x

    b

    f o r 2 0 1 ] , w h e r e

    x

    a

    =

    0 0 3 = 4

    2 ?

    p

    7 ? 4 3 = 4 < 1

    x

    a

    =

    1 0 7 = 8

    2 ?

    p

    4 ? 1 7 = 8 < 1

    x

    b

    =

    0 0 7 = 8

    2 ?

    p

    6 ? 4 7 = 8 < 1

    x

    b

    =

    1 0 3 = 4

    2 ?

    p

    4 ? 2 3 = 4 < 1

    B y T h e o r e m 2 . 1 , t h e s o l u t i o n s o f ( 1 . 1 ) a r e g i v e n a s f o l l o w s ( F i g . 2 ) :

    ~s

    a

    ( x ) =

    8

  • 7/30/2019 Fuzzy Relational Equations

    7/7

    F i g . 2 T h e u n i q u e s o l u t i o n s ~s

    a

    a n d ~s

    b

    R e f e r e n c e s

    1 ] R . E . B e l l m a n a n d L . A . Z a d e h , D e c i s i o n - m a k i n g i n a f u z z y e n v i r o n m e n t , M a n a g e m e n t S c i . S e r B . 1 7

    ( 1 9 7 0 ) 1 4 1 - 1 6 4 .

    2 ] N . D u n f o r d a n d J . T . S c h w a r t z , L i n e a r O p e r a t o r s , P a r t 1 : G e n e r a l T h e o r y ( I n t e r s c i e n c e P u b l i s h e r s ,

    N e w Y o r k , 1 9 5 8 ) .

    3 ] K . K u r a t o w s k i , T o p o l o g y I ( A c a d e m i c P r e s s , N e w Y o r k , 1 9 6 6 ) .

    4 ] M . K u r a n o , M . Y a s u d a , J . N a k a g a m i a n d Y . Y o s h i d a , A l i m i t t h e o r e m i n s o m e d y n a m i c f u z z y s y s t e m s ,

    F u z z y S e t s a n d S y s t e m s 5 1 ( 1 9 9 2 ) 8 3 - 8 8 .

    5 ] V . N o v a k F u z z y S e t s a n d T h e i r A p p l i c a t i o n s ( A d a m H i l d e r , B r i s t o l - B o s t o n , 1 9 8 9 ) .

    6 ] Y . Y o s h i d a , M . Y a s u d a , J . N a k a g a m i a n d M . K u r a n o , A l i m i t t h e o r e m i n s o m e d y n a m i c f u z z y s y s t e m s

    w i t h a m o n o t o n e p r o p e r t y , t o a p p e a r i n F u z z y S e t s a n d S y s t e m s

    7 ] Y . Y o s h i d a , T h e r e c u r r e n c e o f d y n a m i c f u z z y s y s t e m s , t o a p p e a r i n F u z z y S e t s a n d S y s t e m s

    7