29
Future Exclusive Measurements at HERMES Ralf Kaiser, University of Glasgow on behalf of the HERMES Collaboration The Recoil Detector Upgrade Data Taking in 2006/7 Projections for Exclusive Measurements – p.1/26

Future Exclusive Measurements at HERMES › conference › qcdn06 › TALKS › Thursday 15 › Kaiser.pdfRecoil Detector Event END VIEW LOOKING DOWNSTREAM y x Pd SciFi Si Target Event

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Future Exclusive Measurements at HERMES

    Ralf Kaiser, University of Glasgowon behalf of the HERMES Collaboration

    The Recoil Detector Upgrade

    Data Taking in 2006/7

    Projections for Exclusive Measurements

    – p.1/26

  • HERMES Physics

    Development from inclusive over semi-inclusive toexclusive measurements over decade 1995 - 2005.

    Physics emphasis moved from polarised structurefunctions to quark helicities and transversity to GPDs.

    Upgrades/changes to the experimental apparatus:RICH detector for semi-inclusive measurements,transverse target for transversity

    The final step is the recoil detector upgrade forexclusive measurements, the focus of the final yearof HERMES data taking.

    Recent exclusive HERMES results:C.Hadjidakis (overview), A.Rostomyan, Z.Ye.

    R.Kaiser - HERMES Future – p.2/26

  • HERMES with Recoil Detector

    RecoilProton

    1

    0

    2

    −1

    −2

    m

    LUMINOSITY

    CHAMBERSDRIFT

    FC 1/2

    DVC

    MC 1−3MONITOR

    BC 1/2

    BC 3/4

    PROP.CHAMBERS

    FIELD CLAMPS

    PRESHOWER (H2)

    CALORIMETER

    DRIFT CHAMBERS

    TRIGGER HODOSCOPE H1

    0 1 2 3 4 5 6 7 8 9

    MAGNET

    STEEL PLATE

    TARGETCELL

    HODOSCOPE H0

    27.5 GeV

    e+

    m

    TRD

    e

    γ

    RICH

    ▽R.Kaiser - HERMES Future – p.3/26

  • HERMES with Recoil Detector

    RecoilProton

    −1

    −2

    1

    0

    2

    RICH

    e

    γ

    m

    LUMINOSITY

    CHAMBERSDRIFT

    FC 1/2

    DVC

    MC 1−3MONITOR

    BC 1/2

    BC 3/4

    PROP.CHAMBERS

    FIELD CLAMPS

    PRESHOWER (H2)

    CALORIMETER

    DRIFT CHAMBERS

    TRIGGER HODOSCOPE H1

    0 1 2 3 4 5 6 7 8 9

    MAGNET

    STEEL PLATE

    HODOSCOPE H0

    27.5 GeV

    e+

    m

    TRD

    DETECTORRECOIL

    R.Kaiser - HERMES Future – p.3/26

  • HERMES Recoil Detector - 3D CAD

    R.Kaiser - HERMES Future – p.4/26

  • Goals of the Recoil Detector

    Resonances

    DVCS+BHsemi-incl.

    Detection of all reaction products over theentire momentum range to guarantee theexclusivity of the reaction:

    Recoil protons

    Pions and protons from backgroundprocesses e.g. ∆+-production withbremsstrahlung

    Photons from π0 → γγ

    Sufficient t-resolution to allow binning in t.

    Si-detector: low t, SciFi detector: higher t

    Improved systematics due to removal ofbackground (see left).

    Improved statistics due to high densityunpolarised target.

    R.Kaiser - HERMES Future – p.5/26

  • Exclusivity

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0 20 40Mx2 [GeV

    2]

    rate Without Recoil Detector

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0 20 40Mx2 [GeV

    2]ra

    te

    MC totalBH/DVCSBH/DVCS with ∆exclusive π0

    semi-inclusive / VMs

    With Recoil Detectorand all Cuts

    Coplanarity cut, pion suppression, photon detection; efficiency ∼50%(MC simulation)

    Reduction of the non-exclusive background:

    semi-incl.: 5%→≪1%

    associated prod.: 11%→∼1%

    R.Kaiser - HERMES Future – p.6/26

  • Recoil Detector - Complete Setup

    R.Kaiser - HERMES Future – p.7/26

  • Recoil Detector EventEND VIEW LOOKING DOWNSTREAM

    y

    x

    Pd

    SciFi

    Si

    Target

    Event number:

    Input file:

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    END VIEW LOOKING DOWNSTREAMy

    x

    Pd

    SciFi

    Si

    Target

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    Pd

    SciFi

    Si

    Target

    y

    x

    Event number:

    Input file:

    SFT (SciFi) DETECTOR UNFOLDED

    [angle is measured w.r.t. y axis, clockwise; SFT shift O=-10.1721 / I=-20.0891 deg.]

    -20.0891 159.9109 339.9109

    -10.1721 169.8279 349.8279

    INNER SciFi

    OUTER SciFi

    SFI1 SFI2 SFI3 SFI4 SFO1 SFO3Thresholds ON

    Pd

    SciFi

    Si

    Target

    SFI1 SFI2 SFI3 SFI4 SFO1 SFO3

    2

    1 4

    3Si Z

    y

    x

    Event number: 2874310

    Date: Wed Mar 29 14:11:18 MEST 2006

    Input file: /tmp/xtc2ed.5442.pipe

    51115161720212426313233464752535455616263646970717273747576777879808182838485868788899091929394969798105106

    79 7928313839727374757677788687122

    91515202129498586878889901132838626364656667707172737475767778798081828384858788899099100101102103104105106107108

    91105106107 6581828384851021081091101111121131141151221920216466107116

    8310310511111551117182045757677828485104110123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128

    971213141516171819202223242527283031333436373839404142439899 24252829313234363739404243454648495152535455565758596061636466676970727376787980828890919394969799100102103105106108109119123

    3637303133344344454647484950515253545561626364656667767879808182838485869091929394959697105123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128

    18192022272829303132333435363738394041424344454647484950515254555663646667697076777879808182838485117118121122127 11512712131819204951525472787981828384858687888990919394969799100102103114116122

    1920103105106

    106105134135

    80 99

    6

    Event with single track in SFT and photon detector.

    Average hit multiplicity per SFT layer ∼3.

    R.Kaiser - HERMES Future – p.8/26

  • HERMES Data Taking HERA Run II

    2002-5 transverse target 2006-7 unpol. targete− March-June 06

    R.Kaiser - HERMES Future – p.9/26

  • Target Cell AccidentMarch: damage probablydue to accidental beam loss

    May: radiation damage tosilicon detector due tosecond incident

    Si detector removed forrepair, re-installation end ofJune

    DVCS BCA affected most,lose recoil protons at small t

    SciFi detector available forpart of the e− data, MC stu-dies under way.

    R.Kaiser - HERMES Future – p.10/26

  • HERMES Statistics Overview (pb−1)

    HERA-I (1996-2000) H D 4He N2 Ne Kr Xee− 11 50 - - - - -e+ 240 320 30 50 86 30 -

    HERA-II (2002-2007)e− 250 150 - - - 50 50e+ 820 200 - - - 55 30

    of which e+ with RD 750 200 - - - - -

    DVCS BCA: Published 10 pb−1 e−. Expect to have 250 pb−1 e−.

    Total cross section for VM and PSM production on hydrogen: 1.3 fb−1.

    2006/7 running: 23M → 56M DIS events on (unpolarised) hydrogen

    Average beam polarisation only ∼35% for HERA-II, while ≥50% for HERA-I.

    R.Kaiser - HERMES Future – p.11/26

  • Exclusive Processes to Constrain GPDs

    Quantum number of final state

    selects GPD.

    DVCS e⇆

    p → epγ H

    (BSA/BCA) e± → epγ

    Vector ep → epρ0 H,EMesons ep → epφ0

    Pseudoscalar ep → enπ+∼

    H,∼

    E

    Mesons

    HERMES measures many different final statessimultaneously with the same spectrometer !

    R.Kaiser - HERMES Future – p.12/26

  • Exclusive Measurements at HERMESProcess Comments Learn about GPDs Recoil Detector Can Do

    DVCS BCA unique ! D-term desirable (but n/a) ++

    DVCS BSA vs xB , t constrain Hu desirable ++

    ∆DVCS first measurement N → ∆ GPDs required ?

    σL(ρ0, φ0) vs Q2 quarks/gluons not necessary ++

    σL(ω0, ρ+) vs Q2 quarks/gluons not necessary +

    ρ : ω : φ cross.sec. ratio H, E flavours not necessary +

    ρ0, φ0 SDME vs t comp. GPD model not necessary ++

    σL(π+) vs xB

    Hu −∼

    Hd not necessary ++

    π+ : π0 : η cross.sec. ratio∼

    H,∼

    E flavours not necessary +

    K+Λ0 transv. asym. AK+Λ∼

    Hp→Λ

    ,∼

    Ep→Λ

    required ?

    π∆ vs xB N → ∆ GPDs required ?

    ▽R.Kaiser - HERMES Future – p.13/26

  • Exclusive Measurements at HERMESProcess Comments Learn about GPDs Recoil Detector Can Do

    DVCS BCA unique ! D-term desirable (but n/a) ++

    DVCS BSA vs xB , t constrain Hu desirable ++

    ∆DVCS first measurement N → ∆ GPDs required ?

    σL(ρ0, φ0) vs Q2 quarks/gluons not necessary ++

    σL(ω0, ρ+) vs Q2 quarks/gluons not necessary +

    ρ : ω : φ cross.sec. ratio H, E flavours not necessary +

    ρ0, φ0 SDME vs t comp. GPD model not necessary ++

    σL(π+) vs xB

    Hu −∼

    Hd not necessary ++

    π+ : π0 : η cross.sec. ratio∼

    H,∼

    E flavours not necessary +

    K+Λ0 transv. asym. AK+Λ∼

    Hp→Λ

    ,∼

    Ep→Λ

    required ?

    π∆ vs xB N → ∆ GPDs required ?

    R.Kaiser - HERMES Future – p.13/26

  • DVCS Beam Charge Asymmetry

    GPD H dominates,∼

    H and E suppressed[Goeke et al. PPNP 47(2001)401]

    t-dependence candistinguish different GPDmodel versions.

    More background in highert-bins.

    25x e−1 statistics !

    A-D Curves from code byVGG for HERMES kinema-tics.

    R.Kaiser - HERMES Future – p.14/26

  • DVCS Beam Spin AsymmetryHu(x = ξ, ξ, t) (modeldepedent)

    GPD modelsdistinguishable viat-dependence

    1996-2000: PB ≈ 55%2002-2007: PB ≈ 35%

    Statistics marginal for2-dim dependences.

    A-E Curves from code byVGG for HERMES kinema-tics.

    R.Kaiser - HERMES Future – p.15/26

  • ρ0 Spin Density Matrix Elements

    0 decay plane0ρlepton scattering

    plane

    Φ

    π-π+

    0 ρ

    0 ρ

    ’N

    e

    φ

    ’γ*

    production planeρ

    π+

    -

    ρ

    θ

    N

    Rest Frame

    π’

    e

    φ

    Photon-Nucleon CMS

    N

    SDMEs from maximumlikelihood fit minimisingdifference between 3-dim.(cos Θ, φ,Φ) decay anglematrix and fullyreconstructed high statisticsMonte Carlo data set.

    15 ’unpolarised’ SDMEs,8 ’polarised’ SDMEs(require beam polarisation)

    For SDME definitions see[Schilling,Wolf Nucl.Phys.B61(1973)381].

    R.Kaiser - HERMES Future – p.16/26

  • Spin Density Matrix Elements for ρ0/φ0

    ▽R.Kaiser - HERMES Future – p.17/26

  • Spin Density Matrix Elements for ρ0/φ0

    R.Kaiser - HERMES Future – p.17/26

  • SDMEs t-Dependence

    0.4

    0.6

    0.8

    0 0.25

    0

    0.05

    0 0.25

    -0.1

    0

    0 0.25

    -0.1

    0

    0 0.25

    -0.1

    0

    0.1

    0 0.25

    -0.05

    0

    0 0.25

    0.2

    0.4

    0 0.25

    0

    0.05

    0.1

    0 0.25

    -0.3

    -0.2

    -0.1

    0 0.25

    -0.025

    0

    0.025

    0 0.250

    0.1

    0.2

    0 0.25

    0.1

    0.2

    0 0.25

    0

    0.02

    0 0.25

    -0.15

    -0.1

    0 0.25

    -0.025

    0

    0.025

    0 0.25

    GPD-based modelfor t-dependence[Goloskokov,Kroll,

    EPJ C 42 (2005) 02298]

    Model for Q2 > 3GeV2, 2-gluonexchange only.

    2-quark exchangebeing incorporated.

    ProjectionsA.Borissov.

    R.Kaiser - HERMES Future – p.18/26

  • Exclusive π+-Cross-Section

    )2 (GeV2Q0 2 4 6 8 10

    cros

    s se

    ctio

    n (n

    b)

    1

    10

    210

    0.02

  • Summary

    HERMES is playing a pioneering role exploring thepotential of exclusive photon/meson production in thecontext of Generalised Parton Distributions.

    The new Recoil Detector, combined with anunpolarised target, is expected to lead to significantimprovements of both statistics and systematics inexclusive measurements at HERMES.

    In the last year of data taking 2006/7 HERMES isexpecting to take about as much data as in the 10years before.

    R.Kaiser - HERMES Future – p.20/26

  • Additional Slides

    R.Kaiser - HERMES Future – p.21/26

  • Recoil Detector - Kinematics

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.2 0.4 0.6 0.8 1 1.2 1.4θ [rad ]

    p [G

    eV/c

    ]

    SciFiSciFi

    SiliconSilicon

    Silicon(positiononly)

    R.Kaiser - HERMES Future – p.22/26

  • DVCS Asymmetries

    Beam Spin ALU (φ) =dσ↑(φ)−dσ↓(φ)dσ↑(φ)+dσ↓(φ) ∝ sin φ ⇒ Im(H)

    Beam Charge Ach(φ) =dσ+(φ)−dσ−(φ)dσ+(φ)+dσ−(φ) ∝ cos φ ⇒ Re(H)

    x

    y

    z φ

    ~pγ

    ~k

    ~k′

    ~q

    uli

    R.Kaiser - HERMES Future – p.23/26

  • SDMEs t-Dependence: r500

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    R.Kaiser - HERMES Future – p.24/26

  • Q2-Dependence of R = σL/σT

    10-1

    1

    10-1

    1 10

    Q2 [GeV2]

    R=σ

    L/σ

    T

    HERMES PRELIMINARY 〈W〉=5 GeVprotonprojection for2002-2007 1.3 fb-1

    CLAS 〈W〉=2.1 GeVDESY 〈W〉=2.6 GeV

    CORNELL 〈W〉=3.5 GeV

    NMC 〈W〉=14 GeV

    COMPASS PREL.〈W〉=14 GeVE665 〈W〉=18 GeV

    ZEUS 〈W〉=50 GeVH1 〈W〉=75 GeV

    R.Kaiser - HERMES Future – p.25/26

  • Exclusive Pion-Pair Production

    0.2 0.4 0.6 0.8 1 1.2 1.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    Hydrogen

    mππ [ GeV ]

    R.Fabbri

    R.Kaiser - HERMES Future – p.26/26

    sf �lue {hspace *{-1cm}Future Exclusive Measurements at HERMES}sf �lue {HERMES Physics}sf �lue {HERMES with Recoil Detector}sf �lue {HERMES Recoil Detector - 3D CAD}sf �lue {Goals of the Recoil Detector}sf �lue {Exclusivity}sf �lue {Recoil Detector - Complete Setup}sf �lue {Recoil Detector Event}sf �lue {HERMES Data Taking HERA Run II}sf �lue {Target Cell Accident}sf �lue {HERMES Statistics Overview (pb$^{-1}$)}sf �lue {Exclusive Processes to Constrain GPDs}sf �lue {Exclusive Measurements at HERMES}sf �lue {DVCS Beam Charge Asymmetry}sf �lue {DVCS Beam Spin Asymmetry}sf �lue {$ho ^0$ Spin Density Matrix Elements}sf �lue {hspace *{-0.5cm} Spin Density Matrix Elements for $ho ^0$/$phi ^0$}sf �lue {SDMEs $t$-Dependence}sf �lue {Exclusive $pi ^+$-Cross-Section}sf �lue {Summary}sf �lue {Additional Slides}sf �lue {Recoil Detector - Kinematics}sf �lue {DVCS Asymmetries}sf �lue {SDMEs $t$-Dependence: r$_{00}^5$}sf �lue {$Q^2$-Dependence of R = $sigma _L/sigma _T$}sf �lue {Exclusive Pion-Pair Production}