31
FUTURE DARK MATTER SEARCHES WITH MANUEL MEYER, REGINA CAPUTO, MIGUEL SANCHEZ-CONDÉ, ON BEHALF OF THE AMEGO TEAM AUGUST 11, 2017 TEVPA 2017 COLUMBUS, OH, USA [email protected] https://asd.gsfc.nasa.gov/amego/

FUTURE DARK MATTER SEARCHES WITH - TeVPA … dark matter searches with manuel meyer, regina caputo, miguel sanchez-condÉ, on behalf of the amego team august 11, 2017 tevpa 2017

Embed Size (px)

Citation preview

F U T U R E D A R K M AT T E R S E A R C H E S W I T H

M A N U E L M E Y E R , R E G I N A C A P U T O , M I G U E L S A N C H E Z - C O N D É , O N B E H A L F O F T H E A M E G O T E A M A U G U S T 1 1 , 2 0 1 7 T E V PA 2 0 1 7 C O L U M B U S , O H , U S A M A M E Y E R @ S TA N F O R D . E D U

https://asd.gsfc.nasa.gov/amego/

T H E U N E X P L O R E D M e V S K Y

2

T H E U N E X P L O R E D M e V S K Y

2

• Large gap in sensitivity of satellite missions between ~0.1 and 100 MeV

• Challenging detection of ɣ rays in this regime: cross over for energy losses between Compton scattering and pair production

T H E U N E X P L O R E D M e V S K Y

2

DSSD Tracker Segment

CZT Calorimeter Module

CsI Calorimeter Module

MMS/Thermal Blanket

ACD

Side CZT Calorimeter

DSSD Tracker Module

AMEGO Concept

T H E U N E X P L O R E D M e V S K Y

2

See Tonia Venter’s talk on AGN physics

See Xilu Wang's talk on SN1a and nuclear lines

See Jeremy Perkins' talk for more details and a full mission overview

DSSD Tracker Segment

CZT Calorimeter Module

CsI Calorimeter Module

MMS/Thermal Blanket

ACD

Side CZT Calorimeter

DSSD Tracker Module

AMEGO Concept

3

P R O B I N G W I M P D A R K M AT T E R

S E N S I T I V I T Y F O R A S I G N A L F R O M S E L F - A N N I H I L AT I N G D A R K M AT T E R

• Considered 10º x 10º ROI around GC, one year exposure

• e-ASTROGAM like characteristics

• Energy losses, propagation, Galactic diffuse emission taken into account

4

Diffuse Background; COMPTEL |b| > 30º, EGRET 20º<|b| < 60º

Diffuse Background;

Fermi LAT |b| > 20º,

[Bartels et al. 2017]

S E N S I T I V I T Y F O R A S I G N A L F R O M S E L F - A N N I H I L AT I N G D A R K M AT T E R

• Considered 10º x 10º ROI around GC, one year exposure

• e-ASTROGAM like characteristics

• Energy losses, propagation, Galactic diffuse emission taken into account

4

Diffuse Background; COMPTEL |b| > 30º, EGRET 20º<|b| < 60º

Diffuse Background;

Fermi LAT |b| > 20º,

[Bartels et al. 2017]

M O T I VAT E D M e V- G e V D M M O D E L S

• MeV-GeV DM models often strongly constrained with CMB measurements [see e.g. Tracy Slatyer’s talk]

• CMB constraints can be avoided for p-wave (velocity dependent) annihilation*

• Constraints from diffuse ɣ rays for decaying DM coupled to gravity can surpass CMB bounds [see Sebastian Ingenhütt’s talk]

5

[Catà et al. 2017]

[Catà et al. 2017]

*See e.g. Boehm & Fayet (2004), Pospelov et al. (2008), D’Agnolo & Ruderman (2015), Chu et al. (2016), Choi et al. (2016), Pappadopulo et al. (2016), Hochberg et al. (2014)

6

P R O B I N G T H E D A R K M AT T E R I N T E R P R E TAT I O N O F T H E G A L A C T I C

C E N T E R E X C E S S

A M E G O A N G U L A R R E S O L U T I O N

7

[Moiseev et al. 2015]

A M E G O A N G U L A R R E S O L U T I O N

7

[Moiseev et al. 2015]

Fermi-LAT PSF

P I N - P O I N T I N G T H E G e V E M I S S I O N I N T H E G A L A C T I C C E N T E R

8 Image credit: NASA/GFC

P I N - P O I N T I N G T H E G e V E M I S S I O N I N T H E G A L A C T I C C E N T E R

8 Image credit: NASA/GFC

• GeV excess observed with Fermi LAT in the Galactic Center [see e.g. Tracy Slatyer’s or Daniele Gaggero’s talks]

• Possible astrophysical origin: population of MSP pulsars [see e.g. Richard Bartels’ or Mattia Di Mauro’s talks]

• AMEGO can probe this hypothesis due to improved PSF and sensitivity to lower ɣ-ray energies

P I N - P O I N T I N G T H E G e V E M I S S I O N I N T H E G A L A C T I C C E N T E R

8 Image credit: NASA/GFC

• GeV excess observed with Fermi LAT in the Galactic Center [see e.g. Tracy Slatyer’s or Daniele Gaggero’s talks]

• Possible astrophysical origin: population of MSP pulsars [see e.g. Richard Bartels’ or Mattia Di Mauro’s talks]

• AMEGO can probe this hypothesis due to improved PSF and sensitivity to lower ɣ-ray energies

[Lee et al. 2016]

[Bartels et al. 2016]

[Fermi-LAT Collaboration 2017]

9

P R O B I N G A X I O N L I K E PA R T I C L E S

A X I O N S A N D A X I O N L I K E PA R T I C L E S

• Axion: proposed as by-product of solution of of strong CP problem in QCD

• Axion mass proportional to photon coupling

• Axionlike particles (ALPs):

• plethora of ALPs predicted in string theory (axiverse) and other standard model extensions

• Mass and photon coupling independent parameters

• Axions and ALPs are DM candidates

10

P R I M A K O F F E F F E C T

X

a ɣ

D E C AY ɣ

ɣ

a

La� = �1

4ga�Fµ⌫ F̃

µ⌫a = ga� EBa

[Peccei & Quinn 77; Wilczek 78; Weinberg 78; Preskill et al. 83; Abbott & Sikivie 83; Witten 84; e.g. Arvanitaki et al. 09; Cicoli et al. 12; Arias et al. 2012; Raffelt & Stodolsky 1988]

F U T U R E A L P C O N S T R A I N T S U S I N G S P E C T R A L I R R E G U L A R I T I E S

• Prime target: NGC 1275, central radio galaxy of Perseus cluster

• Bright ɣ-ray emitter

• Central B field of cluster: 25 μG [Taylor et al. 2006]

• Used to constrain ALPs using Fermi-LAT observations [Ajello et al. 2016]

11 Hubble image of NGC 1275 http://hubblesite.org/newscenter/archive/releases/2008/28/image/a/

F U T U R E A L P C O N S T R A I N T S U S I N G S P E C T R A L I R R E G U L A R I T I E S

• Prime target: NGC 1275, central radio galaxy of Perseus cluster

• Bright ɣ-ray emitter

• Central B field of cluster: 25 μG [Taylor et al. 2006]

• Used to constrain ALPs using Fermi-LAT observations [Ajello et al. 2016]

11 Hubble image of NGC 1275 http://hubblesite.org/newscenter/archive/releases/2008/28/image/a/

Photon-ALP oscillations including random B-field in Perseus cluster (10μG) and

Galactic Magnetic field

A L P S E A R C H E S U S I N G C O R E -C O L L A P S E S U P E R N O VA E

12 [Meyer et al. 2017]

A L P S E A R C H E S U S I N G C O R E -C O L L A P S E S U P E R N O VA E

12

• ALPs produced in a core-collapse SN explosion via Primakoff process in burst lasting 10s of seconds

• Burst would arrive simultaneous with neutrino burst

• Could convert into gamma-rays in Galactic magnetic field

• Non-observation of signal from SN1987A with Gamma-Ray Spectrometer on Solar Maximum Mission satellite still strongest bounds for ALPs with masses ma≲ 1neV [Payez et al. 2015]

[Meyer et al. 2017]

A L P S E A R C H E S U S I N G C O R E -C O L L A P S E S U P E R N O VA E

12

• ALPs produced in a core-collapse SN explosion via Primakoff process in burst lasting 10s of seconds

• Burst would arrive simultaneous with neutrino burst

• Could convert into gamma-rays in Galactic magnetic field

• Non-observation of signal from SN1987A with Gamma-Ray Spectrometer on Solar Maximum Mission satellite still strongest bounds for ALPs with masses ma≲ 1neV [Payez et al. 2015]

ALP / ɣ-ray flux integrated over explosion time

Large FoV and small PSF of AMEGO promise similar sensitivity as Fermi LAT for ALPs in case of a Galactic core-collapse SN

within FoV

[Meyer et al. 2017]

A M E G O S E N S I T I V I T Y T O A L P s

13

SN1987a

SN g-burst

BBN

EBL

X-Rays

Telescopes

CMB

xionHB

Helioscopes HCASTL Solar n

KSVZaxion

e++e--> g+inv.

BeamDump

LSW HALPS-ILHaloscopes

ADMX

VacuumBirefringence

ALPS-IIREAPRTeVTransparency IAXO

ADMX-HF

ADMX

YMCE

WD cooling hint axion CDM

ALP CDM

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10-18

-16

-14

-12

-10

-8

-6

-4

-2

Log10 ma @eVD

Log 10g@GeV

-1 D

A M E G O S E N S I T I V I T Y T O A L P s

13

SN1987a

SN g-burst

BBN

EBL

X-Rays

Telescopes

CMB

xionHB

Helioscopes HCASTL Solar n

KSVZaxion

e++e--> g+inv.

BeamDump

LSW HALPS-ILHaloscopes

ADMX

VacuumBirefringence

ALPS-IIREAPRTeVTransparency IAXO

ADMX-HF

ADMX

YMCE

WD cooling hint axion CDM

ALP CDM

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10-18

-16

-14

-12

-10

-8

-6

-4

-2

Log10 ma @eVD

Log 10g@GeV

-1 D ɣ-ray searches

A M E G O S E N S I T I V I T Y T O A L P s

14

L IM I TS

SENS I T IV I T I ES

https://asd.gsfc.nasa.gov/amego/

C O N C L U S I O N S

• AMEGO: new mission concept to probe ɣ-ray sky in the MeV-GeV regime

• AMEGO features large FoV, small PSF, high energy resolution + capability to measure polarization

• Unprecedented sensitivity to probe decaying and self-annihilating sub-GeV WIMP DM

• Excellent sensitivity to probe light axionlike particle DM

• Proposed for NASA decadal review

15

https://asd.gsfc.nasa.gov/amego/

C O N C L U S I O N S

• AMEGO: new mission concept to probe ɣ-ray sky in the MeV-GeV regime

• AMEGO features large FoV, small PSF, high energy resolution + capability to measure polarization

• Unprecedented sensitivity to probe decaying and self-annihilating sub-GeV WIMP DM

• Excellent sensitivity to probe light axionlike particle DM

• Proposed for NASA decadal review

15

A M E G O W H I T E

PA P E RPlanned to write dedicated White Papers for AMEGO science, let us know

if you would like to contribute!

B A C K U P

D I F F U S E B A C K G R O U N D

17

E F F E C T I V E A R E A

18

A M E G O E V E N T T Y P E S

19

Compton Event

Pair Event