Fundamentals Oscilloscope Probing

Embed Size (px)

Citation preview

  • 8/10/2019 Fundamentals Oscilloscope Probing

    1/54

    Fundamentals of Oscilloscope Probing

    Presented by Roland E. Crop

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    2/54

    Agenda

    4 Signal Integrity and Signal Fidelity Overview4 Evolution of Probing Issues

    0 Resistive Era0 Early Capacitive Era0 Yesterday The RLC Era0

    Today The Transmission Line Era4 Probe Loading Measurement Examples4 Summary Probing Recommendations

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    3/54

    There are two kinds of designers . . .those that have signal integrity problems

    . . . and those that will.Sun Microsystems

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    4/54

    Textbook View of Digital Signals11 1

    0 0 0

    ?

    LogicSignal

    +5 VoltSupply

    Ground

    LogicSignal

    +5 VoltSupply

    Ground

    Real View of Digital Signals

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    5/54

    Signal Integrity vs. Signal Fidelity

    4 Signal Integrity : Does my circuit operate as predicted bysimulation?

    4 Signal Fidelity : Can I trust my measurement system as anaccurate representation of my signal?

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    6/54

    What Might You Be Missing?

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    7/54

    Equivalent Edge Bandwidth

    3V

    0V

    150 psEdge Speed = 150 ps

    90%

    10%

    125 ps

    Risetime =125 ps

    (10% to 90%)

    Equivalent Edge Bandwidth:Rule of Thumb: BW ~ 0.35

    tr

    Note: IBIS Uses 20% - 80% Risetime

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    8/54

    Measurement System Bandwidth Also Affects Timing

    Equal to Signal Edge BWTwice as fast as Signal Edge BWThree times as fast as Signal Edge BWFive times as fast as Signal Edge BW

    When the Scope BW is:

    41%12%5%2%

    Risetime Slowing Error =

    What you dont know can hurt you!

    Actual Waveform when:

    Scope BW = 5X Equivalent Edge BW(~2% Risetime Error)

    41% Risetime Error when:Scope BW = Equivalent Edge BW

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    9/54

    Rule of Thumb for System Risetime

    Sum of Squares Guideline for Displayed and Measured Results

    t r (displayed) [tr (oscilloscope) 2+ t r (probe) 2+ t r (signal) 2 ]

    1. The measurement system speed will affect the displayed result

    2. For scope + probe, preferably use combined system risetime3. Do not try to solve for signal risetime

    This formula assumes a one pole model for each rise time

    (Scope, Probe and Signal)

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    10/54

    The Evolution of Probing Issues

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    11/54

    The Resistive Era

    Clock rates ~ 1 MHzRisetimes ~ 100s of nanoseconds

    4 Passive probes adequate4 Resistive loading is the main concern

    1x Probe Model

    Ground Lead

    Probe

    Distributed R for DC (0 Hz) signals.

    Oscilloscope

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    12/54

    Typical Specifications

    Type Bandwidth Rise Time Input C Input R

    1X PassiveProbe 15 MHz 23 ns 100 pF 1 M

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    13/54

    1X Probe Model (Length of Cable)

    PROBE

    Probe TipPROBE CABLE

    8 - 10 pF/ft *1.5 ns/ft

    20 pF1 M

    6 feet

    Vsource

    R source

    SCOPEDUT

    LGround Lead

    | (

    Disadvantages:4 Very High Reflections4 Very High Input C4 Very Low Bandwidth

    Advantages:4 1X (No Attenuation)4 Inexpensive

    * Typical 50 cable has about 30 pF/ft of capacitance

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    14/54

    The Early Capacitive Era

    Clock rates ~ 10s of MHzRisetimes ~ 10s of nanoseconds

    4 Capacitive loading begins to be an issue4 Passive probes

  • 8/10/2019 Fundamentals Oscilloscope Probing

    15/54

    Typical Specifications

    Type Bandwidth Rise Time Input C Input R

    1X PassiveProbe 15 MHz 23 ns 100 pF 1 M

    10X PassiveProbe 100 MHz -500 MHz 3.5 ns -700 ps 13 pF -8 pF 10 M

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    16/54

    Passive VoltageDivider, Compensated

    R1

    R2 C2S

    C2

    C1 S C1

    VIN

    VOUT

    | (

    | (

    | (

    | (

    Parasit ic capacitance, C1 s & C2 s areswamped by larger C1 & C2.

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    17/54

    Typical High Z10X Passive Probe Model

    C18 - 12 pF

    9 M R1

    PROBE

    Probe TipPROBE CABLE

    8 - 10 pF/ft1.5 ns/ft

    C220 pF

    1 M R2

    6 feet

    SCOPE

    LGround LeadVsource

    Rsource

    DUT

    | (

    | (

    | (

    500

    C37 - 50 pF

    R3

    Disadvantages:4 Input C Too High4 Not Compatible with 50

    Systems4 Must be Compensated

    Advantages:4 High Input R4 Wide Dynamic Range4 Inexpensive4 Mechanically Rugged4 Low Input C vs 1X Probe

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    18/54

    Compensation Effects

    50 kHz 50 kHz 50 kHz

    1 s/div 1 s/div1 s/div

    1 ms/div 1 ms/div 1 ms/div

    COMPENSATEDUNDER

    COMPENSATEDOVER

    COMPENSATED

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    19/54

    Probe and Signal ImpedanceCan Reduce Rise Time on a Square Wave

    Rise TimeIncreaseDue To

    CapacitanceLoading

    t r 2.2 (R source * Cin )~~ | (

    Vsource

    10 M C In

    LGround Lead

    Probe Tip

    tRise Time 3 ns

    R source 1 k

    C in = 100 pF ~~220 nsec

    for 1X Probe

    22 nsecfor 10X Probe~~C in = 10 pF

    100%90%

    10%0%

    100%90%

    10%0%

    Rise Time Waveform for the 1X Passive Probe

    Rise Time Waveform forthe 10X Passive Probe

    Co ri ht Tektronix Inc.

    b d d d

  • 8/10/2019 Fundamentals Oscilloscope Probing

    20/54

    Probe Lead Inductance and CapacitanceCan Cause Ringing on a Square Wave

    Ring Frequency Usinga 10 pF Input Capacitance10X High Z Passive Probe

    and 3 Lead Loop Diameter

    For a 10X Passive Probe with C in = 10 pFand a 3 Lead Loop Diameter

    Ring Amplitude ~~

    Typical RingFrequency from3 Lead LoopDiameter

    = ~~

    50% Amplitude Error

    100 - 160 MHz

    | (

    Vsource

    10 M C In

    Probe TipR source 50

    Lsource LGround Lead

    0.1-0.2 H

    10 pF

    1

    2 LC

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    21/54

    Calculating Resonant Frequency

    Resonant Frequency =1

    2 LCIn practice, the resonant frequency should be >5 times the signals BWequivalent based on r ise and /or fall t imes. This gives a guideline to themaximum inductance (or maximum allowable probe-connection loop.)

    Rules of Thumb:L 20 nH/inch for typical lead lengths around 0 - 3 (probe tip and ground lead)C Probe rated C plus 1 to 2 pF/inch of added lead length (probe tip)

    Co ri ht Tektronix Inc.

    P b I I d

  • 8/10/2019 Fundamentals Oscilloscope Probing

    22/54

    Probe Input Impedancevs. Frequency (RC Model Only)

    Signal Frequency (Hz)

    InputImpedance ( )

    100M

    10M

    1M

    100k

    10k

    1k

    100

    10

    1

    100 1k 10k 100k 1M 10M 100M 1G 10G

    10X Z0

    0.15 pF/500

    Active1.0 pF/1 M

    1X Passive

    100 pF/1 M

    10X Passive10 pF/10 M

    10X Passiveprobe loadinggoes to 159

    at 100 MHz

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    23/54

    Yesterday The RLC Era

    Clock rates ~ 100s of MHzRisetimes ~ 1 to 2 nanoseconds

    4 Capacitive loading ~ 1 pF probe required0 Active probes only

    4 Inductive loading0 1 - 2 ground leads OK with low C

    probe4 Otherwise, model as RLC circuit

    0If ground lead > 20 If tip lead length added

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    24/54

    Typical Specifications

    Type Bandwidth Rise Time Input C Input R

    1X PassiveProbe 15 MHz 23 ns 100 pF 1 M

    10X PassiveProbe

    100 MHz -500 MHz

    3.5 ns -700 ps

    13 pF -8 pF 10 M

    Z0 PassiveProbe

    3 GHz -9 GHz

    120 ps -40 ps

    1 pF -0.15 pF 500

    Co ri ht Tektronix Inc.

    50 Di ider Probe (Z0)

  • 8/10/2019 Fundamentals Oscilloscope Probing

    25/54

    50 Divider Probe (Z0)Model (10X)

    450

    0.5 pF

    50 Vsource

    R source

    SCOPEDUT PROBE

    LGround Lead

    Probe Tip PROBE CABLE50

    6 feet

    |(

    Disadvantages:4 Low Input R4 Must be Terminated into

    50

    Advantages:4 Low Input C4 Wide Bandwidth4 Compatible with 50 Systems

    and 1 M with TerminationResistor

    4 No Compensation Necessary

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    26/54

    Typical Specifications for Voltage Probes

    Type Bandwidth Rise Time Input C Input R

    1X PassiveProbe 15 MHz 23 ns 100 pF 1 M

    10X PassiveProbe

    100 MHz -500 MHz

    3.5 ns -700 ps

    13 pF -8 pF 10 M

    Z0 PassiveProbe

    3 GHz -9 GHz

    120 ps -40 ps

    1 pF -0.15 pF 500

    Active Probe 500 MHz -6 GHz700 ps -100 ps

    2 pF -0.4 pF

    10 M -100 k

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    27/54

    Active Probe Model

    Advantages:4 Low Input Capacitance4 Wide Bandwidth4

    High Input R4 Compatible with 50 Systemsor 1 M with TerminationResis tor R t

    4 No Compensation Necessary

    Disadvantages:4 Higher Cost4 Limited Dynamic Range4 Mechanically Less Rugged4 Requires Power

    1 M /50

    SCOPEPROBE

    PROBE CABLE50 Vsource

    R source

    DUT

    LGround Lead R t50

    6 feet|( |(

    | ( BUFFER AMP

    ProbeTip

    Co ri ht Tektronix Inc.

    Active Probe Resonance: How Does Added

  • 8/10/2019 Fundamentals Oscilloscope Probing

    28/54

    Active Probe Resonance: How Does AddedInductance Affect the Measurement?

    Trise of 1 ns ~ 350 MHz BW Equivalent

    | (

    Vsource

    1 M C In

    Probe TipR source 50

    LGround Lead1.5 pF

    Trise 1 ns

    0.05 - 0.1 H(combined typical)

    For a 10X Active Probe with C in = 1.5 pFand a 6 Ground Lead

    Ring Frequency Usinga 1.5 pF Input Capacitance

    10X High Z Active Probeand 6 Ground Lead.

    =1

    2 LC350 MHz to 500 MHzRing Frequency =

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    29/54

    Algebraic Difference Probing

  • 8/10/2019 Fundamentals Oscilloscope Probing

    30/54

    Algebraic Difference ProbingProvides Limited Differential Measurements

    Advantages:4 Already Have Standard

    Passive Probes

    4 Wide Dynamic Range4 Mechanically Rugged4 Probes Test Points That Are

    Large Distances Apart

    Disadvantages:4 Very Low CMRR4 Few Matching Adjustments

    in the Probe or the Amplifier 4 Must be LF Compensated

    Scope Ch 2 Amplifier

    Scope Ch 1 Amplifier

    AnalogCH1 +

    Inv Ch2

    PROBES SCOPE

    Typical CMRR100 : 1 @ DC

    20 : 1 @ 1 MHz

    | ( | (

    | ( | (

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    31/54

    Passive Differential Probing

    Advantages:4 Larger CMRR Than Standard

    Passive Probes

    4 Wide Dynamic Range4 Mechanically Rugged4 Probes Test Points That Are

    Large Distances Apart

    Disadvantages:4 Requires Differential Input4 Not Compatible with 50

    Systems4 Must be Compensated

    Typical CMRR10,000 : 1 @ DC

    100 : 1 @ 20 MHz

    SCOPE

    Differential Amplifier

    +

    | (

    PROBE

    | (

    | ( | (

    Co ri ht Tektronix Inc.

  • 8/10/2019 Fundamentals Oscilloscope Probing

    32/54

    Active Differential Probing

    Advantages:4 Lower Input Capacitance4 Higher CMRR vs Frequency

    Than Passive DifferentialPair 4 Compatible With 50 and

    1 M Single-ended Systems

    Disadvantages:4 Higher Cost4 Limited Dynamic Range4 Mechanically Less Rugged

    and Larger Size4 Requires Power

    Typical CMRR10,000 : 1 @ DC

    2000 : 1 @ 20 MHz

    VOUT

    PROBE SCOPE

    Scope Ch 1 Amplifier

    +

    _

    Co ri ht Tektronix Inc.

    d h

  • 8/10/2019 Fundamentals Oscilloscope Probing

    33/54

    Today The Transmission Line Era

    Risetimes ~ 100s of picoseconds

    4 All signals at these speeds propagatewithin transmission line systems

    4 RLC lumped elements alone no longeradequate

    4Model circuit as transmission line withlumped and distributed elements

    4 Differential probing techniques need to beconsidered

    Co ri ht Tektronix Inc.

    Signal Fidelity & Impedance

  • 8/10/2019 Fundamentals Oscilloscope Probing

    34/54

    Signal Fidelity & ImpedanceConsiderations4 Transient Response

    0 Risetime / Fallt ime0 Overshoot / Undershoot

    4 Signal Fidelity4 Loading

    4 TDR Analysis Capability4 Impedance Characterization

    0 Connectors, backplanes, etc.

    Co ri ht Tektronix Inc.

    P bi Ch ll

  • 8/10/2019 Fundamentals Oscilloscope Probing

    35/54

    Probing Challenges

    4 High-speed Signals4 Differential Clock and Data

    4 Capacitance Effects4 Inductance Effects4 Grounding Effects4 Probe Loading4 Connectors4 Fine Pitch Parts4 Real Estate4 Density

    Co ri ht Tektronix Inc.

    P b L di M t E l

  • 8/10/2019 Fundamentals Oscilloscope Probing

    36/54

    Probe Loading Measurement Examples

    4 MeasurementSetup:

    0 Source = Quickstart8, ~200ps TR signal

    0 SMA directconnection to

    CSA8000 andTDS74040 Probe input to

    TDS7404

    Co ri ht Tektronix Inc.

    T t S t

  • 8/10/2019 Fundamentals Oscilloscope Probing

    37/54

    Test Setup

    CSA8000 TDS7404

    Quickstart 8

    Signal Board

    Setup #1: Signal SMA-cabled to Sampling Scope

    SMA Cables

    Co ri ht Tektronix Inc.

    Example Probe Loading

  • 8/10/2019 Fundamentals Oscilloscope Probing

    38/54

    Example Probe Loading(Setup #1, Using CSA8000 Sampling Scope)

    Reference Signal vs. P7240 Loading

    Red = Reference

    YellowYellow = probe loading effect(observed at SMA output)

    Co ri ht Tektronix Inc.

    Test Setup

  • 8/10/2019 Fundamentals Oscilloscope Probing

    39/54

    Test Setup

    Setup #2: Signal SMA-cabled toTDS7404 + Probe Connection

    CSA8000 TDS7404

    TekConnectProbe

    Quickstart 8

    Signal Board

    SMA Cable

    Co ri ht Tektronix Inc.

    Example Probe Loading

  • 8/10/2019 Fundamentals Oscilloscope Probing

    40/54

    p g(Setup #2 Using TDS7404)

    Reference Signal vs. P7240 Probe Output (pink trace)

    White = Reference(unloaded signal)

    Pink = P7240 output(probe through response)

    Green = probe loading(SMA output)

    Co ri ht Tektronix Inc.

    Challenges of Connecting to the DUT

  • 8/10/2019 Fundamentals Oscilloscope Probing

    41/54

    Challenges of Connecting to the DUT

    Co ri ht Tektronix Inc.

    Probe Tip Adapters

  • 8/10/2019 Fundamentals Oscilloscope Probing

    42/54

    Probe Tip Adapters

    How Do Tip Adapters Affect Probe Performance?Tip Accessories Will Degrade Signal Fidelity.

    Co ri ht Tektronix Inc.

    Effect of P7240 with 3 Inch Ground Lead + SMK4

  • 8/10/2019 Fundamentals Oscilloscope Probing

    43/54

    (Setup #2 Using TDS7404)

    Pink = P7240 output(probe through response)

    Green = probe loading(SMA output)

    White = Reference(unloaded signal)

    Co ri ht Tektronix Inc.

    Effect of P7240

  • 8/10/2019 Fundamentals Oscilloscope Probing

    44/54

    with Y-Lead Adapter and SMG50

    Co ri ht Tektronix Inc.

    Effect of P7240 with Y-Lead Adapter and SMG50s

  • 8/10/2019 Fundamentals Oscilloscope Probing

    45/54

    (Setup #2 Using TDS7404)

    White = Reference

    Pink = P7240 output(OFF THE CHART)

    Green = probe loading(SMA output)

    Co ri ht Tektronix Inc.

    Example Probe Loading

  • 8/10/2019 Fundamentals Oscilloscope Probing

    46/54

    Example Probe Loading

    P7330 Active Differential Probe

    P7330 - ShowingVariable Spacing Adapter and Square Pin Adapter

    Co ri ht Tektronix Inc.

    Example Probe Loading( l )

  • 8/10/2019 Fundamentals Oscilloscope Probing

    47/54

    (Setup #1, Using CSA8000 Sampling Scope)

    Reference Signal vs. P7330 Loading (No Adapters)

    Red = Reference

    YellowYellow = probe loading

    Co ri ht Tektronix Inc.

    Reference Signal vs. P7330 Output(S #2 U i TDS7404)

  • 8/10/2019 Fundamentals Oscilloscope Probing

    48/54

    (Setup #2 Using TDS7404)

    White = Reference

    Blue = P7330 output

    Green = probe loading(SMA output)

    Co ri ht Tektronix Inc.

    Effect of P7330 Square Pin Adapter

  • 8/10/2019 Fundamentals Oscilloscope Probing

    49/54

    q p

    Co ri ht Tektronix Inc.

    Reference Signal vs. P7330 + Square PinAd t + Pi (S #2 U i TDS7404)

  • 8/10/2019 Fundamentals Oscilloscope Probing

    50/54

    Adapter + Pins (Setup #2 Using TDS7404)

    White = Reference

    Blue = P7330 output

    Green = probe loading(SMA output)

    Co ri ht Tektronix Inc.

    Effect of P7260 6 GHz Active Probe withPogo Ground

  • 8/10/2019 Fundamentals Oscilloscope Probing

    51/54

    Pogo Ground

    Co ri ht Tektronix Inc.

    Reference Signal vs. P7260/TDS6604Probe/Oscilloscope Bandwidth = 6 GHz

  • 8/10/2019 Fundamentals Oscilloscope Probing

    52/54

    Probe/Oscilloscope Bandwidth = 6 GHz

    Same asSetup #2

    except withP7260 probeand TDS6604oscilloscope

    White = Reference(loading effect not visible)

    Pink = P7260 output

    YellowYellow = probe loading(SMA output)

    Co ri ht Tektronix Inc.

    Summary Probing Recommendations

  • 8/10/2019 Fundamentals Oscilloscope Probing

    53/54

    4 Choose probes with sufficient BW / Risetime:0 >3x BW of signal under test if possible0 Use Equivalent Edge BW of signal

    4 Match probe to scope: consider probe + scope as a system4 Choose the right probe type:

    0 Active vs. Passive vs. Z00

    Single-ended vs. Differential4 Use the shortest circuit connections possible0 Limit additional L, C due to added tip accessories or leads0 Or allow for performance degradation due to adapters

    4 Be aware of probe dynamic range limits4 Always de-skew for multi-channel timing measurements

    Co ri ht Tektronix Inc.

    Resources

  • 8/10/2019 Fundamentals Oscilloscope Probing

    54/54

    Thank you for taking the time to view

    our tutorialClose the presentation window tolearn more about resources availableon this topic

    Co ri ht Tektronix Inc