70
Full-Scale Permanganate Full-Scale Permanganate Remediation of a Solvent DNAPL Remediation of a Solvent DNAPL Source Zone Source Zone in a Sand Aquifer in a Sand Aquifer Beth L. Parker, Ph.D. Beth L. Parker, Ph.D. University of Waterloo Presented at the EPA Seminar: In Situ Treatment of Groundwater Contaminated With Non-Aqueous Phase Liquids Chicago December 11, 2002 1

Full-Scale Permanganate Remediation of a Solvent DNAPL Source Zone in a Sand Aquifer Beth L. Parker, Ph.D. University of Waterloo Presented at the EPA

Embed Size (px)

Citation preview

Full-Scale Permanganate Remediation Full-Scale Permanganate Remediation of a Solvent DNAPL Source Zoneof a Solvent DNAPL Source Zone

in a Sand Aquiferin a Sand Aquifer

Beth L. Parker, Ph.D.Beth L. Parker, Ph.D.University of Waterloo

Presented at the EPA Seminar:

In Situ Treatment of Groundwater Contaminated

With Non-Aqueous Phase Liquids

Chicago

December 11, 20021

2

CollaboratorsCollaborators

• Tom Al, University of New Brunswick– Inorganic Geochemistry

• Ramon Aravena, University of Waterloo– Isotope Geochemistry

• John Cherry, University of Waterloo

3

This Case Study Will Show:This Case Study Will Show:

• Density driven distribution of KMnO4 in sand

• Performance assessment with minimal uncertainty

• Nearly complete destruction of TCE and 1,1,1-TCA

4

Two General ApproachesTwo General Approachesfor In Situ Oxidationfor In Situ Oxidation

• Inject-and-withdraw (active)

Flushing

• Inject-and-leave (passive)

Episodic Injection

5

Injection

Addition of Treatment Chemicals

Withdrawal

The Active ApproachThe Active Approach

B.L.Parker

6

The Waterloo Passive ApproachThe Waterloo Passive Approach

• Use density and dispersion effects to distribute permanganate solution

• Inject in a manner that minimizes groundwater displacement

7

The Waterloo Passive ApproachThe Waterloo Passive Approach

2

3

1

Sandaquifer

4KMnO ( high density )

Relies on density and dispersion effects

B.L.Parker, 1997

1

2

3

4

tim

e

C once ntrationand D ensity

De creas e

no lateral ground water flow

Evolution of a Single Disc in a Sand AquiferEvolution of a Single Disc in a Sand Aquifer

B.L. Parker, 19978

Initial Proof - of - ConceptInitial Proof - of - Concept

Inject-and-Leave Field Trial in Borden Aquifer

Matthew Nelson M.Sc. Thesis (1999)

Supervisors: Drs. Beth Parker and John Cherry

University of Waterloo

9

Borden 9x9 m Sheet Pile Enclosure

10

System Set-up at 9m CellBorden Site

11

12

Density of Dissolved KMnODensity of Dissolved KMnO44 in Water in Water

sea water

0 20 40 60

1.05

1.04

1.03

1.02

1.01

1

rela

tive

d

ensi

ty

grams per liter KMnO4

Typical Range Used

20 Co

10 Co

solubility

13

sand

SETTINGSETTING

clay12 ft

0 ft1 ft

Evidence for Density Induced FlowEvidence for Density Induced Flow

Day 1

Day 3

Day 8Day 23

Day 65

3.4

Dep

th (

m.b

.g.s

.)

ML-1 First Injection

0 5 10

KMnO 4 (g/l)

2.2

2.4

2.6

2.8

3.0

3.2

(Nelson, 1999)14

15

The Waterloo Passive ApproachThe Waterloo Passive Approach

• Use density and dispersion effects to distribute permanganate solution

• Inject in a manner that minimizes groundwater displacement

16

contaminatedwater

displaced byinjected fluid

dispersionzone

KMnO 4

KMnO4

Long-Screen Injection Causes Large Long-Screen Injection Causes Large Displacement of Contaminated WaterDisplacement of Contaminated Water

Parker, 1997

17

displacedcontam inated

w ater

1

2

3

K MnO 4

gap

gap

zone tre ated by density flo w

zone treated by density flow

Injection of Discs Leaving Gaps Minimizes Injection of Discs Leaving Gaps Minimizes Displacement of Contaminated WaterDisplacement of Contaminated Water

Parker, 1997

18

KMnO4

Stage 1

Sand aquifer

Initial disc

Injection of Multiple Discs Injection of Multiple Discs Using Direct Push DeviceUsing Direct Push Device

Parker, 1997

19

Injection of Multiple Discs Using Injection of Multiple Discs Using Direct Push DeviceDirect Push Device

KMnO 4

Injection 1

Injection 2

Stage 2

Parker, 1997

20

Stage 1: Inject Disc Above DNAPL on Aquitard

KMnO 4

aquitard

Stage 1

sand aquifer

Initial disc

Parker, 1997

DNAPL

21

Disc Sinks and Spreads

Parker, 1997

12

aquitard

DNAPL

Injector withdrawn

Time

3

Site

TCE and TCA source zone

Case Study in FloridaCase Study in Florida

22

23

Ft. Lauderdale SiteFt. Lauderdale Site

24

Contamination Occurred RecentlyContamination Occurred Recentlylate 1996 to early 1997late 1996 to early 1997

• TCA used: 1995-96• Switch from TCA to TCE: Nov 1996 - April 1997• Conventional monitoring wells installed: 1997• Fenton’s treatment pilot study: 1998-1999• UW bundle multi-levels installed: 1999

– Fenton’s performance assessment• Permanganate selected as source removal action

for permanent remedy

25

Site GeologySite Geology

10

20

30

40

50

60

70

80

90

Water table

8-inch coarse sand layer57 ft bgs

Fine and medium grainedbeach sand withno visible layering

Increased frequency of gravel size carbonate rockfragments

Carbonate bedrock 85 ft bgs

26

Monitoring MethodsMonitoring Methods

• Continuous Cores• Bundle tube samplers • Waterloo Profiler• Conventional Monitoring Wells • Micro-monitoring Wells

Focus on depth-discrete methods

27

Aluminum core tubeinside core barrel

Core Being Removed fromCore Being Removed from Piston Core Barrel Piston Core Barrel

28

Cutting the Aluminum Core TubeCutting the Aluminum Core Tube

29

Subsampling Sand for VOC AnalysisSubsampling Sand for VOC Analysis

30

Installation of Bundle Tube Sampler: 1999Installation of Bundle Tube Sampler: 1999

31

Bundle Tube SamplerBundle Tube Sampler

SET IN NATURAL

FORMATIONNO SAND PACK

¾” ID SCH 40 PVC PIPE CENTER

STOCK

1/2” OD POLYETHYLENE or

1/4” OD TEFLON TUBING

6-8” NITEX SCREEN OVER PIPE

PERFORATIONS

2-4” NITEX SCREENS

CONCRETE PAD

1/4” OD TEFLON TUBING IN 1/2” OD POLYETHYLENE

TUBING

STEEL WELL COVER w/CONCRETE PAD

32

TCE Concentration Profile CW-LTCE Concentration Profile CW-L 0

10

20

30

40

50

60

70

80

6000000 100000 200000 300000 400000 500000 700000

TCE Concentration (g/L)

Dep

th (

ft) Before InjectionBefore Injection

(February 2000)

625,500 g/L

33

TCE Concentration Profile CW-KTCE Concentration Profile CW-K0

10

20

30

40

50

60

70

80

250000 5000 10000 15000 20000

TCE Concentration (g/L)

Dep

th (

ft) Before InjectionBefore Injection

(February 2000)

21,574 ug/L

34

Conceptual Model of DNAPL DistributionConceptual Model of DNAPL Distribution

B u ild in g

DNAPL Zo ne

?

?

?

2 0

1 0

3 0

4 0

5 0

6 0

Dep

th (

Fee

t)D N A P L

R e s id u a l T ra il

7 0

???

S u sp ec ted R e le a s e

A rea

D N A P L P lu m e

35

100

100Monitoring wellMultilevel systemGeoProbe sampling

Building

CW-LTCE Source Zone

>10,000 µg/L

Before RemediationBefore Remediation

TCE Plume

> 100 µg/L

0 10 ftN

36

The Waterloo Passive ApproachThe Waterloo Passive Approachfor Permanganatefor Permanganate

1. Pre-injection delineation

2. Permanganate injection in targeted zones

3. Monitor results and design subsequent injection

4. Repeat steps until attain desired endpoint

37

Full-Scale Permanganate Remediation in Ft. Lauderdale, FL

37

38

KMnO4 Mixing Tank

38

39

40

Asphalt Ground Surface

Sand Aquifer

Direct Push Drill RigScaffolding

NO2

Tank

PressureTank

#2

PressureTank

#1

KMnO4

Feed Tank

Stage 1: KMnO4 Injection at Several Depths

DrillRods

Parker, 2000

41

Asphalt Ground Surface

Sand Aquifer

Direct Push Drill RigScaffolding

NO2

Tank

PressureTank

#2

PressureTank

#1

KMnO4

Feed Tank

Stage 2: Spreading and Sinking by Density

Parker, 2000

42

Conceptual Model of DNAPL DistributionConceptual Model of DNAPL Distribution

B u ild in g

DNAPL Zo ne

?

?

?

2 0

1 0

3 0

4 0

5 0

6 0

Dep

th (

Fee

t)D N A P L

R e s id u a l T ra il

7 0

???

S u sp ec ted R e le a s e

A rea

D N A P L P lu m e

Parker, 2000

43

KMnOKMnO44 Target Treatment Zone Target Treatment Zone

N

B u ild ing

50 1 0F eet

M o n ito r in g W e ll

M M W -6 D

M W -2M W -3

M W -1

M W -7 D

M W -1 0 D

C lu ste r W e llC W -C C W -D

C W -IC W -H

C W -G

C W -B

C W -F

C W -K

C W -JC W -M C W -L

Targ e t Z on e

44

Source Zone WellsSource Zone Wells

45

N

B u ild in g

50 1 0F eet

M in im u m In je c tio n R a d iu s E s tim a te d f ro m

In je c tio n Vo lu m e s b a s e d o n a n e ll ip s o id w ith 3 :1

sp h e ric a l s h a p e

E stim a te d C o v e ra g e

D e te rm in e d fro m S a m p lin g

M o n ito r in g W e ll

M M W -6 D

M W -2M W -3

M W -1

M W -7 D

C lu ste r W e ll

C W -C C W -D

C W -IC W -H

C W -G

C W -B

C W -F

K M n O I n je c tio n L o c a t io n4

U W -4

U W -2

U W -5

U W -3

U W -1

U W -6

C W -K

C W -JC W -M C W -L

N e w C lu ste r W e ll L o c a t io n

KMnOKMnO44 Injection Coverage Injection Coverage Episode 1Episode 1

46

G ro und

10

50

20

30

40

60

Dep

th (

feet

)

H o r iz o n ta l E x a g g e ra tio n 2 xE llip so id s iz e b a s e d o n 3 0 % p o ro s ity a n d a h e ig h t to w id th ra t io o f 3 :1 .

UW

-4

UW

-5

UW

-1

7 .5 ' 6 .5 '

KMnOKMnO44 Injection at Multiple Depths Injection at Multiple Depths

47

Passive Crew

47

48

G ro und

10

50

20

30

40

60

Dep

th (

feet

)

H o r iz o n ta l E x a g g e ra tio n 2 xE llip so id s iz e b a s e d o n 3 0 % p o ro s ity a n d a h e ig h t to w id th ra t io o f 3 :1 .

UW

-4

UW

-5

UW

-1

7 .5 ' 6 .5 '

Effects of Density and Diffusion on Injected KMnOEffects of Density and Diffusion on Injected KMnO44 Ellipsoids Ellipsoids

49

Project TimelineProject Timeline

Time (months)

0

UW Site Pre-DesignCharacterization

1st Injection Episode

1

2nd Injection Episode

3

3rd InjectionEpisode

7

1st Post-Treatment Monitoring

10

2nd Post-Treatment Monitoring

13

February 2000

32

4th Injection Episode

3rd Post-Treatment Monitoring

October 2002

50

Site Map – X SectionsSite Map – X Sections

N

B u ild in g50 10 15

F e e t

Fe nce

M M W -6D

M W -8 D

M W -5 D

M onito ring Well (M W, M M W )

M W -7 DM W -1

M W -3 M W -2

M W -4 D

M M W -12 DM M W -13 D

M W -1 0 D

M M W -9D

M M W -11 D

C W -CC W -D

C W -I

C W -H

C W -B

C W -GC W -F

C W -A

C W -E

C W -K

C W -JC W -M

C W -L

C luste r Well (C W )

C

C ’B ’

D ’

D

B

K M n O T rea tm e n t Z o n e4

Spigo ts

U W P 2

U W P 1

Profiles

U W P 3

51

TCE Distribution on B-B’ – Feb 2000TCE Distribution on B-B’ – Feb 2000

1 6

1 2

11

1 5

2 2

5 9

5 8

2 6

5 3

1 5 2

1 0 7

7 7

5

2 4 9

3 1 0 1

3 1 7 7 5

1 3 5 3 0 0

2 5 2 9 0 0

1 0 0 0

3 7

1 9

11

2 6

1 2

3 111

11 8

2 2

1 9

7 9 4

1 4 1 3

5 3 3

2 7 4 6

111 6 1

1 7 0 7 9

5 1 8 1

1 0 2 6 2

1 7 6 9

1 9 3 4

5 5 9 5

2 1 5 7 4

2 8

1 8

1 93 .4 (M a y, 0 0 )1 (Ju ly, 0 0 )

T C E u g /L

50 000

0

100

1000

10 000

100 000

G ro u n d

1 0

5 0

2 0

3 0

4 0

6 0

Dep

th (

feet

)

CW

-B

20.5 '

CW

-C

7 0

B

S o u t h N o r t h

B ’

CW

-D

CW

-K

4.0’2 .5’

MW

-3

7.5’

MW

-2

7.5’

K M n O T rea tm e n t Z o n e4

Parker et al., 2000

52

TCE Distribution on B-B’ – Oct 2002TCE Distribution on B-B’ – Oct 2002

2

< 1

< 1

< 1

< 1

2

< 1 .5

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

3 3

1 8 6

2 1 4

2

< 1

< 1

< 1 .5

< 1

< 1

< 1

< 1

< 1

1 7

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

2

< 1

< 1

< 1 .5

< 1511 6 5

T C E u g /L

< 1 .5

< 1

< 1< 1

< 1

< 1

< 1

UW

P3

3 (M C L )

50 000

0

100

1000

10 000

100 000

G ro u n d

10

50

20

30

40

60

Dep

th (

feet

)

CW

-B

20.5 '

CW

-C

70

B

S o u t h N o r t h

B ’

CW

-D

CW

-K

4.0’2 .5’

MW

-3

7.5’

MW

-2

7.5’

K M n O T rea tm e n t Z o n e4

Parker et al., 2002

53

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000 100000 1000000

Concentration (ug/L)

Dep

th (

ft)

Feb 20000

10

20

30

40

50

60

70

80

1 10 100 1000 10000 100000 1000000

Concentration (ug/L)

Dep

th (

ft)

May 2000

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000 100000 1000000

Concentration (ug/L)

Dep

th (

ft)

Jul 2000

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000 100000 1000000

Concentration (ug/L)

Dep

th (

ft)

Dec 2000

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000 100000 1000000

Concentration (ug/L)

Dep

th (

ft)

Oct 2002

TCE Concentration Profile CW-K

54

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000 100000 1000000

Concentration (ug/L)

Dep

th (

ft)

Oct 2002

TCE Concentration Profile CW-KTCE Concentration Profile CW-K Prior to 4 Prior to 4thth Injection Injection

17 ug/L

55

TCE Distribution on C-C’ – Feb 2000TCE Distribution on C-C’ – Feb 2000

< 1 .5

2

2 5

1 0 3

11 5

1 6 1

2 6 1

8 1 3

8 6 0

2 6 3 1

3 5 0 5

1 7 9 0

9 4 6

1 2 4 5 3

1 2 3 5 2

1 5 11 0

1 9 1 6 0

1 6 2

1 3 5

1 3 3

1 4 2

9 1 8

6 5 8

2 8 2

9 1 4

11 7 11 0

1 8 6 6 3 8

1 0 4 0

6 9 2 9 6

5 1 8 1

1 0 4 9 4

4 8 0 3 6

6 2 5 5 0 0

5 8

3 8

3 6

3 1

2 5

3 3

3 5

1 4 0

9 4

9 5

1 7 2

3 2 1

1 9 0

1 0 1

1 0 2

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

3 3 (M a y, 0 0 )

2 1

5 8

3 2

11

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

8

6 .4 (M a y, 0 0 )

3 9

3 1

3 8

3 6

4 2

5 1

2 9

4 0

6 (M a y, 0 0 )

T C E u g /LT C E u g /L0

1 0 0

1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

5 0 0 0 0

G roundSurface

1 0

5 0

2 0

3 0

4 0

6 0

Dep

th (

feet

)

CW

-E

12.5 '7 .3 '

CW

-I

CW

-M

CW

-A

CW

-J

CW

-L

19.4 ' 6’

7 0

C C ’

MM

W-6

D

MW

-4

D

16.8 ' 7 .6 ' 35 .9 '9 .9 '

S o u th N orth

MW

-5D

K M n O T rea tm e n t Z o n e4

MW

-10D

5.3’

Parker et al., 2000

56

TCE Distribution on C-C’ – Oct 2002TCE Distribution on C-C’ – Oct 2002

< 1 .5

6

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

1 8

2 2

1 0 8

2

2

2

< 1

< 1

< 1

< 1

< 1

< 1

< 1

6 1

< 1

< 1

4

3 8

1 4 8 0

1 4 7

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1 .5

< 1

< 1

4

< 1

< 1

9

< 1

< 1

2 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1 .5

< 1 .5

< 1 .5

< 1

< 1 .5

< 1

< 1

< 1

T C E u g /L< 1

< 1

< 1

< 1

0

1 0 0

1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

5 0 0 0 0

1 5

3 (M C L )

G roundSurface

1 0

5 0

2 0

3 0

4 0

6 0

Dep

th (

feet

)

CW

-E

12.5 '7 .3 '

CW

-I

CW

-M

CW

-A

CW

-J

CW

-L

19.4 ' 6’

7 0

C C ’

MM

W-6

D

MW

-4

D

16.8 ' 7 .6 ' 35 .9 '9 .9 '

S o u th N orth

MW

-5D

K M n O T rea tm e n t Z o n e4

MW

-10D

5.3’

Parker et al., 2002

57

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000 100000 1000000

Concentration (ug/L)

Dep

th (

ft)

Feb 20000

10

20

30

40

50

60

70

80

1 10 100 1000 10000 100000 1000000

Concentration (ug/L)

Dep

th (

ft)

May 2000

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000 100000 1000000

Concentration (ug/L)

Dep

th (

ft)

Jul 2000

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000 100000 1000000

Concentration (ug/L)

Dep

th (

ft)

Dec 2000

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000 100000 1000000

Concentration (ug/L)

Dep

th (

ft)

Oct 2002

TCE Concentration Profile CW-L

58

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000 100000 1000000

Concentration (ug/L)

Dep

th (

ft)

TCE Concentration Profile CW-LTCE Concentration Profile CW-L Prior to 4 Prior to 4thth Injection Injection

1, 480 ug/L

Oct 2002

59

TCE Distribution on D-D’ – Feb 2000TCE Distribution on D-D’ – Feb 2000

1 0 2 (M arc h , 0 0 )

6

1 0

1 6 5

1 0

9

8

8

9

2 1 4 1

2 6 0 6

4 4 0

1 3 6

1 5 2

2 3 9

9 6

7 9 6

1 .5 ( Ju ly, 0 0 )

3 9

3 1

3 8

3 6

4 2

5 0

2 9

4 0

7 4 2

3 8 1

9 4 0

3 0 2

1 2

1 0

9

1 0

1 0

1 6

1 2

1 8

2 4 5

3 0 9 1

3 5 6 0 (M arc h , 0 0 )

6 (M a y, 0 0 )

T C E u g /L0

1 0 0

1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

5 0 0 0 0

MW

-8D

G roundSurface

1 0

5 0

2 0

3 0

4 0

6 0

Dep

th (

feet

)

11.5 '

CW

-H

CW

-F

16 '

7 0

D D ’

6’13 '

CW

-G

MW

-1

9.2 '

CW

-I

S ou th N orth

MW

-7D

K M n O T re a tm e n t Z o n e4N orth

2.6’

MW

-4

D

35.9’

Parker et al., 2000

60

TCE Distribution on D-D’ – Oct 2002TCE Distribution on D-D’ – Oct 2002

3 8

< 1

< 1 .5

< 1

< 1 .5

< 1 .5

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

3 5

< 1

< 1

< 1

< 1 .5

< 1 .5

< 1 .5

< 1

< 1 .5

< 1

< 1

< 1

1 .5

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1 .5

< 1

< 1

< 1

< 1

< 1 .5

< 1

0

1 0 0

1 0 0 0

1 0 00 0

1 0 0 0 00

5 0 00 0

T C E u g /L

< 1

< 1

< 1

< 1

< 1

4 6

1 6

8 2

1 0 8

UW

P2

3 (M C L )

MW

-8D

G roundSurface

1 0

5 0

2 0

3 0

4 0

6 0

Dep

th (

feet

)

11.5 '

CW

-H

CW

-F

16 '

7 0

D D ’

6’13 '

CW

-G

MW

-1

9.2 '

CW

-I

S o u th N orth

MW

-7D

K M n O T rea tm e n t Z o n e4N orth

2.6’

MW

-4

D

35.9’

Parker et al., 2002

61

TCA Distribution on C-C’ – Feb 2000TCA Distribution on C-C’ – Feb 2000

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

2 4

1 3 6

1 5 9

9 0

2 5 7

1 4 3

5 6

5 6 6

5 5 9

7 7 6

1 7 4 2

< 1 .5

< 1 .5

< 1 .5

< 1 .5

3 5

4 5

8

2 0

3 5 3 5

8 1 4 1

111

1 2 6 3

2 9 4

4 9 4

2 2 0 7

9 9 0 8

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5 (M a y, 0 0 )

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5 (M a y, 0 0 )

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5

< 1 .5 (M a y, 0 0 )

1 ,1 ,1 -T C A u g /L0

1 0 0

1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

5 0 0 0 0

G roundSurface

1 0

5 0

2 0

3 0

4 0

6 0

Dep

th (

feet

)

CW

-E

12.5 '7 .3 '

CW

-I

CW

-M

CW

-A

CW

-J

CW

-L

19.4 ' 6’

7 0

C C ’

MM

W-6

D

MW

-4

D

16.8 ' 7 .6 ' 35 .9 '9 .9 '

S o u th N orth

MW

-5D

K M n O T rea tm e n t Z o n e4

MW

-10D

5.3’

Parker et al., 2000

62

TCA Distribution on C-C’ – Oct 2002TCA Distribution on C-C’ – Oct 2002

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

6

< 1 .5

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1 .5

1 3

3 0

3

6

4

6

1 3 5

5 6

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

T C A u g /L< 1

< 1

< 1

< 1

0

1 0 0

1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

5 0 0 0 0

6 4

G roundSurface

1 0

5 0

2 0

3 0

4 0

6 0

Dep

th (

feet

)

CW

-E

12.5 '7 .3 '

CW

-I

CW

-M

CW

-A

CW

-J

CW

-L

19.4 ' 6’

7 0

C C ’

MM

W-6

D

MW

-4

D

16.8 ' 7 .6 ' 35 .9 '9 .9 '

S o u th N orth

MW

-5D

K M n O T rea tm e n t Z o n e4

MW

-10D

5.3’

Parker et al., 2002

63

100

100

Monitoring wellMultilevel systemGeoProbe sampling

Building

CW-L

TCE source zone>10,000

Before Remediation – February 2000Before Remediation – February 2000

Plume

TCE µg/L

0 10 ftN

Parker, 2002

64

Monitoring wellMultilevel systemGeoProbe sampling

TCE µg/LAfter Remediation – December 2000After Remediation – December 2000

TCE source zones>10,000Building

0 10 ftN

100

100

Parker, 2002

65

Monitoring wellMultilevel systemGeoProbe sampling

TCE µg/LAfter Remediation – October 2002After Remediation – October 2002

Building

0 10 ftN

100

214

1,480

108

Parker, 2002

66

Specific ConclusionsSpecific Conclusions• 99% reduction in contaminated volume

• Displacement avoided by limiting injection to <8% of treatment zone pore volume for each episode

• 1,1,1-TCA also disappeared

• No TCE or TCA rebound

67

General ConclusionGeneral Conclusion

This case study showed that

permanganate can be successful for

complete remediation of the source if :

• The site conditions are suitable

• The remedial design is tailored to the site

68

Final StageFinal Stage

• Fourth injection occurred October 2002 to complete source zone remediation

• Performance assessment monitoring planned for February 2003

69

AcknowledgementsAcknowledgementsFunding:• University Consortium Solvents-in-Groundwater Research Program • Canadian Natural Sciences and Engineering Research Council• Sun Belt Interplex, Inc.

Staff:• Matthew Nelson, MSc Hydrogeologist: Project Manager• Colin Meldrum, BASc: Field Activities and Data Display• Bob Ingleton, Paul Johnson, BSc: Injection System Design and Field Technical

Assistance• Martin Guilbeault, MSc, Matthew Whitney, BASc: Field Assistance• Maria Gorecka, MSc: Lab Analysis of VOC

70

For information on this case study:For information on this case study:

Parker, B.L., J. A. Cherry and T. A. Al (2002).

Passive permanganate remediation of a solvent DNAPL source zone.

In proceedings for “The Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds,” Monterey, California.

Battelle 2002 Monterey Conference Proceedings