55
From Pattern Formation to Phase Field Crystal Model 吳吳吳 (Kuo-An Wu) 吳吳吳吳吳吳吳 Department of Physics National Tsing Hua University 3/23/2011

From Pattern Formation to Phase Field Crystal Model

  • Upload
    denna

  • View
    139

  • Download
    4

Embed Size (px)

DESCRIPTION

From Pattern Formation to Phase Field Crystal Model. 吳國安 ( Kuo -An Wu). 清華大學物理系 Department of Physics National Tsing Hua University. 3/23/2011. Pattern Formation in Crystal Growth. by Wilson Bentley (The snowflake man), 1885. Pattern Formation in Crystal Growth. - PowerPoint PPT Presentation

Citation preview

Page 1: From Pattern  Formation  to  Phase Field Crystal Model

From Pattern Formation to Phase Field Crystal Model

吳國安 (Kuo-An Wu)

清華大學物理系Department of Physics

National Tsing Hua University

3/23/2011

Page 2: From Pattern  Formation  to  Phase Field Crystal Model

Pattern Formation in Crystal Growth

by Wilson Bentley (The snowflake man), 1885

Page 3: From Pattern  Formation  to  Phase Field Crystal Model

Pattern Formation in Crystal Growth

Al-Cu dendrite, Voorhees Lab Northwestern University

At the nanoscale (atomistic scale)

Liquid-Solid interfacesAnisotropy ↔ Morphology

Atomistic details ↔ Anisotropy?

Solid-Solid interfacesGrain boundary

Atomistic details ↔ growth?

Atomistic details ↔ Continuum theory at the nanoscale

Hoyt, McMaster

Schuh, MIT

Page 4: From Pattern  Formation  to  Phase Field Crystal Model

Pattern Formation in Macromolecules

Polyelectrolyte Gels

Hex (-)

Hexagonal phase in solvent rich region

Hex (+)

Hexagonal phase in polymer rich region

Competition between Enthalpy, Entropy, Elastic Network Energy,Electrostatic energy, … etc

Page 5: From Pattern  Formation  to  Phase Field Crystal Model

Pattern Formation in Biology

Lincoln Park ZooChicago

Rural Area, Wisconsin

Page 6: From Pattern  Formation  to  Phase Field Crystal Model

Pattern Formation in Biology

Bleb Formation in Breast Cancer Cell NucleusGoldman Lab, Northwestern University

Confocal Immunofluorescence of a normal cell nucleusGoldman Lab, Northwestern University

Lamin ( 核纖層蛋白 ) A/CLamin B1, B2

Nuclear Lamina ( 核纖層 ) ~ 30-100nm

In animal cells, only composed of 2 types lamins

Page 7: From Pattern  Formation  to  Phase Field Crystal Model

Crystal Growth at the Nanoscale

Solid-Solid interfaceGrain boundariesSchuh/MIT

Solid-Liquid interfaceCrystal growth from its melt with interfacial anisotropy

Solid-Fluid interface under stressQuantum dots InAs/GaAsNg et al., Univ. of Manchester, UK

Page 8: From Pattern  Formation  to  Phase Field Crystal Model

2

t

n n nsolid liquid

T D T

LV cD T T

Gibbs-Thomson condition

2

ˆnM

I M

iji j

VTT T TrSL n

dSd d

1/TrS(Max ΔT)

Phase-field simulationsof solidification

( ) ( )IMax T T Min TrS

Morphology vs. Anisotropy

Anisotropy of

What causes the anisotropy?

Page 9: From Pattern  Formation  to  Phase Field Crystal Model

Basal Plane

Crystal growth – Solid-Liquid interface

Page 10: From Pattern  Formation  to  Phase Field Crystal Model

4 4 2 2 21 2

3 17ˆ 1 3 665 7o i i x y z

i i

n n n n n n

Anisotropy vs. Crystal structures

fcc

bcc

WHY?

0

110

111

BCC

FCC

iK r

KK e

K

K

u

K

K

sKu u

0Ku

Ginzburg-Landau Theory( )kF u

Page 11: From Pattern  Formation  to  Phase Field Crystal Model

DF

u110

2 3 42 110 3 110 4 110F a u a u a u

Liquid Solid

2 3 0,, , ,

0,

20

4 0,, , ,

2

i j k

i j k l

i jij ijk i j k K K Ki j i j k

B

ijkl i j k l iK K K Ki j k l i

i j K

i

Ka c a c u u un k TF dr

a c u u u u b

u

cu zz

u

D

GL Theory for bcc-liquid interface

2110

110

2

110

12

2

1 ˆ ˆ4

, 0

i n

SS L

aS K

b c K

c K z

FF Fu

S(K)

K (Å-1)K0

20 0 0( ) ( ) / ( )c K S K S K

a3 and a

4 are determined

by equilibrium conditions

Liquid structure factor

Density Functional Theory of Freezing

0 1 2 1 2 1 20

1ln ,2

rF dr r dr r drdr c r r r r

D D D

0 K

iK r

K

eu

Free energy functional for a planarsolid-liquid interface with normal z

Page 12: From Pattern  Formation  to  Phase Field Crystal Model

(110)z

110

110

101

0

0

0

FuFuFu

D

D D

2

110 110

2

110 110

2101 10 1 101 101

011 011 0 11 011

ˆ ˆ, 0

ˆ ˆ, 1

, , , 1ˆ ˆ4, , ,

K K K z

K K K z

K K K KK z

K K K K

110K

110K

101K

su

0 z

For the crystal face{110} is separated into three subsets

z1

0 14

Bcc-liquid interface profile

Page 13: From Pattern  Formation  to  Phase Field Crystal Model

Anisotropic Density Profiles

(1,0)z

(1,1)z

1

2

10 , 10

01 , 01

K

K

1 10 , 10 , 01 , 0 1K

Symmetry breaks at interfaces → Anisotropy

(3, 1)z

1

2

10 , 10

01 , 01

K

K

2D Square Lattices

Page 14: From Pattern  Formation  to  Phase Field Crystal Model

n x 10-23 (cm-3)

0 0

1( ) ( )yx LL

x y

n z dxdy rL L

0

iK rK

K

u e

Comparison with MD results

BCC Iron

Page 15: From Pattern  Formation  to  Phase Field Crystal Model

100 1104

100 110

Fe 100 110 111 4 (%)

MD (MH(SA)2) 177.0(11) 173.5(11) 173.4(11) 1.0(0.6)GL theory 144.26 145.59 137.57 1.02

Predict the correct ordering of and weak anisotropy 1% for bcc crystals

Anisotropy

(erg/cm2)

Comparison with MD results

Atomistic details (Crystal structures) matter!

Page 16: From Pattern  Formation  to  Phase Field Crystal Model

Methodology for atomistic simulations

Molecular Dynamics (MD) Mean field theoryGinzburg-Landau theory

Realistic physics Resolve vibration modes (ps)

0

1

Rely on MD inputs Average out atomistic details Diffusive dynamics (ms) Larger length scale (m) Elasticity, defect structure, … etc?

Page 17: From Pattern  Formation  to  Phase Field Crystal Model

Methodology for atomistic simulations

Molecular Dynamics (MD) Mean field theoryPhase field crystal (PFC)

Average out vibration modes (ms) Atomistic details – elasticity, crystalline planes,

dislocations, … etc.

Realistic physics Resolve vibration modes (ps)

Page 18: From Pattern  Formation  to  Phase Field Crystal Model

(001) plane of bcc crystals

(100) (110)

Formulation - Phase Field Crystal

Capillary Anisotropy?Elasticity?

Swift & Hohenberg, PRA (1977)2D Patterns – Rolls, Hexagons

Elder et al., PRL (2002)Propose a conserved SH equation

The Free Energy Functional

Equation of Motion

Page 19: From Pattern  Formation  to  Phase Field Crystal Model

PFC Model – Phase Diagram

{110}

iK rK

K

A e

Phase diagram

Conserved Dynamics

Page 20: From Pattern  Formation  to  Phase Field Crystal Model

Maxwell construction

Seek the perturbative solution

The solid-liquid coexistence region

A weak first-order freezing transition(The multi-scale analysis of bcc-liquid interfaces will be carried out around c)

Multi-scale Analysis

Assumption – interface width is much larger than lattice parameter

Page 21: From Pattern  Formation  to  Phase Field Crystal Model

0iA Z

iiK re

Small limit – diffuse interfaceMulti-scale analysis

Equal chemical potential in both phases

One of twelve stationary amplitude equations

Multi-scale Analysis – Amplitude equation

Page 22: From Pattern  Formation  to  Phase Field Crystal Model

u110

Order Parameter Profile Comparison

(110)z For the crystal face

2

0.0923 for Fe with

MH(SA) potential (MD)

Determination of the PFC model Parameter from densityfunctional theory of freezing

Page 23: From Pattern  Formation  to  Phase Field Crystal Model

100 1104

100 110

Fe 100 110 111 4 (%)

MD (MH(SA)2) 177.0(11) 173.5(11) 173.4(11) 1.0(0.6)GL theory 144.26 141.35 137.57 1.02

PFC 144.14 140.67 135.76 1.22

Predict the correct ordering of 100 > 110 > 111

and weak anisotropy 1% for bcc crystals

Anisotropy

(erg/cm2)

Comparison with MD results

Page 24: From Pattern  Formation  to  Phase Field Crystal Model

What about Other Crystal Structures?

{110}

iK rK

K

A e

Phase diagram

Page 25: From Pattern  Formation  to  Phase Field Crystal Model

2 3 42 110 3 110 4 110F a u a u a u

(110)

(011)

(101)

F

u110

x

y

z

BCC-Liquid

2 42 200

23 111 200

2 42 111 4 1 01 201 4

b u u

a u bF b u ua u

111 11 1

200

F

FCC-Liquid

3

1

2 42 111 4 111

1, 1, 1

ixi

K

F a u a u

cannot form The principal reciprocal lattice vectror

of fcc

0

cannot form solid- liquid interf

triad

aces

GL theory of fcc-liquid interfaces

Page 26: From Pattern  Formation  to  Phase Field Crystal Model

The Two-mode fcc model

2 (2,0,0)a

K

)(KS

2 (1,1,1)a

The PFC model

220

22

1

1 1,1,1 13

1 42,0,033

K

K

FCC Model

Phase Diagram

Twin Boundary

FCC Polycrystal

Page 27: From Pattern  Formation  to  Phase Field Crystal Model

Design Desired Lattices

Example: Square Lattices

Single-mode model

Multi-mode model

Dictate interaction angle(lattice symmtry)

Elasticity

Page 28: From Pattern  Formation  to  Phase Field Crystal Model

Grain Boundary

Grain boundary is composed of dislocations

Geometric arrangement of crystals determines dislocation distribution

Distinct evolution for low and high angle grain boundary

Symmetric tilt planar grain boundary in goldby STEM

: magnitude of Burgers vector: misorientation

bD

b

D

D

D

Page 29: From Pattern  Formation  to  Phase Field Crystal Model

GB sliding and coupling

/ 2

GB Coupling – Low Angle GB GB Sliding – High Angle GB

tD

nD

/ 2

Sutton & Balluffi, Interfaces in Crystalline Materials, 1995

Well described bycontinuum theory

Page 30: From Pattern  Formation  to  Phase Field Crystal Model

Large Misorientations

Curvature driven motionG.B. sliding (fixed misorientation)

remains constant

20

Well described by classical continuum theory

Page 31: From Pattern  Formation  to  Phase Field Crystal Model

Small Orientations

5

Atoms at the center of the circular grain

2 GBF R D Theory that only considers

Misorientation decreases?

Misorientation increases!

Page 32: From Pattern  Formation  to  Phase Field Crystal Model

Small Misorientations

G.B. coupling

Misorientation-dependent mobility:

For symmetric tilt boundaries

(Taylor & Cahn)

Misorientation increasesGB energy increases

Page 33: From Pattern  Formation  to  Phase Field Crystal Model

22 1

~ /

(1 )

m

m

v C r

Area r C at

Intermediate Misorientations – cont.

2.3m

10

Page 34: From Pattern  Formation  to  Phase Field Crystal Model

Intermediate Misorientations

10

Faceted–Defaceted Transition

Frank-Bilby formula Tangential motion of dislocations Annihilation of dislocations

Page 35: From Pattern  Formation  to  Phase Field Crystal Model

Intermediate Misorientations – cont.

dD

Instability of tangential motion occurs when

2

1 21

1 2 1 2ˆ

b brdN n b b b

0 /3F

2

sin / 63 32 cos / 6 2

R G

F

F F

G F

Spacing d1 is a function of GB normal n

Page 36: From Pattern  Formation  to  Phase Field Crystal Model

Three-Grain System

5.2o

5.2o

0o

Grain Rotation?

GB wiggles

Page 37: From Pattern  Formation  to  Phase Field Crystal Model

Grain Rotation

5.2o

0o

5.2o

0o

5.2o

Page 38: From Pattern  Formation  to  Phase Field Crystal Model

Grain Translation

Page 39: From Pattern  Formation  to  Phase Field Crystal Model

5.2º

-5.2º

0ºGB

Wriggles

Page 40: From Pattern  Formation  to  Phase Field Crystal Model

Dihedral anglefollows Frank’s formulanot the Herring relation

Page 41: From Pattern  Formation  to  Phase Field Crystal Model

Self-Assembled Quantum Dots

Lee et al., Lawrence Livermore National Laboratory

Quantum-dot LEDs Other Applications- Tunable QD Laser- Quantum Computing- Telecommunication- and more

Quantum dots InAs/GaAsNg et al., Univ. of Manchester, UK

Page 42: From Pattern  Formation  to  Phase Field Crystal Model

ˆ exp x yh ik x ik y

2 2 2ˆ , ,

2 2 10 100 nmcc

U h k E E kA

k E

D

Linear perturbationcalculation

k

UAD

ck

Film

Substrate

h

z

x

Stress Induced Instability – Asaro-Tiller-Grinfeld Instability

f s

s

a aa

0

Schematic plot from Voorhees and JohnsonSolid State Physics, 59

Cullis et al. (1992): 40 nm thick Si0.79Ge0.21 on (001) Si substrate - Grown at 1023 K (Defect-free growth)

Misfit Parameter

as

af

Page 43: From Pattern  Formation  to  Phase Field Crystal Model

Later Stage Evolution - Cusp Formation - Dislocations

Si0.5Ge0.5/Si(001)Jesson et al., Z-Contrast, Oak Ridge Natl. Lab., Phys. Rev. Lett. 1993

High stress concentration at the tip

Page 44: From Pattern  Formation  to  Phase Field Crystal Model

Simulation Parameters

0.10

32

448 12802048

y y

x x

x

y

L NL NNN

yL81

yL87

0

22 4

2

112 4

F dr

Ft

The PFC model

Simulation parameters

Various sizes

HexagonalPhase

ConstantPhase

ConstantPhase

(1+xx)Lx

2

1900

480 1360# of atoms 15,000 40,000

o

o

y

o

x

a A

L A

L A

Page 45: From Pattern  Formation  to  Phase Field Crystal Model

Nonlinear Steady State for a Smaller k

k

Page 46: From Pattern  Formation  to  Phase Field Crystal Model

ˆxxˆyy

Quantitative Comparison of Strain Fields

1%xx 422 1 ,2 4

1 FF drt

ˆ ˆ,xx yy

y

Correct elastic fields Elastic fields relax much faster than the density field

iK

K r

K

eA

: conserved quantity: non-conserved quantityKA

Page 47: From Pattern  Formation  to  Phase Field Crystal Model

Critical Wavenumber vs Strain

Linear perturbation theory- Sharp Interface- Homogeneous Materials

22 xxc

Ek

: Young's modulus: Surface energyE

PFC simulationsPFC simulations

Classical Elasticity Theory

Nonlinear ElasticityxxE

Xie et al., Si0.5Ge0.5 films, PRL

2

1xx

c

W

Linear Elasticity

kc ~ xx2 for small strains

Nonlinear elasticity modifies length scale

Page 48: From Pattern  Formation  to  Phase Field Crystal Model

PFC modeling of nonlinear elasticity

Solid

Liquid

( )xxE

~ 0xx

2%xx

Inhomogeneous materials nonlinear elasticity

Page 49: From Pattern  Formation  to  Phase Field Crystal Model

Finite Interface Thickness Effect

Solid, E=Eo

Liquid, E=0

E(x,y)

c~1/2·

xx-2

W~-1/2

Finite interface thickness WElastic constants vary smoothlyacross the Interface region

Upper boundsint erface solidE E

Interface thickness is no longer negligible at the nanoscale

Page 50: From Pattern  Formation  to  Phase Field Crystal Model

Nonlinear Evolution for k ~ km

k

Page 51: From Pattern  Formation  to  Phase Field Crystal Model

3D Island – BCC Systems

Page 52: From Pattern  Formation  to  Phase Field Crystal Model

And More …

VLS nanowires Nano-particles with defects

Page 53: From Pattern  Formation  to  Phase Field Crystal Model

And More …

Page 54: From Pattern  Formation  to  Phase Field Crystal Model

Pattern Formation - Examples

Graphene

North Pole Hexagon on Saturn Ice CrystalAgular et al, Oxford University

HoneycombRock Formation in Ireland

Page 55: From Pattern  Formation  to  Phase Field Crystal Model

Collaborators

Mathis PlappLaboratoire de Physique de la Matière Condensée 

Ecole Polytechnique

Alain KarmaNortheatsern University

Peter W. VoorheesNorthwestsern University