89
From Diffusion to Anomalous Diffusion: A Century After Einstein M.F. Shlesinger (ONR) A. Blumen (Freiburg) G. Zumofen (ETH) J. Drager (Hamburg) E. Barkai (Notre Dame) R. Metzler (Nordita) S. Denisov (Dresden) O. Flomenbom (TAU) I.M. Sokolov (Berlin) A. Chechkin (Kharkov) A. Lubelski (TAU)

From Diffusion to Anomalous Diffusion

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: From Diffusion to Anomalous Diffusion

From Diffusion to Anomalous Diffusion:A Century After Einstein

M.F. Shlesinger (ONR)A. Blumen (Freiburg)G. Zumofen (ETH)J. Drager (Hamburg)E. Barkai (Notre Dame)R. Metzler (Nordita)S. Denisov (Dresden)O. Flomenbom (TAU)I.M. Sokolov (Berlin)A. Chechkin (Kharkov)A. Lubelski (TAU)

Page 2: From Diffusion to Anomalous Diffusion

The Diffusion Equation

),(),( 2

2

txPx

KtxPt ∂

∂=

∂∂

A. FickA. Einstein

M. Smoluchowski

Page 3: From Diffusion to Anomalous Diffusion

Brownian Motion

Page 4: From Diffusion to Anomalous Diffusion

The Diffusion Equation (1855)Continuity

),(div),( txjtxnt

rrr −=∂∂

+ linear response

=> the diffusion equation

the Green’s function solution

),(),( txPtxn rr →Essentially an equation for the pdf:

(1914,1915,1918)

),(),( txftxn rrrμ+

( )),(),( txntxf rrrμ∇−

),(grad),( txnKtxj rrr−=

),(),( txnKtxnt

rr Δ=∂∂

⎟⎠

⎞⎜⎝

⎛−= −

KtxKttxn d

4exp)4(),(

22/

rr π

Page 5: From Diffusion to Anomalous Diffusion

“The problem of the random walk”

“Can any of you readers refer me to a work wherein I should find a solution of the following problem, or failing the knowledge of any existing solution provide me with an original one? I should be extremely grateful for the aid in the matter. A man starts from the point O and walks l yards in a straight line; he then turns through any angle whatever and walks another l yards in a second straight line. Herepeats this process n times. Inquire the probability that after n stretches he is at a distance between r and r + δr from his starting point O”.

Karl PearsonNature, 1905

Page 6: From Diffusion to Anomalous Diffusion

Pearson’s random walk

Page 7: From Diffusion to Anomalous Diffusion

Emergence of Normal DiffusionEinstein, 1905

Postulates:i) Independent particles

ii) The particle’s motion during two consequent intervals is independent

iii) The displacement during t is s.

For unbiased diffusion:

Moreover, ∞<= ∫∞

∞−

dsss )(22 φλ

)()( ss −= φφ Essentially the Random Walk Model(1880, 1900, 1905×2)

Page 8: From Diffusion to Anomalous Diffusion

Motion as a sum of small independent increments: ∑=

=N

iistx

1)(

mean free path2/12

is=λ∞<< λ0

mean relaxation time2/12/ vλτ ∝

∞<< τ0τ/tN ≅

the central limit theorem

⎟⎠

⎞⎜⎝

⎛−= −

KtxKttxP

4exp)4(),(

22/1π

τλτ /22 ≡∝ vKwith

ji

N

ii ssNsNstx 2)( 2

2

1

2 +=⎟⎠⎞

⎜⎝⎛= ∑

=

Page 9: From Diffusion to Anomalous Diffusion

Brownian motion (simple random walk)

; K is the diffusion coefficient

Anomalous diffusion

(a)

Subdiffusion (dispersive)Superdiffusion

(b)

strong anomaly, ultraslow

Aim: creating framework for treating anomaly and strong anomaly in diffusion.

αttr ~)(2 ><

1<α1>α

)(log~)(2 ttr β><

Kttr ~)(2 ><

Page 10: From Diffusion to Anomalous Diffusion

Physics of Disorder- Subdiffusion

H. Scher and E. Montroll, 1975 in crystalline solids

∫==L

dltlndtd

dtdPtI

0

),()(

Page 11: From Diffusion to Anomalous Diffusion

In disordered solids (no matter organic or inorganic...)

Page 12: From Diffusion to Anomalous Diffusion

Dispersion of Contaminants

Page 13: From Diffusion to Anomalous Diffusion

Diffusion of tracers in fluid flows.

Large scale structures (eddies, jets or convection rolls) dominatethe transport.Example. Experiments in a rapidly rotating annulus (Swinney et al.).

Ordered flow:Levy diffusion(flights and traps)

Weakly turbulent flow:Gaussian diffusion

Page 14: From Diffusion to Anomalous Diffusion

Superdiffusion

Page 15: From Diffusion to Anomalous Diffusion

The Flight of the Albatross

Page 16: From Diffusion to Anomalous Diffusion

Searching for Food

Page 17: From Diffusion to Anomalous Diffusion

Normal vs. Anomalous Diffusion

Page 18: From Diffusion to Anomalous Diffusion

Anomalous is Normal...

Page 19: From Diffusion to Anomalous Diffusion

CTRW Frameworks1. Probability distribution to make a step r in time t.

Single motion event

2. Jump Model

p.d. of being at r at time t.

Fourier-Laplace

3. , decoupling

4. Velocity model:

=),( trψ

)()(),( trptr ψψ =

Probability to move distance r’ atτ τ

Page 20: From Diffusion to Anomalous Diffusion

5. Possible generalizations:Distribution of velocitiesCoupled modelsDistance dependent velocities

6. ')'()(~),(~ dttvtrtrt∫∞

−Ψ ψδ

Page 21: From Diffusion to Anomalous Diffusion

Waiting Times

Continuous time random walk (CTRW) model.

Page 22: From Diffusion to Anomalous Diffusion
Page 23: From Diffusion to Anomalous Diffusion

CTRW

1. Within the random walk framework:(a) Small changes in step length or time not enough (b) Need for processes on all scales;broad distribution no moments

2.

3. Long tailed distributions temporal (subdiffusion)spatial (superdiffusion)

αKttr ~)(2 ><Simple distributions

Broad distributions

Page 24: From Diffusion to Anomalous Diffusion

Explanation: The CTRW

)/exp()/exp()(

0

0

TkEEEE

Bii

ii

−=−∝

ττρ

αψ −−∝ 1)( ttThe waiting-time distribution between the two jumpswith 0/ ETkB=α

Diffusion anomalies for 0 < α < 1: the mean waiting time diverges!

Note: The CTRW processes with the power-law waiting times(with 0 < α < 1) are always nonstationary!

Page 25: From Diffusion to Anomalous Diffusion
Page 26: From Diffusion to Anomalous Diffusion

The Subordination

PDF of the particle’sposition after n steps

(say, a Gaussian)

Probability to makeexactly n steps up to

the time t

∑∞

=

=0

)(),(),(n

n tnxFtxP χ

)(~)1(11)(~1),(~̂

22 ukuuukf

ψλψ

−−−

=

the limiting form of the characteristic function in Laplace representation

The second moment αψ −−∝ 1)( tt ⇒ αψ Auu −≅ 1)( αttx ∝)(2

Page 27: From Diffusion to Anomalous Diffusion
Page 28: From Diffusion to Anomalous Diffusion

Forms of stable distributions (Levy)

10 << α20 << α

αα +∞→ 11~)(

xxPαα +∞→ 1

1~)(x

xP

Page 29: From Diffusion to Anomalous Diffusion

yxCyxBAyxV coscos)sin(cos),( +++=

Page 30: From Diffusion to Anomalous Diffusion
Page 31: From Diffusion to Anomalous Diffusion

Questions:

• Can Anomalous diffusion be described on the same level of description as simple diffusion?

• How does anomalous diffusion modify reactions and first passage times?

• Can we use a generalization of:

),(),( 2

2

txPx

KtxPt ∂

∂=∂∂

Page 32: From Diffusion to Anomalous Diffusion

Fractional Diffusion Equations• Following scaling arguments one can postulate equationswhich are of non-integer order in time or in space, e.g.

),(),( 2

2

txPx

KtxPt ∂

∂=

∂∂

α

α

or

),(),( 2

2

1

1

txPxt

KtxPt ∂

∂∂∂

=∂∂

α

α

Such equations allow for :• easier introduction of external forces• introduction of boundary conditions• using the methods of solutions known for “normal” PDEs

Page 33: From Diffusion to Anomalous Diffusion

Fractional Derivatives

1695 Leibnitz - de l’Hospital

nmnmmn

n

tnm

mtnm

mtdtd −−

−+Γ+Γ

≡−

=)1(

)1()!(

!

Trivial generalization: νμμνμν

ν

νμμ −

−+Γ+Γ

== ttDtdtd

t )1()1(

0

Interesting: νν

ν−

−Γ= tDt )1(

110

This definition is enough to handle the functions which can beexpanded into Taylor series, but obscures the nature of the fractional differentiation operator.

Page 34: From Diffusion to Anomalous Diffusion

All modern definitions are based on generalizations of the repeated integration formula:

∫ ∫ ∫ ∫−

−− −−

==x

a

y

a

y

a

x

a

nnn

nxa

n

dyyfyxn

dydyyfxfD1 1

)()()!1(

1...)(...)( 11

Its generalization is: The fractional integral

)10()'()'(

)(1)(

0

0 1 <<−Γ

= ∫ −− p

tttf

ptfD

t

tp

ptt

Fractional derivatives may be defined through additional differentiation:

[ ])1()()( )(00

+== −− qntfDdtdtfD qn

ttn

nqtt

Fractional derivatives are nonlocal integral operatorsand are best suited for the description of nonlocalities in space(long jumps) or time (memory effects)

Page 35: From Diffusion to Anomalous Diffusion
Page 36: From Diffusion to Anomalous Diffusion

∫ −−Γ∂∂

=− t

t dttfttt

tfD0

10 ')'(

)'(1

)1(1)( α

α

α

)',(),( 2

21

0 txPx

KDtxPt t ∂

∂=

∂∂ −α

Page 37: From Diffusion to Anomalous Diffusion

The Fractional Fokker-Planck Equation

• Force-free mean squared displacement

• Stationary solution

2sec][ −= ααη

αα

αt

Ktx

)1(2

)( 02

+Γ=><

α

α ηmTkK B= Generalized Einstein-Stokes relation

Page 38: From Diffusion to Anomalous Diffusion

Not all systems obey the fractional Fokker-Planck Equation

• Fractional Langevin equation

)()()( 02

2

tTtxDmtxdtdm t =+ α

αη

T(t) = Gaussian random noiseα−tTtT ~)0()(

• The corresponding diffusion equation is:

),(),( FBM2

21

FBM txPx

tKtxPt ∂

∂=

∂∂ −α

αα

Local in time

The fractional Brownian motion

Page 39: From Diffusion to Anomalous Diffusion
Page 40: From Diffusion to Anomalous Diffusion

Single molecule experiments in proteins

• Fluorescence resonant energy transfer (tens of angstroms).• Photo-induced electron transfer (a few angstroms)

eqXtXtx −= )()(

S. C. Kou and X. S. Xie, PRL (2004)W. Min et al., PRL (2005)

Page 41: From Diffusion to Anomalous Diffusion

Not all diffusion processes lead to power-law scaling

Prominent examples are:•Simple crossover models in CTRW: Waiting-time distributionswith exponential cutoff•Sinai diffusion: Retarding subdiffusion typically with logarithmicscaling (genuine model corresponds to α = 4).•Retarding superdiffusion: Truncated Lévy flights.

ttx αln)(2 ∝

Although such examples can easily be formulated within theframework of (continuous time) random walks, they can notbe described through the fractional diffusion equations. ⇒ We need generalizations of the FDE scheme.

Page 42: From Diffusion to Anomalous Diffusion

Distributed-Order Diffusion Eqns.

2

21

0

1 )(xPK

tPpd

∂∂

=∂∂

∫ −β

ββ ββτ

Example: The equation with the distributed-order Caputoderivative in the l.h.s.

The Fourier-Laplace representation of the Green’s function

τττ

KksIsI

sskf 2)(

)(1),(~̂+

= )()()(1

0

βτβτ β psdsI ∫=

shows that a process may be subordinated to a Wiener process:

with

),(4

),(0

4/2

tTedtxPx

ωπω

ωω

∫∞ −

= with )()(),(~ τωτω sIessIsT −=

Page 43: From Diffusion to Anomalous Diffusion

References:“Beyond Brownian Motion”Physics Today, 49, 33 (1996).

“Strange Kinetics”Nature 363, 31 (1993).

“The Random Walk Guide…”Physics reports 339, 1 (2000).

“Fractional Kinetics”Physics Today 55, 48 (2002).

“The Restaurant at the End of the Random Walk….”Journal Physics A 37, R161 (2004).

“Anomalous Diffusion Spreads its Wings”Physics World 18, 29 August (2005).

Page 44: From Diffusion to Anomalous Diffusion

Simple Example: A Crossover)()()( 2211 ββδββδβ −+−= BBpTwo different β-values:

with β1 < β22

2

21

1

121

1

0

)()()( βββββ ττβτβτ sBsBpsdsIbb

+== ∫

⎟⎠

⎞⎜⎝

⎛−=

⎭⎬⎫

⎩⎨⎧= −

+−12

212

2

2

11,

2

1-2 2)(

12)( βββββ

βττ

τ tbbEt

bK

ssIKtx sL

From the asymptotics of the generalized Mittag-Leffler functionat small / large negative arguments one gets

The process described is a decelerating subdiffusion

2

2

)1(2

22

2 ββ

τβτ tt

BDx ∝⎟

⎠⎞

⎜⎝⎛

+Γ≈ 1

1

)1(2

11

2 ββ

τβτ tt

BDx ∝⎟

⎠⎞

⎜⎝⎛

+Γ≈

large tsmall t

Page 45: From Diffusion to Anomalous Diffusion

Example: Sinai-like Diffusion1)( −= ννββpThe Sinai-like models correspond to

( )[ ]⎩⎨⎧

<<+Γ>>

≈= ∫ 1,/1ln/)1(1,ln/

)()()(1

0 ττντττν

βτβτ νβ

sssss

psdsI

The long-time behavior of the pdf (t/τ >> 1):

⎭⎬⎫

⎩⎨⎧

⎟⎠⎞

⎜⎝⎛ +Γ

−⎥⎦

⎤⎢⎣

⎡ +Γ≈

)/(ln||)1(exp

)/(ln)1(

41),( 2/

2/12/1

ττν

τν

τ νν tx

KtDtxP

Note the characteristic tent-like shape of the pdf with

)/(ln)1(

2)(2 τν

τ ν tKtx+Γ

so that

Page 46: From Diffusion to Anomalous Diffusion

Riemann-Liouville DODE for subdiffusion

∫ ∂∂

=∂

∂ −−1

02

21

01 ),()(),( txP

xDKpd

ttxP

tββτββ

[ ]( )τKksIssIskf

RLRL2)()(

1),(+

=

The Laplace transform of the characteristic function:

with ∫ −=1

0

))(()( βτββ spdsIRL

The solution in a subordination form:

),(4

),(0

4/2

tTedtxP RL

x

ωπω

ωω

∫∞ −

= with )(/

)(1),(~ sI

RLRL e

ssIsT ωω −=

Page 47: From Diffusion to Anomalous Diffusion

The crossover model for subdiffusion

)()()( 2211 ββδββδβ −+−= BBpTwo different β-values:with β1 < β2

221121

1

0

)()()( βββββ ττβτβτ sBsBpsdsI +== ∫

The process described is an accelerated subdiffusion

1

1

)1(2

11

2 ββ

τβτ tt

BKx ∝⎟

⎠⎞

⎜⎝⎛

+Γ≈

small t

21

)1(2

)1(2)(2)(

2

2

1

112ββ

τβτ

τβτττ ⎟

⎠⎞

⎜⎝⎛

+Γ+⎟

⎠⎞

⎜⎝⎛

+Γ=

⎭⎬⎫

⎩⎨⎧= − tKBtKB

ssILDtx RL

s

2

2

)1(2

2

22 ββ

τβτ ttKBx ∝⎟

⎠⎞

⎜⎝⎛

+Γ≈

large t

Page 48: From Diffusion to Anomalous Diffusion

Example: A simple crossover

111

1

)(

1)(

++ +≅

−−=Ψ

βα

βα

βαψt

bt

at

tb

tat

Easier to start from cumulativefunctions:

2

11

2

2

)()(

11)(

βα

βα

βα

βαψdtct

tdtct

dtctt

++

+−=Ψ

−−Acceleratingprocess

Slowing downprocess

Page 49: From Diffusion to Anomalous Diffusion

The fluorescence lifetime of flavin is shortened upon binding to the protein.

Free FLavin in water Flavin bound in FRE

Long and single exponential Shortened and multi-exponential

NADH:Flavin Oxidoreductasefrom E. Coli

Page 50: From Diffusion to Anomalous Diffusion

Rules of Thumb

The equations with the distributed-order fractional derivative on the “proper” side describe the processes getting more anomalous in the course of time.

The equations with the distributed-order fractional derivative on the “wrong” side describe the processes getting less anomalous in the course of time.

Page 51: From Diffusion to Anomalous Diffusion
Page 52: From Diffusion to Anomalous Diffusion

Levy Flights1. Consider a random walker each of whose steps is an identically

distributed random variable with pdf p(x).

2. When can Pn(x), the pdf of being at x after n steps, be the same as p(x)?

3.

4. , Gaussian; (finite)

,

]exp[)( γknkPn −= 20 ≤< γγ−−

∞→

1~)(lim xnxPnx20 << γ

2=γnnx ~)(2 ><

2<γ γkckPnk−

→1~)(lim

0

∞→∂∂−=>=< 2222 /)()()( kkPxxdxPnx=∫ 0knn

Page 53: From Diffusion to Anomalous Diffusion

Spatial derivatives

Riesz-Weil symmetric derivative:

( )[ ]

⎪⎩

⎪⎨

=−

≠+−=

∞∞−

1,

1,2/cos2

1

)(αφ

αφφπαφ

αα

α

α

Hdxd

DDx

xdd xx

with H being a Hilbert-transform.

In the Fourier-representation

φφ αα

αˆ||

||ˆ k

xdd

−=⎟⎠

⎞⎜⎝

⎛Φ

Page 54: From Diffusion to Anomalous Diffusion

Possible positions of derivatives:

Riemann-Liouville derivative on the “wrong” side (r.h.s.)

Riesz-Weyl derivative on the “correct” side (r.h.s.)

Riesz-Weyl derivative on the “wrong” side (l.h.s.)

Caputo derivative on the “correct” side (l.h.s.)

),(),( 2

2

txPx

KtxPt ∂

∂=

∂∂

α

α),(),( 2

2

1

1

txPx

Kt

txPt ∂

∂∂∂

=∂∂

α

α

),(),( 2

2

txPx

KtxPt β

β

∂∂

=∂∂ ),(),( 2

2

22

22

txPx

KtxPtx ∂

∂=

∂∂

∂∂

− −

β

β

Normal forms: Modified forms:

Page 55: From Diffusion to Anomalous Diffusion

The Fractional Fokker-Planck Equation

• Force-free mean squared displacement

• Stationary solution

2sec][ −= ααη

αα

αt

Ktx

)1(2

)( 02

+Γ=><

α

α ηmTkK B= Generalized Einstein-Stokes relation

Page 56: From Diffusion to Anomalous Diffusion

Blinking Quantum Dots

Page 57: From Diffusion to Anomalous Diffusion

Ultraslow Diffusion: The Sinai Model

( ) 2/1max )( xxU Δ∝ΔScaling considerations:

( )( )2/10

max0 exp

)(exp)( xconst

TkxU

xtB

Δ⋅∝⎟⎠

⎞⎜⎝

⎛ Δ≅Δ ττ

Inverting this relation we get: tx 2log∝Δ tx 42 log∝Δ

The PDF of Δx is approximately double-sided exponential

or

ttx 3/42 log)( ∝

Page 58: From Diffusion to Anomalous Diffusion

Frameworks for anomalous diffusion

1. Generalized diffusion equation

2. Fractional Brownian motion

3. Random velocity fields

4. Self avoiding walks

5. Fractional Fokker Planck Equation (FFPE)

6. Continuous Time Random Walk (CTRW)

7. Sinai diffusion

Page 59: From Diffusion to Anomalous Diffusion

Coupled modelPossibility to include within the velocity model, interruptions by spatiallocalization (jump model)

)(~ tψ

Page 60: From Diffusion to Anomalous Diffusion

Waiting Times

Continuous time random walk (CTRW) model.

Page 61: From Diffusion to Anomalous Diffusion

Subdiffusion (dispersive transport)1, <ααt

1. Jump Model, decoupling

well behaved

no time scale

2. From CTRW:

)(rp10,~)( 1 <<−− αψ αtt

∞>=< t

)()(),( trptr ψψ =

10,~)(2 <<>< ααttr

Page 62: From Diffusion to Anomalous Diffusion

Subdiffusion (dispersive transport)

3. one dimension

“Stretched” Gaussian

2// αξ tr=

⎩⎨⎧

=−−−

),),exp()exp(

~)(2

21

αδξξξξξ

ξδ -2/(2 large

small b

aaf

1, <ααt

Page 63: From Diffusion to Anomalous Diffusion

P(r,t)

1. Brownian motion

Gaussian

2. Subdiffusion

“Stretched” Gaussian

2/12 /)exp()( txcf =−= ξξξ ,

ttx ~)(2 ><

2// αξ tr=

⎩⎨⎧

=−−−

),),exp()exp(

~)(2

21

αδξξξξξ

ξδ -2/(2 large

small b

aaf

αttx ~)(2 ><

Page 64: From Diffusion to Anomalous Diffusion

Equivalence of the forms

• RL-Form • C-form

2

21

0 xWKWDt ∂

∂=−

ββ

2

21

0 xWDK

tW

t ∂∂

=∂

∂ −ββ

)()0,( xxf δ=under the initial condition

Under the Laplace-transform the equations take the same form:

The two forms of fractional spatial equations show their equivalence under the Fourier transform

),(~)0,(),(~2

21 sxp

xKxpssxps

∂∂

=− −β

ββ

Page 65: From Diffusion to Anomalous Diffusion

Definitions of derivatives:Temporal derivatives

RL derivative

Caputo derivative

Relation between RL- and C-forms: )0()1(

)()( * fttfDtfD tt μ

μμμ

−Γ+=

10)'()'(

1')1(

1

0

1*0 <≤

∂∂

−−Γ= ∫− μ

μ μβ

t

t tfttt

dtfD

10)'()'('

)1(1

0

10 <≤

−∂∂

−Γ= ∫− μ

μ μβ

t

t tttfdt

tfD

Under Laplace-transform

{ } )(~)(0 sfstfDL tμμ = { } )0()(~)( 1

*0 fssfstfDL t−−= μμμ

Page 66: From Diffusion to Anomalous Diffusion

Some Solutions

Free diffusion:Left: Normal diffusionRight: Subdiffusion with α = 1/2

Ornstein-Uhlenbeckprocess: Diffusion in a harmonic potential

I.M. Sokolov, J. Klafter and A. Blumen, Fractional Kinetics , Physics Today, November 2002, p.48

Page 67: From Diffusion to Anomalous Diffusion

Fluctuating Enzymes

Page 68: From Diffusion to Anomalous Diffusion
Page 69: From Diffusion to Anomalous Diffusion

Broad distributions; Long range correlations; Tails

Generalization of the central limit theorem (Levy stable distributions)

Page 70: From Diffusion to Anomalous Diffusion

The Diffusion Equation (1855)Continuity

),(div),( txjtxnt

rrr −=∂∂

+ linear response

=> the diffusion equation

the Green’s function solution

),(),( txPtxn rr →Essentially an equation for the pdf:

),(grad),( txnKtxj rrr−=

),(),( txnKtxnt

rr Δ=∂∂

⎟⎠

⎞⎜⎝

⎛−= −

KtxKttxn d

4exp)4(),(

22/

rr π

Page 71: From Diffusion to Anomalous Diffusion

Simple Random Walk

Schematic representation of a Brownian random walk. The walker jumps at each time step to a randomly selected direction.

Page 72: From Diffusion to Anomalous Diffusion
Page 73: From Diffusion to Anomalous Diffusion
Page 74: From Diffusion to Anomalous Diffusion

⎟⎠

⎞⎜⎝

⎛−= −

KtxKttxP

4exp)4(),(

22/1π

τλτ /22 ≡∝ vKwith

Page 75: From Diffusion to Anomalous Diffusion

2. Anomalous is normal1. Normal is anomalous

Page 76: From Diffusion to Anomalous Diffusion

Gaussian, Exponential and Pareto Distributions

Page 77: From Diffusion to Anomalous Diffusion

Levy-Pareto

• Self similarity (fractals)< t > = ∞or< x2(n) > = ∞

• Modifying the 1905 assumptionsτ → ∞λ → ∞

• Memory or “Funicity” (after “Funes the memorious” by Jorge Luis Borges)

Page 78: From Diffusion to Anomalous Diffusion

Forms of stable distributions (Levy)

10 << α20 << α

αα +∞→ 11~)(

xxPαα +∞→ 1

1~)(x

xP

Page 79: From Diffusion to Anomalous Diffusion

“I do not believe a word he is saying, but I am afraid that one day I will have to learn it”

Bob Silbey, 1983

Page 80: From Diffusion to Anomalous Diffusion

Example: A simple crossover

111

1

)(

1)(

++ +≅

−−=Ψ

βα

βα

βαψt

bt

at

tb

tat

Easier to start from cumulativefunctions:

2

11

2

2

)()(

11)(

βα

βα

βα

βαψdtct

tdtct

dtctt

++

+−=Ψ

−−Acceleratingprocess

Slowing downprocess

Page 81: From Diffusion to Anomalous Diffusion

111 )( ++ +≅ βαβαψt

bt

at2

11

2 )()( βα

βα βαψdtct

tdtct++

≅−−

Slowing down process Accelerating process

βα −− +≅

BtAttn 1)(1

βα DtCttn +≅)(2

a very simple form, a sum of 2 fractional Caputo operators

βα td

tct

~~)(2 +=Φ

a very simple form, a sum of 2 fractional RL-operators

βα tb

tatC +=)(1 βα dtct

tC+

=1)(2

βα tbtat ~~

1)(2 +≈Φ

does not resemble any fractional diff. operator

does not resemble any fractional diff. operator

Page 82: From Diffusion to Anomalous Diffusion

Superdiffusion and a Wiener Process

The waiting-time distribution cannot be defined.The density of eventsfollows the power-law

),(4

),(0

4/2

tTedtxPx

τπω

ωτ

∫∞ −

=

),,/(),( ββττ ββ −= − tLttT

Subordination form:

with

βρρ −−∝ 1)(p

Page 83: From Diffusion to Anomalous Diffusion

“I do not believe a word he is saying, but I am afraid that one day I will have to learn it”

Bob Silbey, 1983

Page 84: From Diffusion to Anomalous Diffusion
Page 85: From Diffusion to Anomalous Diffusion

”I used a waiting time distribution that had such a long time tail that the mean time of it did not exist. That was the step! Everything fell into place.”

Harvey Scher

Page 86: From Diffusion to Anomalous Diffusion

Fractional Diffusion Equations (1985, 1989)

• In many physical situations (non-Fickian diffusion)

2/1,)( ≠∝ ααttX

• Following scaling arguments one can postulate (and sometimesderive) fractional equations for anomalous diffusion:

holds

),(),( 2

2

1

1

txPxt

KtxPt ∂

∂∂∂

=∂∂

α

α

or),(),( 2

2

txPx

KtxPt β

β

∂∂

=∂∂

Such equations allow for • easier introduction of external forces• introduction of boundary conditions• using the methods of solutions known for “normal” PDEs

Reasonable values of the orders of derivatives: 0 < α < 1 for subdiffusion; 0 < β < 1 for superdiffusion.

Page 87: From Diffusion to Anomalous Diffusion

Congratulations

Bob

Congratulations

Bob

Page 88: From Diffusion to Anomalous Diffusion
Page 89: From Diffusion to Anomalous Diffusion

“I do not believe a word he is saying, but I am afraid that one day I will have to learn it”

Bob Silbey, 1983