14
Frequency Response of a Circuit Z. Aliyazicioglu Electrical and Computer Engineering Department Cal Poly Pomona ECE307 ECE 307-4 2 Frequency Response of a Circuit Analysis of a circuit with varying frequency of a sinusoidal sources is called the frequency response of a circuit Some Preliminaries , Frequency selection in the circuits are called filters because of their ability to filter out certain input signals on the basis of frequency Filter Input signal Output signal

Frequency response of circuit - Cal Poly Pomona

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Frequency response of circuit - Cal Poly Pomona

1

Frequency Response of a Circuit

Z. Aliyazicioglu

Electrical and Computer Engineering DepartmentCal Poly Pomona

ECE307

ECE 307-4 2

The Laplace TransformFrequency Response of a Circuit

Analysis of a circuit with varying frequency of a sinusoidal sources is called the frequency response of a circuit

Some Preliminaries

, Frequency selection in the circuits are called filters because of their ability to filter out certain input signals on the basis of frequency

FilterFilterInput signal Output signal

Page 2: Frequency response of circuit - Cal Poly Pomona

2

ECE 307-4 3

Frequency Response of a Circuit

We remember that the transfer function is the output voltage to the input voltage of a circuit in s-domain is.

0( )( )( )i

V sH sV s

=

0( )( )( )i

V jH jV j

ωωω

=

Using sinusoidal source, the transfer function will be the magnitude and phase of output voltage to the magnitude and phase of input voltage of a circuit .

In this case we will use (jω) instead of s .

Some Preliminaries

ECE 307-4 4

Frequency Response of a Circuit

Using transfer function of circuit, we plot a frequency response of the circuit for both amplitude and phasewith changing source frequency

One graph of |H(jω)| versus frequency jω. It is called the Magnitude plot.One graph of θ(jω) versus frequency ω. It is called the Phase Angle plot

Frequency Response

Passband

ωc

ω

|H(jω)|

Stopband

ωc

ωθ(jω)

θ(jωc)

ωc : Cutoff frequency

Page 3: Frequency response of circuit - Cal Poly Pomona

3

ECE 307-4 5

Frequency Response of a Circuit

A Low-Pass filter passes signals at frequencies lower than the cutoff frequency from the input to the output

Filter

A High-Pass filter passes signals at frequencies higher than the cutoff frequency from the input to the output

Passbandω

|H(jω)|

Stopband

ωcθ(jω)

θ(jωc)

ωc Cutoff frequency

Passbandω

|H(jω)|

Stopband

ωcθ(jω)

θ(jωc)

Ideal Low-Pass Filter Ideal High-Pass Filter

00

ECE 307-4 6

Passband

Frequency Response of a CircuitFilter

A Band-reject filter passes signals outside the band defined by two cutoff frequencies from the input to the output

Passbandω

|H(jω)|

Stopband

ωc2θ(jω)θ(jωc1)

ωc Cutoff frequency

Passband

ω

|H(jω)|

Stopband

θ(jω)

θ(jωc1)

Ideal Band-Pass Filter Ideal Band-Reject Filter

Stopband

ωc1

θ(jωc1)

ωc2ωc1θ(jωc1)

0

A Band-Pass filter passes signals within the band defined by two cutoff frequencies from the input to the output

Page 4: Frequency response of circuit - Cal Poly Pomona

4

ECE 307-4 7

Frequency Response of a Circuit

ω = max1( )2cH j H

The transfer function magnitude is decreased by the factor 1/√2 from its maximum value is called cutoff frequency

Cutoff Frequency

|Hmax | is the maximum magnitude of the transfer function

ECE 307-4 8

Frequency Response of a Circuit

A Serial RL CircuitLow-Pass Filter

( )

RLH s RsL

=+

0( )( )i

V s RV s sL R

=+

( )

RLH j RjL

ωω

=+

To find frequency response, substitute s=jω in equation

22

( )

RLH jRL

ω

ω

= +

1( ) tan LjRωθ ω − = −

Phase ResponseMagnitude Response

RVi(s)

-

+

sL1 2

Vo(s)

Page 5: Frequency response of circuit - Cal Poly Pomona

5

ECE 307-4 9

Frequency Response of a Circuit

When ω=0

22

( 0) 1

0

RLH jRL

= = +

1 0( 0) tan 0LjR

θ − = − =

To find Cutoff Frequency

When ω=∞

22

( ) 0

RLH jRL

∞ = = ∞ +

1( ) tan 90LjR

θ − ∞ ∞ = − = −

22

1( )2c

c

RLH jRL

ω

ω

= = +

cRL

ω =

A Serial RL Circuit

Result

ECE 307-4 10

Frequency Response of a Circuit

Example

1000 0.1592 * *1000c

RL Hω π

= = =

R=1KΩ F=1KHz. L=? Plot H(jω). 10000.159( ) 1000

0.159

H jj

ωω

=+

>> R=1000;>> L=0.159;>> f=0:25:10000;>> w=2*pi*f;>> subplot (2,1,1)>> h=abs((R/L)./(j*w+(R/L)));>> semilogx(w,h)>> grid on>> title('|H(j\omega)|')>> xlabel ('\omega')>> ylabel ('|H(j\omega)|')>> theta=angle((R/L)./(j*w+(R/L)));>> subplot (2,1,2)>> degree=theta*180/pi;>> semilogx(w,degree)>> grid on>> title('\theta(j\omega)')>> xlabel('\omega')>> ylabel('\theta(j\omega)')

Page 6: Frequency response of circuit - Cal Poly Pomona

6

ECE 307-4 11

Frequency Response of a Circuit

Example

/( )/

R LH ss R L

=+

R=1KΩ F=1KHz. L=? Plot H(jω).

>> syms s

>> n=[0 1000/0.159];

>> d=[1 1000/0.159];

>> g=tf(n,d)

Transfer function:

6289

--------

s + 6289

>> bode (g)

>> grid on

Matlab

ECE 307-4 12

Frequency Response of a Circuit

V11Vac0Vdc

L1

0.159H1 2

R1

1k

VV

0

Fr e q u e n c y

1 0 0 Hz 3 0 0 Hz 1 . 0 KHz 3 . 0 KHz 1 0 KHz 3 0 KHz 1 0 0 KHzV( L1 : 2 ) V( V1 : +)

0 V

0 . 5 V

1 . 0 V

Example

fc=1KHz

Page 7: Frequency response of circuit - Cal Poly Pomona

7

ECE 307-4 13

Frequency Response of a Circuit

A Serial RC CircuitLow-Pass Filter

1

( ) 1RCH s

sRC

=+

0

1( )

1( )i

V s sCV s R

sC

=+

1

( ) 1RCH j

jRC

ωω

=+

To find frequency response, substitute s=jω in equation

22

1

( )1

RCH j

RC

ω

ω

= +

( )1( ) tanj RCθ ω ω−= −

Phase ResponseMagnitude Response

-Vo(s)+

R

1/sCVi(s)

ECE 307-4 14

Frequency Response of a Circuit

When ω=0

22

1

( 0) 110

RCH j

RC

= = +

( )1( 0) tan 0 0j RCθ −= − =

To find Cutoff Frequency

When ω=∞

22

1

( ) 01

RCH j

RC

∞ = = ∞ +

( )1( ) tan 90j RCθ −∞ = − ∞ = −

22

11( )21

c

c

RCH j

RC

ω

ω

= = +

1c RC

ω =

A Serial RC Circuit

Result

Page 8: Frequency response of circuit - Cal Poly Pomona

8

ECE 307-4 15

Frequency Response of a Circuit

Example A series RC low-pass filter cutoff frequency is 8KHz. R=10KΩ Find the capacitor value

1c RC

ω =1c

CRω

= 1 1.992 * * 8000 10000

C nFxπ

= =

Example A series RL low-pass filter cutoff frequency is 2KHz. R=5KΩ Find the inductor value. Find |H(jω)| at 50 KHz?

cRL

ω =c

RLω

=5000 2.52000

L H= =

50 2 22 2

50002.5( ) 0.0635

5000(2 * * 50000)2.5

KHz

RLH jRL

ω

ω π

= = = + +

ECE 307-4 16

Frequency Response of a Circuit

Example A series RC low-pass filter cutoff frequency is 8KHz. R=10KΩ, C=1.99 nF

r=10000;c=19.9*10^-9;

f=0:25:100000;w=2*pi*f;h=abs((1/(r*c))./(j*w+1/(r*c)));subplot (2,1,1)semilogx(w,h)grid ontitle('|H(j\omega)')xlabel ('\omega')ylabel ('|H(j\omega)')theta=angle((1/(r*c))./(j*w+1/(r*c)));subplot (2,1,2)degree=theta*180/pi;semilogx (w, degree)grid ontitle('\theta(j\omega)')xlabel('\omega')ylabel('\theta(j\omega)')

Page 9: Frequency response of circuit - Cal Poly Pomona

9

ECE 307-4 17

Frequency Response of a Circuit

V

R1

10k

C1

1.99n

0

V

V11Vac0Vdc

Fr e q u e n c y

1 0 0 Hz 1 . 0 KHz 1 0 KHz 1 0 0 KHz 1 . 0 MHzV( R1 : 1 ) V( V1 : +)

0 V

0 . 5 V

1 . 0 V

Example

fc=8KHz =1( )2cH f

ECE 307-4 18

Frequency Response of a Circuit

A Serial RC CircuitHigh-Pass Filter

( ) 1sH s

sRC

=+

0( )1( )i

V s RV s R

sC

=+

( ) 1jH j

jRC

ωωω

=+

To find frequency response, substitute s=jω in equation

22

( )1

H j

RC

ωω

ω

= +

( )1( ) 90 tanj RCθ ω ω−= −

Phase ResponseMagnitude Response

1/sC

Vi(s)-

R Vo(s)+

Page 10: Frequency response of circuit - Cal Poly Pomona

10

ECE 307-4 19

Frequency Response of a Circuit

When ω=0

22

0( 0) 010

H j

RC

= = +

1 0( 0) 90 tan 90jRC

θ − = − =

To find Cutoff Frequency

When ω=∞

22

( ) 11

H j

RC

∞∞ = =

∞ +

1( ) 90 tan 0jRC

θ − ∞ ∞ = − =

22

1( )21

cc

c

H j

RC

ωω

ω

= = +

1c RC

ω =

A Serial RC Circuit

Result

ECE 307-4 20

Frequency Response of a Circuit

A Serial RL CircuitHigh-Pass Filter

( ) sH s RsL

=+

0( )( )i

V s sLV s sL R

=+

( ) jH j RjL

ωωω

=+

To find frequency response, substitute s=jω in equation

22

( )H jRL

ωω

ω

= +

1( ) 90 tan LjRωθ ω − = −

Phase ResponseMagnitude Response

Vi(s) sL

1

2 -Vo(s)

+

R

Page 11: Frequency response of circuit - Cal Poly Pomona

11

ECE 307-4 21

Frequency Response of a Circuit

When ω=0

22

0( 0) 0

0

H jRL

= = +

1 0( 0) 90 tan 90LjR

θ − = − =

To find Cutoff Frequency

When ω=∞

22

( ) 1H jRL

∞∞ = =

∞ +

1( ) 90 tan 0LjR

θ − ∞ ∞ = − =

22

1( )2

cc

c

H jRL

ωω

ω

= = +

cRL

ω =

A Serial RL Circuit

Result

ECE 307-4 22

Frequency Response of a Circuit

Example Define R and L values for a high pass filter with a cutoff frequency of 10KHz. Find |H(jω)|at 5 KHz

Let

We can’t calculate R and L values independently. We can select R or L values then define the other

1R K= Ω

c

RLω

= 1000 15.92 * *10000

L mHπ

= =

5 2 22 2

2 * * 5000( ) 0.44691000(2 * * 5000)

0.0159

KHzH jRL

ω πω

ω π

= = = + +

cRL

ω =

Result

Page 12: Frequency response of circuit - Cal Poly Pomona

12

ECE 307-4 23

Frequency Response of a Circuit

Example A RL high pass filter with a cutoff frequency of 10KHz. 1R K= Ω 1000 15.9

2 * *10000L mH

π= =

R=1000;L=15.9*10^-3;

f=0:25:70000;w=2*pi*f;h=abs((j*w)./(j*w+R/L));subplot (2,1,1)semilogx(w,h)grid ontitle('|H(j\omega)')xlabel ('\omega')ylabel ('|H(j\omega)')theta=angle((j*w)./(j*w+R/L));subplot (2,1,2)plot (w, theta)degree=theta*180/pi;semilogx (f, degree)grid ontitle('\theta(j\omega)')xlabel('\omega')ylabel('\theta(j\omega)')

ECE 307-4 24

Frequency Response of a Circuit

V11Vac0Vdc

V

L2

15.9mH

1

2

R1

1K V

0

Fr e q u e n c y

1 0 0 Hz 1 . 0 KHz 1 0 KHz 1 0 0 KHz 1 . 0 MHzV( R1 : 2 ) V( V1 : +)

0 V

0 . 5 V

1 . 0 V

fc=8KHz

Example

=1( )2cH f

Page 13: Frequency response of circuit - Cal Poly Pomona

13

ECE 307-4 25

Frequency Response of a Circuit

L2

15.9mH

1

2

V11Vac0Vdc

VPVP

0

R1

1K

Plotting phase: Take the probe Phase of Voltage, which is under Pspice, Markers, and Advanced. Marked the node you want to see phase

Fr e q u e n c y

1 0 0 Hz 1 . 0 KHz 1 0 KHz 1 0 0 KHz 1 . 0 MHzVP( V1 : +) VP( R1 : 2 )

0 d

5 0 d

1 0 0 d

fc=8KHz =( ) 45cH f

ECE 307-4 26

Frequency Response of a Circuit

Example Let’s place load resister in parallel to inductor in RL high-pass filter shown in the figure a. Find the transfer functionb. Rs=RL=1KΩ, find L value for cutoff frequency at

10KHz.

cRKL

ω =

0( )( )

L

L

Li

L

R sLV s R sL

R sLV s RR sL

+=

++

( )

L

L

L

L

R sR R KsH s R R Rs s KR R L L

+= =

+ ++

L

L

RKR R

=+

where 1 0.51 1

K = =+

10.5 7.952 * *10c

RL K mHω π

= = =

Result

-

Vo(s)

R

+sL

1

2

Vi(s) RL

Page 14: Frequency response of circuit - Cal Poly Pomona

14

ECE 307-4 27

Frequency Response of a Circuit

Example Rs=RL=1KΩ, L=7.95 mH High-pass filter cutoff frequency at 10KHz.

( ) j KH j Rj KL

ωωω

=+

R=1000;RL=1000;L=7.95*10^-3;K=RL/(R+RL)

f=0:25:70000;w=2*pi*f;h=abs((j*w*K)./(j*w+K*R/L));subplot (2,1,1)semilogx(w,h)grid ontitle('|H(j\omega)')xlabel ('\omega')ylabel ('|H(j\omega)')theta=angle((j*w*K)./(j*w+K*R/L));subplot (2,1,2)plot (w, theta)degree=theta*180/pi;semilogx (f, degree)grid ontitle('\theta(j\omega)')xlabel('\omega')ylabel('\theta(j\omega)')grid on