15
STATE OF STRESS MODELLING BY 2-D FINITE ELEMENT ANALYSIS OF FRACTURE TOUGHNESS SPECIMENS Dražan Kozak 1 , Liliana Blaj 2 , Franjo Matejiček 3 1 PhD, Assistant Professor, University of Osijek, Mechanical Engineering Faculty, Trg I. B. Mazuranic 18, HR-35000 Slavonski Brod, Croatia, Tel. +385 35 446 188, Fax: +385 35 446 446, E-mail: [email protected] 2 PhD, Associate Professor, University “Polytechnica” of Timisoara, Faculty of Mechanics, Bd. Mihai Viteazu No. 1, RO-1900 Timisoara, Romania, Tel. +405 619 7658, Fax: +405 629 3767, E-mail: [email protected] 3 PhD, Professor, University of Osijek, Mechanical Engineering Faculty, Trg I. B. Mazuranic 18, HR-35000 Slavonski Brod, Croatia, Tel. +385 35 446 188, Fax: +385 35 446 446, E-mail: [email protected] Summary: This paper should clarify some details related to finite element (FE) analysis of the single edge notch bend (SENB) specimen with X-shaped welded joint as an example. The specimen consists in a complex geometry as well as material mismatch, what makes the FE modelling more difficult. The main advantage of 2-D calculations is the short time needed for the computation of any fracture parameter, but it involves assuming the state of stress. This depends on the thickness of the specimen, plane section position and loading level. Plane strain state (PE) is very conservative approach valid for thick structures only, while plane stress state (PS) is appropriate in the case of thin specimens. The use of 3-D finite elements is necessary for the specimens with medium thickness or in the case when the symmetry of the specimen according to the thickness is not present. 1. Introduction Integrity assessment of structures where cracks may appear during production or exploitation (f. i. welded structures) presents imperative importance today. Fracture behaviour is usually characterised by stress intensity factor K under linear- elastic conditions or by crack opening displacement (COD) for

Fracture toughness specimens: 2-D vs 3-D finite element ... · Web viewAn elastic-plastic finite-element analysis of the J-resistance curve using a CTOD criterion, Fracture Mechanics:

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Fracture toughness specimens: 2-D vs 3-D finite element modelling

STATE OF STRESS MODELLING BY 2-D FINITE ELEMENT ANALYSIS OF FRACTURE TOUGHNESS SPECIMENS

Dražan Kozak1, Liliana Blaj2, Franjo Matejiček3

1 PhD, Assistant Professor, University of Osijek, Mechanical Engineering Faculty, Trg I. B. Mazuranic 18, HR-35000 Slavonski Brod, Croatia, Tel. +385 35 446 188, Fax: +385 35 446 446, E-mail: [email protected]

2 PhD, Associate Professor, University “Polytechnica” of Timisoara, Faculty of Mechanics, Bd. Mihai Viteazu No. 1, RO-1900 Timisoara, Romania, Tel. +405 619 7658, Fax: +405 629 3767, E-mail: [email protected]

3 PhD, Professor, University of Osijek, Mechanical Engineering Faculty, Trg I. B. Mazuranic 18, HR-35000 Slavonski Brod, Croatia, Tel. +385 35 446 188, Fax: +385 35 446 446, E-mail: [email protected]

Summary:

This paper should clarify some details related to finite element (FE) analysis of the single edge notch bend (SENB) specimen with X-shaped welded joint as an example. The specimen consists in a complex geometry as well as material mismatch, what makes the FE modelling more difficult. The main advantage of 2-D calculations is the short time needed for the computation of any fracture parameter, but it involves assuming the state of stress. This depends on the thickness of the specimen, plane section position and loading level. Plane strain state (PE) is very conservative approach valid for thick structures only, while plane stress state (PS) is appropriate in the case of thin specimens. The use of 3-D finite elements is necessary for the specimens with medium thickness or in the case when the symmetry of the specimen according to the thickness is not present.

1. Introduction

Integrity assessment of structures where cracks may appear during production or exploitation (f. i. welded structures) presents imperative importance today. Fracture behaviour is usually characterised by stress intensity factor K under linear-elastic conditions or by crack opening displacement (COD) for elastic-plastic materials. Also, J-integral as a most applied parameter could be used for linear-elastic as well as elasto-plastic material behaviour. The value of these parameters may be determined analytically for very simple problems, experimentally during relatively complex and expensive testing and numerically by finite element packages, which is mainly most practical.

A lot of conventional FE packages (f.e. ABAQUS, ADINA, ANSYS etc.) have developed code for two-dimensional and/or three-dimensional K and/or J-integral calculation. However, 2-D finite element models demand assumption about the state-of-stress that governs in the specimen. This is not questionable by very thin structures where plane stress (PS) state prevails or by very thick structures with plane strain (PE) state. But, which state of stress is more appropriate for the structures with medium thickness? Three-dimensional effects near a crack tip in a ductile three-point bend specimen were investigated recently [6, 8, 9]. To reveal the effects of stress states on crack-tip constraints many numerical analyses have been produced and summarised in the works [1, 2, 3]. In a general three-dimensional configuration it is needed to distinguish between [7]:

- the in-plane constraint, which is directly influenced by the specimen dimensions in the direction of the growing crack, i.e. the length of the uncracked ligament for straight through cracks, and additionally by the global load configuration (bending or tension), and

- the out-of-plane constraint, which is affected by the specimen dimension parallel to the crack front, i.e. the specimen thickness for straight through cracks.

In most cases the in-plane and out-of-plane constraint are mixed in such a way that their effects cannot be separated, but the conceptual difference should be kept in mind, at least, to understand that the common characterisation as plane strain condition is insufficient to describe three-dimensional stress uniquely. However, it is fairly difficult to bring one unique and precise conclusion. In any case, the decisions to do a plane stress or plane strain analysis should not be subjective. It has to be somehow quantified. An additional problem is the fact that level of loading plays also the role by 2-D state-of-stress assignment. The situation becomes more complex in the case of irregular shaped weld joint with present different strength of base material related to cap or root metal. One useful approach is so-called mixed state-of-stress modelling proposed by Newman et al [7].

On the other hand, solid finite element modelling demands much more CPU time and analyst experience, because 3-D modelling of cracked structures is always connected to specific problems (e.g. crack faces modelling, boundary conditions setting, etc.). Processor working time is significant longer than in 2-D calculations, but the obtained results are much closer to reality.

This paper analyses the differences in the crack tip opening displacement CTOD (5) numerical calculation, if pure PS, pure PE and mixed state-of-stress approach is applied on the SENB fracture toughness specimen with medium value of thickness (in this case 36 mm). Value of CTOD (5) is also compared with that obtained by experiment.

2. Plane stress and plane strain conditions

The stress or strain state is always in three dimension. But in most cases, they can be simplified to either plane strain or plane stress by ignoring either the out of plane strain or plane stress. In a thin body generally, the stress through the thickness (z) cannot vary appreciably due to the thin section. Because there can be no stresses normal to a free surface, z = 0 throughout the section and a biaxial state of stress results [5]. This is termed a plane stress condition (see Fig. 1a). The material fractures in a characteristic ductile manner, with a 45o shear lip being formed at each free surface.

In a thick body, the material is constrained in the z direction due to the thickness of the cross section and z = 0, resulting in a plane strain condition (Fig. 1b). Due to Poisson's effect, a stress, z, is developed in the z direction. Maximum constraint conditions exist in the plane strain condition, and consequently the plastic zone size is smaller than that developed under plane stress conditions. The material from the centre of the component however, is not free to deform laterally as it is constrained by the surrounding material. Thus, the stress state tends to plane strain (triaxiality) and fracture in this region is brittle. Therefore, shear failure tendency in ductiles is negligible under triaxial hydrostatic loading. The plane stress condition will results in a higher out of plane shear stress than the plane strain condition for a given maximum stress. Again, the shear stress would promote yielding, not fracture. According to theory of elasticity, the component of stress z in the thickness direction is defined as:

state

PS

0

state

PE

)

(

=

+

=

z

y

x

z

s

s

s

n

s

(1)

In the same time, the component of strain z could be determined from:

[

]

state

PS

)

(

state

PE

0

)

1

y

x

z

y

x

z

z

E

E

+s

s

n

e

s

(s

-n

s

e

-

=

=

+

=

(2)

z

x

B

thickness B

y

s

s

z

thick plate

no contraction

s

thin plate

free contraction

B

y

z

s

z

PE

s

PS

s

Fig. 1a) Three-dimensional stress state at the crack-tipFig. 1b) Biaxial stress state

2.1 Plasticity zone

The plastic zone size rp by two-dimensional finite element calculation is conditioned by assumed state of stress and hence they are in very close interaction. Typical qualitative shape of plastic zone for fracture toughness specimen with straight crack front according to the thickness is presented on the Fig. 2a). The crack tip material in the mid-plane of the specimen tries to contract in the z direction, but is prevented from doing so by the surrounding material. This is the reason why there the radius of plastic zone is the smallest. On the Fig 2b) state-of-stress variation depending on both thicknss of the structure and plane section position is depicted.

Crack length

Uncracked

ligament

r

p

(PS)

r

p

(PE)

Plastic zone

r

p

=

r

p

(

z

)

z

Thickness

Crack length

Uncracked

ligament

(% PE)

on the surface

100% PE

in the middle

(% RN)

in the middle

Thin

-

walled structures

(dominant PS state)

Thick

-

walled structures

(dominant PE state)

100% PS

on

the surface

Thickness

Fig. 2a) Characteristic plastic zone shape

Fig. 2b) State-of-stress variation with thickness

Plane stress assumption is valid for very thin-walled structures, while plane strain is predominant condition in structures with large thickness. Plastic zone boundary as a function of the angle in polar coordinate system with origin in the crack-tip may be estimated as:

222

o

2

I

o

YS

()(1)3sincos whit

22

1

2

rrk

K

r

jj

j

ps

éù

=-+

êú

ëû

æö

=

ç÷

èø

(3)

where KI is stress intensity factor for the mode I of crack opening, YS is often taken as the average of the yield and ultimate strengths, which is referred to as the flow stress afterwards and constant k = 0 (plane stress) or k = 2 (plane strain). This could be illustrated graphically for =0,3 (Fig. 3).

1,25

y

/

r

o

x

/

r

o

1,0

plane

stress

0,83

0,16

0,37

plane

strain

crack

-

tip

Fig. 3 Plastic zone boundary under PS and PE condition ahead the crack-tip

In most of real fracture problems with structures of medium thickness, the state of stress is in transition between two aforementioned states and it depends on the plastic zone size. Plane strain conditions exist at the boundary if the plastic zone is small compared to the thickness, but the stress state is predominantly plane stress if the plastic zone is greater than half the specimen thickness. One can conclude that state-of-stress is mixed where it changes from plane strain at the tip to plane stress state at a critical distance rc from the tip. Thus, the critical distance from the crack tip at which conditions of plane stress dominate depends on the specimen thickness.

2.2 Mixed state-of-stress

The idea of modelling state-of-stress as a combination of PE in the core around the crack-tip and PS out of that core was proposed by Newman et al [7] using standard compact tension (CT) specimen. However, the criteria to define the size and position of the rectangular region where the PE governs were unclear. This approach was more inaccurate in the case of stable crack growth, because the dimensions of fixed PE core were constant. Obtained results were better than earlier, but with lack of mathematical and physical explanation. It was interesting that very small PE region about the crack-tip influenced very hard the results. Namely, the area of this region was only 1% and 2,5% for CT and SENB specimen, respectively related to whole area of the specimen plane. The position and size of the plane strain core on example of CT specimen is presented on the Fig. 4.

crack

-

tip

0,125

W

0,05

W

a

0

W

-

a

0

1/2 of CT specimen

PS

PE

Plastic zones by

maximum

force

0,6

W

0,2

B

B

=25,4 mm

W

=50,8 mm

a

0

/

W

=0,65

Fig. 4 Plane strain (PE) core around the crack-tip [7]

Newman's approach was extended by Kozak et al [4] defining PE region shaped and sized as a plastic zone around the crack-tip. Both, PE region size and PE region shape should be modified during successive increasing of the loading level. Namely, material in plastic zones hardened with the factor of approximately

e

3

R

×

, so an assumption of PE condition there has a physical meaning.

2.3 In-plane and out-of-plane constraints

The relatively thin plates (25 mm thickness and less) used in ships and bridges do not develop significant constraint through the thickness and are therefore in a state of plane stress. The structure thickness larger than 25 mm may more influenced crack tip stress field. The constraint can be literally defined as a structural obstacle against plastic deformation which is induced mainly by the geometrical and physical boundary conditions but can also be due to mismatch of material properties in a heterogeneous joint [10]. The in-plane constraint is associated with the boundary conditions and in-plane geometry of the plane, while the out-of-plane constraint is mainly caused by the stress component z [1].

The overall structural conditions determine the local triaxility of stresses, commonly defined as the ratio of the hydrostatic mean stress to the von Mises equivalent stress in the specimen [2]:

(

)

(

)

(

)

1

22

2

2

1

()

3

1

2

xxyyzz

xxyyxxzzyyzz

k

sss

ssssss

++

=

éù

-+-+-

êú

ëû

(4)

where xx, yy and zz are the stresses in the x, y and z directions, respectively. In this sense, stress triaxility magnitude may be understood as a local constraint. Very often in use is ratio z/(x+y), which implies whether the stress state is similar to the plane strain state or the plane stress state. This ratio is mainly uniform over most of the specimen thickness (along the crack front) and drops to zero very near the free surface. Its value should be about 0,28 in the interior of the specimen for the elastic case and approaches 0,47 with increasing plastic deformation. Both parameters show in the rule the same tendency of the material responses. The stress triaxility is a description of the 'easiness' of the plastic deformation. Greater value of stress triaxility parameter means greater constraint and the stress state closer to the plane strain. According to the references, for the parameter of stress triaxility greater than 2,5, it is reasonable to suppose significant out-of-constraint and plane strain stress state.

3. Numerical example

Fracture toughness specimen with homogeneous X - weld joint was notched in the middle. The cross section of the specimen is BxB(W)=36x36 mm. Base material (BM) of the specimen is high strength low alloy (HSLA) steel with yield strength (YS = 712 MPa) lower than weld metal (WM). Strength yield mismatch factor was about M=1,22. The ratio of the crack length and specimen width was a/W=0,27.

Due to present symmetry only one half of the specimen was considered by finite element analysis. Five planes through the thickness have been modelled with different portion of the elements in plane strain state (Fig. 5). Pure PS was assumed only to specimen surface (plane A). As it is mentioned before, very small percent of PE elements is sufficiently to be assigned to make model more realistic. Here it amounts only 1% of PE elements in the middle of the specimen (plane E). The PE distribution in the interior of the specimen is unknown, so it were assumed 0,1% of PE (plane B), 0,25% of PE (plane C) and 0,4% of PE (plane D).

a

0

=9,912 mm

100% PS on the

specimen surface

0

2

1

A

E

D

C

B

B

S

=144 mm

Portion of PE elements, %

E

D

C

B

A

0,5

1,5

Through thickness planes

1% of PE in the middle

of the specimen

B

=36 mm

Fig. 5 Planes A-E with different portions of elements in PE stress state

The goal of such a modelling is to assess the influence of different plane strain portions on the calculation of crack-tip opening displacement CTOD (5). Measuring of the local CTOD (5) displacement is characteristic for the specimens with present materials dissimilarity. It is measured directly with the strain gauge displaced for 2,5 mm from the crack-tip parallel to the x-axis.

The coarse finite element mesh consisting of 8-node isoparametric elements is depicted on the Fig. 6. Stress concentration was assigned to the crack-tip after that mesh was generated automatically. First row around the sharp crack were singular elements. Total force has been distributed on two nodes to reduce stress concentration on the place where the load acts. Analysed region is enlarged in the Fig. 7 with the aim to show whether elements were in PE conditions.

Fig. 6 Finite element mesh of the one half of the SENB specimen

2

-

D FE model for the

MIDDLE of the

specimen (1 % PE)

0,25 % of

PE elements

0,1 % of

PE elements

uncracked ligament

crack tip

E

D

C

B

A

CTOD (

d

5

)

node

7,2 mm

Base material

Weld

Fusion line

0,4 % of

PE elements

1 % of

PE elements

2

-

D FE model for the

SURFACE of the

specimen (100 % PS)

Fig. 7 Finite element models with different portions of the elements in the PE state

4. Results and discussion

CTOD (5) results with increasing loads for FE models with different portions of PE elements are presented in the Fig. 8. It is obviously that experimental value of CTOD (5) is closer to PS solution for low loading levels, but force increasing causes deviation experimental curve to PE solution. This is the evidence that PE region size should not be constant during test simulation. It is also very interesting that fracture toughness variation is lower comparing the FE models with 1% of PE (plane E) and 100% of PE, than FE models with 0,1% of PE (plane B) and 0,25% of PE (plane C).

0

50

100

150

200

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

CTOD (

d

5

), mm

F, kN

Fig. 8 F-CTOD (5) curves for FE models with different portions of PE elements

Note that only 0,1% of elements with assumed PE stress state around the crack-tip is enough to model the problem more accurate than FE model with pure PS or pure PE. If we assume PS state for whole specimen, CTOD (5) displacement will be overestimated for more than 30% for maximum loading. On the other hand using rigid finite models with pure PE will underestimate the fracture toughness for almost 50%.

It is valuable to present these results as curves, where CTOD (5) is in function from the percent of PE elements, with F=const (Fig. 9). Thus, better inclination of the experimental line from PS to PE stress state with load increasing is visible. Hence, realistic stress-strain distribution at the moment of crack initiation or unstable fracture could be better presented. This is very useful in the case when the reasons of the failure should be investigated and explained, especially for the welded structures with yield strength mismatch effect, where the crack path deviation is possible. The yielding is usually directed from the material with higher yield strength (weld metal in our case) to soft material (base metal here), but highest maximum principal stress is mainly just under the crack tip. Higher stresses are located in the harder WM than in the softer BM. The stress will reach its peak value at a distance less than two times the local CTOD.

Therefore, presences of the overmatched weld root pass effects to stress-strain distribution at the vicinity of a crack tip. It can be expected that an increasing of stresses in WM will prevent from the risk of brittle fracture. If brittle fracture in WM does not occurs, the initiation and growth of stable crack propagation are governed by local plasticity in the base metal.

0,0

0,1

0,2

0,3

0,4

Fig. 9 CTOD (5) results for FE models with different portions of PE elements by F = const

5. Conclusions

Details of state-of-stress assigning by two-dimensional finite element (FE) analysis of the single edge notch bend (SENB) specimen with X-shaped welded joint as an example were considered. Both, complex geometry and materials dissimilarity makes the FE modelling more difficult. An assumption of pure plane stress or pure plane strain state is valid for only very thin and very thick structures, respectively. In this paper fracture toughness specimen with medium thickness was analysed (B=36 mm). Therefore, mixed state-of-stress approach is necessary. To this purpose, new improved approach was proposed, which foreseen plane strain state in the region where von Mises equivalent stress overcomes yield strength of the material and plane stress state out of this region. This is proven comparing experimental measured CTOD (5) displacements with the same obtained by five FE models with different portion of elements in PE state around the crack-tip. Portion of PE elements depends on the position of the model through the thickness of the specimen. It is evident that significantly low part of elements with assumed PE state (lower than 0,1%) plays decisive role on the numerical results. Also, the state-of-stress in the vicinity of the crack-tip varied from PS to PE as the force increases.

Acknowledgements

The authors gratefully acknowledge to Ministry of Science and Technology of Republic of Croatia for support to their investigations sponsored in the research project 0152-018.

6. References

[1]Guo, W., Three-dimensional analyses of plastic constraint for through-thickness cracked bodies, Engineering Fracture Mechanics, 62, 1999, pp 383-407

[2]Henry, B.S. and Luxmoore, A.R., The stress triaxility constraint and the Q-value as a ductile fracture parameter, Engineering Fracture Mechanics, Vol. 57. No. 4, 1997, pp 375-390

[3]Kolednik, O. and Shan G.X. and Fischer F.D., Geometry and size effects in ductile fracture – FEM studies and theoretical considerations, IUTAM Symposium on Nonlinear Analysis of Fracture, Kluwer Academic Publishers, 1997, pp 43-52

[4]Kozak, D., Gubeljak, N., Rak, I., Modified numerical modelling of fracture behaviour of weld joint in ductile-to-brittle temperature transition region, Materials and technologies, Vol. 32 (5), 1998, pp 337-342

[5]Matejiček, F. and Kozak, D., Some Remarks About 2-D and 3-D Finite Element Modelling of Fracture Toughness Specimens with Material and Geometric Mismatch, Proceedings of the 2nd Slovenian-Japanese joint Seminar 'Welding Fracture Mechanics and Dynamic Loading', Bohinj, 2001, pp 1-8

[6]Narasimhan R., Rosakis, A.J., Three-dimensional effects near a crack tip in a ductile three-point bend specimen: Part I–A Numerical investigation, Journal of Applied Mechanics, Vol. 57, 1990, pp 607-617

[7]Newman Jr., J.C., Booth, B.C. and Shivakumar, K.N., An elastic-plastic finite-element analysis of the J-resistance curve using a CTOD criterion, Fracture Mechanics: Eighteenth Symposium, ASTM STP 945, ASTM, Philadelphia, 1988, pp 665-685

[8]Raftopoulos, D.D., Huang, Z., Konsta-Gdoutos, M. and Gdoutos E.E., Evaluation of the three-dimensional region around a crack tip by caustics, Int. J. of Fracture, 98, 1999, pp 343-350

[9]Rosakis, A.J. and Ravi-Chandar K., On Crack-Tip Stress State: An Experimental Evaluation of Three-Dimensional Effects, Int. J. of Solids and Structures, Vol. 22, No.2, 1986, pp 121-134

[10]Yuan, H. and Brocks, W., Quantification of constraint effects in elastic-plastic crack front fields, J. Mech. Phys. Solids, Vol. 46, No. 2, 1998, pp 219-241

5 by experiment

5 calculated by FEA

100%

Planes:

E

D

C

B

A

0 %

0,4%

1%

Portion of

PE elements:

0,25%

Analysed

region

F/3

F/6

y

x

crack-tip

0,1%

Unstable fracture during experiment

Fracture toughness variation between FE models with 0,1% of PE and 0,25% of PE

Fracture toughness variation between FE models with 1% of PE and 100% of PE

100% PS on the specimen surface

5 calculated by FEA

5 by experiment

middle of the specimen

surface of the specimen

Fmaks = 173 kN

F = 135 kN

F = 100 kN

F = 60 kN

Planes:

A

B

C

D

0,25%

0,1%

0 %

CTOD (5), mm

0,4%

PE portion:

E

1%

_1113745792.doc

Thickness

Crack length

Uncracked

ligament

z

Plastic zone

rp = rp (z)

rp (PS)

rp (PE)

_1114270210.doc

0,05W

a0

0,125W

W-a0

crack-tip

1/2 of CT specimen

PS

PE

Plastic zones by maximum force

0,6W

0,2B

B=25,4 mm

W=50,8 mm

a0/W=0,65

_1114271299.unknown

_1114276261.doc

B

a0=9,912 mm

A

D

C

S=144 mm

D

E

E

Portion of PE elements, %

B

C

B

A

0

0,5

1

1,5

2

Through thickness planes

100% PS on the specimen surface

1% of PE in the middle of the specimen

B=36 mm

_1114275969.doc

E

D

C

B

A

crack tip

uncracked ligament

CTOD (5) node

7,2 mm

Base material

Weld

Fusion line

0,1 % of

PE elements

0,25 % of

PE elements

0,4 % of

PE elements

1 % of

PE elements

2-D FE model for the SURFACE of the specimen (100 % PS)

2-D FE model for the MIDDLE of the specimen (1 % PE)

_1114270760.unknown
_1113748343.unknown

_1113750130.doc

1,25

y/ro

x/ro

1,0

plane

stress

0,83

0,16

0,37

plane

strain

crack-tip

_1113746055.doc

Thickness

Crack length

Uncracked

ligament

Thick-walled structures (dominant PE state)

Thin-walled structures (dominant PS state)

(% PE)

on the surface

(% RN)

in the middle

100% PE

in the middle

100% PS

on the surface

_1061843792.unknown

_1113727258.doc

PE

z

z

y

B

free contraction

thin plate

no contraction

thick plate

z

y

thickness B

B

x

z

PS

_1021292922.xls

Chart1

00.0150.01480.01430.0140.01250.0145

0.01170.026780.023660.022620.022360.0210.02288

0.01940.0380.0360.03330.0330.030.0335

0.03290.05460.04550.04030.04030.03750.0416

0.0510.0760.0650.0540.05350.0490.055

0.07450.10270.084760.06760.06630.0590.07176

0.10.150.1150.0920.090.0730.095

0.1350.32240.21060.13780.12870.10.1469

0.2285

d5 eksperimentalno
0%RD
0,1%RD
0,4%RD
1%RD
100%RD
0,25%RD
CTOD (d5), mm
F, kN
0
39.986
39.986
39.986
39.986
39.986
39.986
39.986
60.206
60.206
60.206
60.206
60.206
60.206
60.206
80.282
80.282
80.282
80.282
80.282
80.282
80.282
100.49
100.49
100.49
100.49
100.49
100.49
100.49
119.96
119.96
119.96
119.96
119.96
119.96
119.96
135.44
135.44
135.44
135.44
135.44
135.44
135.44
149.99
149.99
149.99
149.99
149.99
149.99
149.99
173.66
173.66
173.66
173.66
173.66
173.66
173.66

Sheet1

LOAD, kNdelta5-exp0% RD-MKE0,1% RD0,25% RD0,4% RD1% RD100% RD

0.0000.000000

39.9860.0117000.0150000.0148000.0145000.0143000.0140.012500

60.2060.0194000.0267800.0236600.0228800.0226200.022360.021000

80.2820.0329000.0380000.0360000.0335000.0333000.0330.030000

100.4900.0510000.0546000.0455000.0416000.0403000.04030.037500

119.9600.0745000.0760000.0650000.0550000.0540000.05350.049000

135.4400.1000000.1027000.0847600.0717600.0676000.06630.059000

149.9900.1350000.1500000.1150000.0950000.0920000.090.073000

173.6600.2285000.3224000.2106000.1469000.1378000.12870.100000

Sheet1

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0000000

0

d5 eksperimentalno
0%RD
0,1%RD
0,4%RD
1%RD
100%RD
0,25%RD
CTOD (d5), mm
F, kN
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Sheet2

Sheet3

_1061843291.unknown
_1021387695.xls

Chart2

0000

1111

2222

3333

4444

F=173kN
F=60kN
F=135kN
F=100kN
0.3224
0.1027
0.02678
0.0546
0.2106
0.08476
0.02366
0.0455
0.1469
0.07176
0.02288
0.0416
0.1378
0.0676
0.02262
0.0403
0.1287
0.0663
0.02236
0.0403

Sheet1

Ravnina60.000000100.000000135.000000173.000000

0.0000.0267800.0546000.1027000.322400

1.0000.0236600.0455000.0847600.210600

2.0000.0228800.0416000.0717600.146900

3.0000.0226200.0403000.0676000.137800

4.0000.022360.04030.06630.1287

Sheet1

0000

0000

0000

0000

0000

&A
Page &P
F=173kN
F=60kN
F=135kN
F=100kN
CTOD (d5), mm
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Sheet2

Sheet3

_910108862.doc