16
Elements of Fracture Mechanics Elements of Fracture Mechanics Jonah H. Lee Department of Mechanical Engineering University of Alaska Fairbanks Jonah H. Lee Fracture Mechanics

Fracture Mechanics 2

Embed Size (px)

Citation preview

Page 1: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 1/16

Elements of Fracture Mechanics

Elements of Fracture Mechanics

Jonah H. Lee

Department of Mechanical Engineering

University of Alaska Fairbanks

Jonah H. Lee Fracture Mechanics

Page 2: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 2/16

Elements of Fracture Mechanics

Griffith Crack Theory

Figure: 8.1: Through-thickness crack in a large plate.

The potential energy (strain energy - work done) of a plate with a crack(γ s  = energy/area, J /m 2):

PE with crack = PE w/o crack− Dec. PE + Inc. surface energy

U  = U 0 −πσ2a 2t 

E + 4a · t  · γ s 

surface energy = area · γ s  = 2 · (2a · t ) · γ s 

strain energy ≈ σ · · V /2 ≈ σ · σ/E  · πa 2t 

Jonah H. Lee Fracture Mechanics

Page 3: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 3/16

Elements of Fracture Mechanics

Griffith Crack Theory - continued

Equilibrium condition:

∂ U 

∂ a = 4t γ s − 2πσ2at 

E = 0.

Equilibrium but unstable, crack will grow (negative second derivative)

For plane stress

σ =

 2E γ s 

πa 

for plane strain

σ =

 2E γ s 

πa (1 − ν 2)

σ is the applied stress.

Jonah H. Lee Fracture Mechanics

Page 4: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 4/16

Elements of Fracture Mechanics

Effect of Plastic Deformation

Materials with limited plastic deformation, fracture energy ≈ surface energy(glasses).

Materials with extensive plastic deformation, fracture energy surface energy(metals, polymers):

σ =

 2E (γ s  + γ P )

πa =

 2E γ s 

πa (1 +

γ P 

γ s )

γ P  = plastic deformation energy

γ s , so

σ ≈ 

2E γ s 

πa (γ P 

γ s )

(Eq. 7.27): σa =applied stress, σmax  ≈ 2σa  a /ρ; (Eq. 7.9): σc  =  E γ 

a 0

Let σc  (theoretical cohesion) = σmax  (maximum stress due to stressconcentration):

σa  =1

2

 E γ s 

a (ρ

a 0) =

 2E γ s 

πa (πρ

8a 0)

plastic deformation γ P 

→increase of ρ: crack tip blunting.

Jonah H. Lee Fracture Mechanics

Page 5: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 5/16

El t f F t M h i

Page 6: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 6/16

Elements of Fracture Mechanics

Critical Energy Release Rate (Fig. 8.2)

Jonah H. Lee Fracture Mechanics

Elements of Fracture Mechanics

Page 7: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 7/16

Elements of Fracture Mechanics

Determination of Critical Energy Release Rate

Let da =increase in crack length, d δ=displacement increment due to P , work done

(by P )=dW  = Pd δ, V =stored elastic strain energy=

1

2 P δ or

1

2

P 2

M  (M  =stiffness);Surface energy is needed for that crack to extend and comes from:

G =dU 

da = P 

d δ

da − dV 

da 

= work done by external force - release of strain energy

Fixed grip (displacement control) condition, d δ = 0, load drops from P 1 to P 2,

stiffness drops from M 1 to M 2 but δ1 = δ2 =P 1

M 1=

P 2

M 2

(∂ U 

∂ a )δ = −1

2P 2

∂ (1/M )

∂ a 

Critical energy release rate

Gc  =1

2P 2max 

∂ (1/M )

∂ a 

where P max =load at fracture.

Jonah H. Lee Fracture Mechanics

Elements of Fracture Mechanics

Page 8: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 8/16

Elements of Fracture Mechanics

Stress Analysis of Cracks

Figure: 8.3

Mode I - opening or tensile mode.Mode II - sliding or in-plane shear mode.

Mode III - tearing or antiplane shear mode.

Jonah H. Lee Fracture Mechanics

Elements of Fracture Mechanics

Page 9: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 9/16

Elements of Fracture Mechanics

Figure: 8.5

Example of crack-tip stress in y -direction obtained using theory of elasticity (Airystress functions):

σy  = K √ 2πr 

cos θ2

1 + sin θ

2sin 3θ

2

Singular stress at r  = 0.

K =f (σ,a ) →stress-intensity factor , with dimensions Pa · m 1/2.

Jonah H. Lee Fracture Mechanics

Elements of Fracture Mechanics

Page 10: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 10/16

Elements of Fracture Mechanics

Figure: 8.7 - Stress-intensity-factor (K ) solutions for a central (a) and edge (b) crack.

K I  = Y Pa 1/2

tW 

Jonah H. Lee Fracture Mechanics

Elements of Fracture Mechanics

Page 11: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 11/16

Design philosophy, e.g., Fig. 8.7a:

K  = K c  = σ√ πa 

K c  → Material selection σ → Design stress

a → Allowable flaw size (NDT)

Jonah H. Lee Fracture Mechanics

Elements of Fracture Mechanics

Page 12: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 12/16

Crack-Tip Plastic-Zone Size Estimation

At θ = 0, σy  = K /√ 

2πr , at yielding, σy  = σys , plastic-zone size=r y  ≈ K 2

2πσ2ys 

(K 

is a function of a .)

Plane stress: r y 

1

K 2

σ2

ys 

; Plane strain: r y 

1

K 2

σ2

ys Effective K  for an infinite plate with a small central notch (Eq. 8-45)

K eff  =σ√ πa 

1− 1

2

σ

σys 

21/2

Jonah H. Lee Fracture Mechanics

Elements of Fracture Mechanics

Page 13: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 13/16

Fracture-Mode Transition: Plane Stress Versus Plane Strain

Figure: 8.14 - Variation in fracture

toughness with plate thickness

Figure: 8.15 - Effect of relative plasticzone size to plate thickness (r y /t )

K c =fracture toughness varies with plate thickness (higher at plane stress, lower atplane strain) (Fig. 8.14).

K IC =plane-strain fracture toughness → remains constant after thickness t 2, or,small r y /t  (Figs. 8.14 and 8.15).

Plane strain fracture (flat, smooth), plane stress fracture (slant, rough).

Jonah H. Lee Fracture Mechanics

Elements of Fracture Mechanics

Page 14: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 14/16

Plane-Strain Fracture-Toughness (K IC ) Testing - ASTM E3990-90

Figure: 8.7(e) - K I  for 3-point bending.

Figure: 8.18 - Example of load-displacementcurves during K IC  testing.

Jonah H. Lee Fracture Mechanics

Elements of Fracture Mechanics

Page 15: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 15/16

Test sample initially fatigue loaded to extend the machined notch to a prescribedamount a ; e.g., three-point bend bar, Fig. 8.7(e):

K I  = Y 6Ma 1/2

tW 2

Test done using displacement control.

Measure specimen load P  and (crack-opening) displacement δ until fracture.Applied stress is found via (maximum) load P  using P − δ curve (Fig. 8.18)

formula for K  for a particular geometry is then used.

Restrictions:

t  and a ≥ 2.5K IC 

σys 2

Jonah H. Lee Fracture Mechanics

Elements of Fracture Mechanics

Page 16: Fracture Mechanics 2

8/3/2019 Fracture Mechanics 2

http://slidepdf.com/reader/full/fracture-mechanics-2 16/16

Plane Stress and Related Models

Figure: 8.13(b) - Dugdale plastic zone strip model where plastic zones R  extend as thin strips fromeach end of the crack. 2c  is the initial crack length.

Cohesive-zone model (Fig. 8.13)

R /c  =

π2

8 (

σ

σys  )

2

J-integral based on ’simple’ elastic-plastic analysis using a deformation plasticitytheory (path-independent).

Jonah H. Lee Fracture Mechanics