36
7/21/2019 Fourier Series Student.pdf http://slidepdf.com/reader/full/fourier-series-studentpdf 1/36  CHAPTER 4 FOURIER SERIES CONTENTS PAGE 4.1 Periodic Function 1 4.2 Even and Odd Function 3 4.3 Fourier Series for Periodic Function 7 4.4 Fourier Series for Half Range Expansions 18 4.5 Approximate Sum of the Infinite Series 24 Exercise 28 References 30

Fourier Series Student.pdf

Embed Size (px)

Citation preview

Page 1: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 1/36

 

CHAPTER 4

FOURIER SERIES

CONTENTS PAGE

4.1  Periodic Function 1

4.2  Even and Odd Function 3

4.3 

Fourier Series for Periodic Function 7

4.4 

Fourier Series for Half Range Expansions 18

4.5 

Approximate Sum of the Infinite Series 24

Exercise 28

References 30

Page 2: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 2/36

CHAPTER 4: FOURIER SERIES SSE 1793

1

4.1  Periodic Function

A function ( ) f t   is periodic with period of   T  if

  , 0 F t T f t T   

Example 4.1.1

Show that ( ) cos2 f x x    is a periodic function and find its

period.

Solution:Since ( ) cos2 f x x   , then

cos2 f x T x T    .

What is the value of T , such that cos2 cos2 x T x    ?

Note that :

cos2 ( ) cos2 cos2 sin 2 sin 2cos2 1

cos 2 if  sin 2 0

 x T x T x T T 

 xT 

 

  

  

  

 

 

The smallest value for T  is 1 , known as fundamental period.Therefore, ( ) cos2 f x x    is a periodic function with

period of 1.

This is true for 1,2,3,...T    

Page 3: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 3/36

CHAPTER 4: FOURIER SERIES SSE 1793

2

Example 4.1.2

Determine whether   sin5 f x x  is a periodic function. If

yes, find the period.

Solution:

sin5 f x T x T   

sin5 cos5 cos5 sin5 x T x T   

sin5 x   if cos5 1sin5 0

T T 

 

cos5 cos 2 1

5 2

2

5

  

  

  

 

Therefore,   sin5 f x x  is a periodic function with the

period of2

5

  

.

Page 4: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 4/36

CHAPTER 4: FOURIER SERIES SSE 1793

3

4.2  Even and Odd Function

 f x  is an even function if  f x f x , for all . x   (I)

 f x  is an odd function if  f x f x , for all . x   (II)

Geometrically,

The graph is symmetrical about the y-axis. 

The graph is symmetrical about the origin. 

NOTE: If none of (I) and (II) are satisfied, then  f x  is called

neither even nor odd.

Example 4.2.1

Determine whether the following functions are even, odd,

or neither.

(i)   2 f x x  

(ii)   sinh x x  

(iii)   1

3 sin g x x x  

(iv)   t  f t e  

Even

Odd

Page 5: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 5/36

CHAPTER 4: FOURIER SERIES SSE 1793

4

Solutions:

(i) 2 2 f x x x f x . 

  2 f x x  is an . 

(ii) sinh x x  

sin(0 )

sin( ) (by trigonometric identity)

 x

 x

h x

 

Or, refer to the graph.

( ) sinh x x  is an . 

(iii) 13 sin( ) g x x x  

13

13

sin

( sin )( )

 x x

 x x g x

 

13( ) sin g x x x  is an .

.2    2 2    

1

-1

h(x)

 xπ  -π   2π  

Symmetrical about

.

From (ii), 

sin( ) sin x x  

Page 6: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 6/36

CHAPTER 4: FOURIER SERIES SSE 1793

5

(iv) ( )   t  f t e  

Argument 1: Test for even.

Note that ( ) ( ) f t f t   only when 0t   . (recall definition:for a function to be an even function, it must satisfies

( ) ( ) f t f t   for all t ).

Argument 2: Test for odd.t e is never equal to

e , ( ) ( ). f t f t   

Argument 3: From the graph,   t  f t e is neither

symmetrical about the y-axis nor about the origin.

Conclusion:   t  f t e is neither even nor odd.

Page 7: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 7/36

CHAPTER 4: FOURIER SERIES SSE 1793

6

4.2.1 Properties of Even and Odd Functions

Even  Even Even Even ×/÷ Even Even

Odd  Odd Odd Odd ×/÷ Odd Even

Even  Odd Neither Odd ×/÷ Even Odd

Integral properties

i) For even function: 0

2l l 

l  f x dx f x dx

 

Example:2( ) f x x  

2 22 2

2 02 x dx x dx

 

ii) For odd function:   0l 

l   f x dx    

Example: ( ) sin f x x  0

2 2

02 2

sin sin sin

0.

 x dx x dx x dx   

  

 

NOTE: It is important to understand the integral properties

of even and odd function before you can proceed to the

next section.

-2 2

Page 8: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 8/36

CHAPTER 4: FOURIER SERIES SSE 1793

7

Example:

If ( ) f x  is even, then  ( ) sin 0

l  f x nx dx

.

 

0( ) cos 2 ( ) cos

l l 

l  f x nx dx f x nx dx

 

If ( ) f x  is odd, then

 

0( ) sin 2 ( ) sin

l l 

l  f x nx dx f x nx dx

 

  ( ) cosl 

l  f x nx dx

 

Even X Odd ---> dd

Even X Even --->

Odd X Odd --->

Odd X Even --->

Page 9: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 9/36

CHAPTER 4: FOURIER SERIES SSE 1793

8

4.3 Fourier Series for Periodic Function   ( ) f x , consisting of

Sin and Cos.

Fourier series for ( ) f x  given by

  0 cos sin2   1

a   n n f x a x b xn n

l l n

      

where 0 , andn na a b  can be expressed as following:

0

1   l 

l a f x dxl     

1

cosl 

n xa f x dxn

l l 

  

 

1

sinl 

n xb f x dxn

l l 

  

 

where

2

T l    and T  is period for periodic function.

If ( ) f x  is an even function, then 0nb   .

Hence, its Fourier series is given by :

  0 cos2   1

a   n f x a xn

l n

    

 

where 0

0

2   l a f x dx

l   

0

2cos

l    na f x x dxn

l l 

  

 

Even X OddOdd.

Recall properties.

Even

properties

( I )

( II )

Page 10: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 10/36

CHAPTER 4: FOURIER SERIES SSE 1793

9

If    x f   is an odd function, then 0   0, 0na a .

Hence, its Fourier series is given by:

1

sinn

n

n x f x b

  

 

and 0

2sin

n

n xb f x dx

l l 

  

 

Summary:

( ) f x   Formula

Neither I

Even II

Odd III

Recall

properties

Odd X Odd Even

( III )

Page 11: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 11/36

CHAPTER 4: FOURIER SERIES SSE 1793

10

Example 4.3.1

Find the Fourier series for

 f x x  , 1 1 x  

2 f x f x .

Solution:

i) Determine T  and l .

T = 2, l  = 1.

ii) Draw the graph of ( ) f x .

iii) Check whether ( ) f x  is an odd or even function (or

neither). Identify the corresponding formulae.

From the graph, ( ) f x  is an odd function. Hence, the Fourierseries formulae are given by (III):

1 3 5-1-2-3 x

 f ( x)

Page 12: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 12/36

CHAPTER 4: FOURIER SERIES SSE 1793

11

iv) Calculate the Fourier series of f(x).

1

sinn

n

 f x b n x  

.

0

2sin

n

n xb f x dx

l l 

  

 

1

0

1

0

1

2 2

0

2 2

2 sin

2 sin

cos sin2

cos sin2 (0 0)

cos2

2( 1)n

 x n x dx

 x n x dx

n x n x x

n n

n n

n n

n

n

n

  

  

  

  

  

  

  

  

  

 

Therefore,

1

2 ( 1)sin

n

n

 f x n xn

  

  

  .

Note: It is not wrong to use the full range of [-1,1] when computingnb . The

result will be the same; it’s just that you may encounter a longer calculation.

sin 0

cos ( 1)

for 0,1,2,...

n

n

n

n

  

  

 

Remarks:

Page 13: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 13/36

CHAPTER 4: FOURIER SERIES SSE 1793

12

Example 4.3.2

Find the Fourier series for

 

  0

0

 x x f x

 x x

  

  

   

2 f x f x    

Solution:

i) Determine T  and l .

2 , .T l      

ii) Draw the graph of ( ) f x .

iii) Check whether ( ) f x  is an odd or even function (or

neither). Identify the corresponding formulae.

From the graph, ( ) f x  is an even function. Hence, the

Fourier series formulae are given by (II):

π   2 π   3 π  - π  -2 π  

 x

 f (x)

Page 14: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 14/36

CHAPTER 4: FOURIER SERIES SSE 1793

13

iv) Calculate the Fourier series of f(x).

  0 cos2   1

a   n f x a xn

l n

    

 

00

0

22

0

2

2

2 1( 0)

2

a x dxl 

 x dx

 x

  

  

  

  

  

 

0

2( )cos

l    n xa f x dxn

l l 

  

 

0

2cos

 n x x dx

     

  

 

0

2cos x nx dx

  

  

 

2

0

2 sin cos x nx nx

n   n

  

  

 

2 2

2 sin cos 1n n

n   n n

  

  

 

2

2(cos 1), 1,2,3,....n n

n  

  

 

2

4, odd

0, even

nn

n

  

 

 

Page 15: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 15/36

CHAPTER 4: FOURIER SERIES SSE 1793

14

Therefore,

0

1

( ) cos2

  n

n

a   n x f x a

  

 

1

cos2

  n

n

a nx  

 

 

2

4, odd

where

0, evenn

na   n

n

  

 

 

Example 4.3.3

Show that the Fourier series of

( ) sin ,2 2

( ) ( )

 f x x x

 f x f x

  

  

 

is given by2

1

2 4 1( ) cos2 .4 1n

 f x nxn   

 

Solution:

i) Determine T  and l .

, .2T l     

    

Page 16: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 16/36

CHAPTER 4: FOURIER SERIES SSE 1793

15

ii) Draw the graph of ( ) f x .

     2     3  0  2  3  

1

 

iii) Check whether ( ) f x  is an odd or even function (or

neither). Identify the corresponding formulae.

From the graph, ( ) f x  is an even function. Hence, theFourier series formulae are given by (II):

iv) Calculate the Fourier series of f(x).

20

0

20

2sin

2

4 4cos

a x dx

 x

  

  

  

  

 

2

0

2

0

4sin cos(2 )

2

(sin( 2 ) sin( 2 ))

na x nx dx

 x nx x nx dx

  

  

  

  

 

Page 17: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 17/36

CHAPTER 4: FOURIER SERIES SSE 1793

16

2

0

2

2 cos( 2 ) cos( 2 )

1 2 1 2

2 1 1 4

1 2 1 2 (1 4 )

 x nx x nx

n n

n n n

  

  

  

 

Hence,2

1

2 4 1( ) cos2 .

4 1n

 f x nxn   

 

Example 4.3.4

Find the Fourier series of

  , 0

0, 0

 x x f x

 x

  

  

 

 

2 f x f x    

Solution:

i) Determine T  and l .2 , .T l      

ii) Draw the graph of ( ) f x .

-3π  

. 2π  π  

 f(x)

 x-π   3π  -2π  . 4π  ..

Page 18: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 18/36

CHAPTER 4: FOURIER SERIES SSE 1793

17

iii) Check whether ( ) f x  is an odd or even function (or

neither). Identify the corresponding formulae.

( ) f x is neither even nor odd function. Hence, the Fourier

series formulae are given by (I):

iv) Calculate the Fourier series of f(x).

  0 cos sin2   1

a   n n f x a x b xn n

l l n

      

0

1 1l 

l a f x dx f x dxl 

  

      

0

0

10 x dx dx

  

    

 

 

021

2

 x

  

  

 

 

21

2 2

  

  

  

 

1

cosl 

nl 

na f x x dx

l l 

  

 

 

01cos x nx dx

    

   

0

2

1 1cos

 x sin nx nxn   n

    

 

  2

2 2

1 1 10 sin cosn n

nn n

  

  

  

 

   

Page 19: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 19/36

CHAPTER 4: FOURIER SERIES SSE 1793

18

2 2

2

2

1 1 1cos

11 cos

1 1 1 , 1, 2, 3,...n

nn n

nn

nn

  

  

  

  

  

 

Remarks: sin sin 0, 1,2,3,..n n n     

cos cos 1 , 1, 2,3,..n

n n n     

01

sinnb x nx dx    

   

 

0

2

2

1

1 1cos sin

1 10 sin 0 cos sin

1cos

1cos

111

n

n

 xnx nx

n   n

n nn   n

nn

nn

n n

    

  

  

  

  

  

  

  

 

 

 

0

1

1

21

cos sin2

12cos 2 1 sin

4   2 1

n n

n

m

m

a   n x n x

 f x a bl l 

m x mxmm

  

  

  

 

Page 20: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 20/36

CHAPTER 4: FOURIER SERIES SSE 1793

19

4.4  Fourier Series for Half Range Expansions.

Sometimes, if we only needs a Fourier series for a function defined

on the interval [0 ,

l ], it may be preferable to use a sine or cosineFourier series instead of a regular Fourier series.

This can be accomplished by extending the definition of the

function in question to the interval [−l  , 0] so that the extended

function is either even (if we wants a cosine series) or odd (if we

wants a sine series).

Such Fourier series are called half-range expansions.

Fourier Cosine series form

  0

1

cos2

  n

n

a   n x f x a

  

 

where

00

2   l 

a f x dx

  0

2( )cos , 0,1,0...

n

n xa f x dx n

l l 

  

 

Fourier Sine series form

1

sinn

n

n x f x b

  

 

where 0

2sin , 1, 2,3...

n

n xb f x dx n

l l 

  

 

Page 21: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 21/36

CHAPTER 4: FOURIER SERIES SSE 1793

20

Example 4.4.1 (Final Exam Sem II 2004/05)

Consider the function

( ) ; 0 . f x x x     

a) Sketch the appropriate graphs in the interval

-3 3 x     for each of the following cases:

i) 

The    periodic extension of ( ) f x .

ii)  The odd 2  -periodic extension of ( ) f x .

iii)  The even 2  -periodic extension of ( ) f x .

b) Find the Fourier cosine series of ( ) f x .

Solution:

a) The original graph of ( ) f x  is given by

  

  

0  x

( ) f x

 

Therefore, the solution to a) is just an extension to the

original graph.

i) The    periodic, range -3 3 x    .

0     

  

2     3  2  3          x

( ) f x

 

Page 22: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 22/36

CHAPTER 4: FOURIER SERIES SSE 1793

21

ii) The odd 2  -periodic, range-3 3 x    .

1 - Transform the original graph into an odd graph.(Remember, the odd graph is symmetry about the origin.)

0     

  

 x

( ) f x

 

0     

  

     x

( ) f x

   

2  – Extend the odd 2  -periodic graph to the

range-3 3 x    . (Repeat the shape).

0     

  

2     3  2  3          x

( ) f x

   

iii) The even 2  -periodic, range-3 3 x    .

1 - Transform the original graph into an even graph.(Remember, the even graph is symmetry about y-axis.)

2    period.

Page 23: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 23/36

CHAPTER 4: FOURIER SERIES SSE 1793

22

0     

  

 x

( ) f x

 

0     

  

     x

( ) f x

 

2  – Extend the even 2  -periodic graph to the

range-3 3 x    . (Repeat the shape).

0     

  

2     3  2  3          x

( ) f x

 

b) Fourier cosine series.

  0

1

cos2

  n

n

a f x a nx

 

00

2 22

0

2( )

2 2

2 2

.

a x dx

 x x

  

  

  

  

  

  

  

  

 

0

2

0

2 ( )cos

2 sin cos( ) bypartsor tabular  

na x nx dx

nx nx x

n n

  

  

  

  

  

  

 

Page 24: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 24/36

CHAPTER 4: FOURIER SERIES SSE 1793

23

2 2

2

2

2

2 cos sin 0 cos00

4, odd2 1 ( 1)

0 , even

4; 1,2,3,..

(2 1)

n

n

n n n

nn

nn

mm

  

  

  

  

  

 

 

 

 

Therefore2

1

4 cos(2 1)( ) .

2 (2 1)m

m x f x

m

  

  

 

Example 4.4.2

Find the half range Fourier series for

  1 f x x   0 1 x .

Solution:

i) Fourier Cosine.

To get the Fourier cosine series, we need to extend ( ) f x  to

be an even function as shown below:Remember!

Even function

Symmetry about y-axis.

Page 25: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 25/36

CHAPTER 4: FOURIER SERIES SSE 1793

24

Hence, the Fourier cosine series of ( ) f x  is

  0

1

cos , 12

  n

n

a   n x f x a l 

  

 

where

1

00

12

0

2 1

2 12

a x dx

 x x

 

and

1

02 1 cosna x n x dx    

 

1

2 20

1

2 2 2 2 2 2

21

1 1

2 1 sin cos

1 1 22 cos 1 1

1 4cos 2 1

2   2 1

n

m

 x n x n xn n

nn n n

 f x m xm

  

       

  

  

  

  

 

 

Page 26: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 26/36

CHAPTER 4: FOURIER SERIES SSE 1793

25

ii) Fourier Sine.

To get the Fourier sine series, we need to extend ( ) f x  to

be an odd function as shown below:

Hence, the Fourier sine series of ( ) f x  is given by

1

sinn

n

n x f x b

  

 

where

0

2sin , 1

n

n xb f x dx l  

l l 

  

 

1

02 1 sin x n x dx    

  1

2 2   0

2 2

1   22 cos sin

2 2 20 sin cos 0 0

2

 xn x n x

n n

nn nn

n

  

       

  

    

  

 

1

2( ) sin

n

 f x n xn

  

  

 

.

1  2  3 -3  -2  -1  x

 f(x) Remember!

Odd function

Symmetry about the

origin.

Page 27: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 27/36

CHAPTER 4: FOURIER SERIES SSE 1793

26

Example 4.4.3

Given that   1 f x     , 0   x      .

Find the odd and even extension of ( ) f x .

Solution:

i) Odd extension  Fourier sine series.

To get the Fourier sine series, we need to extend ( ) f x  to

be an odd function as shown below:

0   0na a  

0

21 sinn

n xb dx

     

  

 

 f(x)

π  -π  

1

.

 f(x)

 x2π  π   3π  -3π   -π  -2π   .

1

Page 28: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 28/36

CHAPTER 4: FOURIER SERIES SSE 1793

27

 

00

2 2sin cos

2 2cos 1 1 1

4 , odd

0, even

n

nx dx nxn

nn n

nn

n

    

  

  

  

  

 

 

4

1

2 21 1 sin

n

 f xn   

 

ii) Even extension  Fourier cosine series.To get the Fourier cosine series, we need to extend ( ) f x  to

be an even function as shown below:

00

21a dx

  

  

  2  

0

2cosna nx dx

  

  

 

0

2 1sin

0

nx

n

  

  

 

  0 12

a f x

 

 x

 f(x)

π   3π  -3π   -π  

Page 29: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 29/36

CHAPTER 4: FOURIER SERIES SSE 1793

28

4.5 Approximate Sum of the Infinite Series

We can find the approximate sum of the infinite series byusing Fourier series for   ( ) f x .

NOTE:

If; 0

( ); 0

 A l x f x

 B x l 

 

, then (0)

2

 A B f  

  .

Example 4.5.1

If the Fourier series for

  0,

1, f x

   

 

1 0

0 1

 x

 x

 , ( 2) ( ) f x f x

 

is given by

1

1 2 1( ) sin(2 1) ,

2 (2 1)n

 f x n xn

  

  

 

show that the approximate sum of this infinite series is

1 1 11 ......

3 5 7 4

  

 

0 x   is not in the interval.

Page 30: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 30/36

CHAPTER 4: FOURIER SERIES SSE 1793

29

Solution:

i) Expand ( ) f x .

1

1 2 1( ) sin(2 1)

2 (2 1)n

 f x n xn

  

  

 

1 2 1 1sin sin 3 sin 5 ...

2 3 5 x x x   

  

 

ii) Choose an appropriate value of  x .

Let1

2 x  , then we obtain

1 1 2 1 3 1 51 sin sin sin ...

2 2 2 3 2 5 2 f  

    

  

   

or

1 2 1 11 ...

2 3 5  

 

1 11 ...

3 5 4

  

 

Page 31: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 31/36

CHAPTER 4: FOURIER SERIES SSE 1793

30

Example 5.5.2

i) Show that

22

21

( 1)4 cos ,

3

n

n

 x nx xn

  

  

 

ii) By choosing an appropriate value of  x , show that

1 2 2

2 21 1

( 1) 1, and

12 6

n

n nn n

  

 

Solution:

i) Since2( ) f x x  is an even function, its Fourier series is

govern by:0

1

( ) cos2

  n

n

a   n x f x a

  

 

32

00

2 2

3o

 xa x dx

  

  

  

 

 

32

3

  

  

 22

3

    

and

2

0

2cosn

n xa x dx

    

  

 

 

2

2 3

0

2

2 2 2sin cos sin

2 2cos

 x xnx nx nx

n   n n

nn

  

  

  

  

  

 

2 2

4 4cos 1

  nn

n n    

Page 32: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 32/36

CHAPTER 4: FOURIER SERIES SSE 1793

31

Therefore,

22

21

4( ) 1 cos

3

n

n

 f x x nxn

  

.

ii) Choose an appropriate value of x

.

Let  x      .

2

2

21

41 cos

3

n

n

nn

  

  

 

2 22

21

( 1)4

3

n

n   n

  

  

 

2 2

21

1 2

3.4 6n   n

  

.

Let 0. x   

2

21

40 ( 1)

3

n

n   n

  

 

2

21

11

12

n

n   n

  

  or 2

1

21

11

12

n

n   n

  

.

Page 33: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 33/36

CHAPTER 4: FOURIER SERIES SSE 1793

32

Example 5.5.3 (continuation of Eg. 4.4.1)

If the Fourier cosine series of function

; 0( )

; 0

 x x f x

 x x

  

  

 

 

is given by2

1

4 cos(2 1)( )

2 (2 1)m

m x f x

m

  

  

, find the sum of

2 2 2

1 1 11 ...

3 5 7

.

Solution:

1 – Expand ( ). f x  

2 2 2

4 cos3 cos5 cos7( ) cos ...

2 3 5 7

 x x x f x x

  

  

 

2 – Choose an appropriate value of  x .

Let 0 x  .

2 2 2

4 1 1 1(0) 1 ...

2 3 5 7 f  

    

  

 

Recall function ( ) f x . 0 x   is not in the interval. Hence,

how do we find (0)? f    

( ) ( )(0)

2

 x x f  

    

  

 

Page 34: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 34/36

CHAPTER 4: FOURIER SERIES SSE 1793

33

Therefore,

2 2 2

4 1 1 11 ...

2 3 5 7

  

  

  

 

2

2 2 2

1 1 1   21 ...

3 5 7 4 8

     

    

 

Exercise:

1. The graph of ( ) f x  is shown as below. Find its Fourier series.

(0,2)   ( ,2)  

( ,0)  

( ) f x

 x 

Ans. 1

21

3 1 ( 1) ( 1)2 cos sin

2 ( )

n n

n

nx nxn n   

 

2. Write the Fourier series for   ( ) sinh f x x ,  x    .

Ans.  1

21

2sinh( 1) sin .

1

n

n

nnx

n

  

  

 

Page 35: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 35/36

CHAPTER 4: FOURIER SERIES SSE 1793

34

3. Show that if ( ) 0 f x    when 3 0 x , ( ) 1 f x    when

0 3, x  and1

(0)2

 f     , then

1

1 2 1 (2 1)( ) sin .2 2 1 3n

n x f x n

  

  

 

4. Recall Example 4.3.3. Using an appropriate value of , x  find the

sum of the following series

2

1 1 1 ( 1)... ...

3 15 35 4 1

n

n

 

Ans.  1

2 4

  

.

5. Consider the following graph of ( ). f x  

  

 x2               2  

( ) f x

 

a) Write the function of ( ). f x  

b) Determine the Fourier series of ( ). f x  

Ans. 1

sin(2 1)2 .

2 2 1n

n x

n

   

 

6. Write the Fourier Sine series for ( ) (0 ) f x x x    .

Ans. 1

sin2

n

nx

n

 

Page 36: Fourier Series Student.pdf

7/21/2019 Fourier Series Student.pdf

http://slidepdf.com/reader/full/fourier-series-studentpdf 36/36

CHAPTER 4: FOURIER SERIES SSE 1793

7. Calculate the Fourier sine series of the function

( ) f x x x    on (0, )   . Use its Fourier representation to the

find the value of the infinite series3 3 3 3

1 1 1 11 ...

3 5 7 9

 

Ans. 3

1

8 sin(2 1)( )

(2 1)n

n x f x

n  

 , the sum of series is

3

32

    if  2

 x       

8. Let h  be a given number in the interval (0, )   . Find the Fourier

cosine series of the function

1 if 0

( ) 0 if 

 x h

 f x h x     

   

Ans. 

1

2 1 sin( ) cos

2   n

h nh f x nx

nh  

 

END

REFERENCES

1.  Normah Maan et. al., (2008), Differential Equations Module, Jabatan

Matematik, UTM.

2. 

Nagel et. al., (2004), Fundamentals of Differential Equations, 5th

 ed.,

Addison Wesley Longman.

3.  Ruel V.Churchill and James W.B., (1978), Fourier Series and Bondary

Value Problems, McGraw Hill.